• Nenhum resultado encontrado

2.2 Produção de etanol por material lignocelulósico

2.2.4 Fermentação

2.2.4.3 Sacarificação e Fermentação Simultâneas (SFS)

Na SFS, a hidrólise e a fermentação ocorrem simultaneamente no mesmo reator. Este processo é mais eficiente quando combinado com um pré-tratamento ácido, ou com água líquida sobreaquecida (Balat, 2011). A maior vantagem da SFS é que os açúcares liberados durante a hidrólise enzimática são imediatamente consumidos pelos micro-organismos envolvidos na fermentação, o que conseqüentemente diminui a concentração de produtos inibidores das enzimas (Hahn-Hägerdal et al., 2006). Esta tecnologia tem sido melhorada de modo a incluir a co-fermentação de substratos com múltiplos açúcares, ou seja, a sacarificação simultânea de celulose (em glicose), e de hemicelulose (em xilose), e co- fermentação da glicose e xilose, por micróbios geneticamente modificados presentes no mesmo meio (Lee et al., 2013).

REFERÊNCIAS

ALVIRA, P.; TOMÁS-PEJÓ, E.; BALLESTEROS, M.; NEGRO, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. v.101, p.4851–4861,2010.

ARAUJO, J. R.; WALDMANB, J. R.; PAOLIA, M. A. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, v.93, p. 1770–1775, 2008.

ASSUNÇÃO, R. B.; MERCADANTE, A. Z. Carotenoids and ascorbic acid composition fromcommercial products of cashew apple (Anacardium occidentale L.).J. Food Composition Anal., v.16, p.647–657, 2003.

BALAT, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, v. 52, p. 858-875, 2011.

BALLESTEROS, M.; OLIVA, J. M.; NEGRO, M. J.; MANZANARES, P.; BALLESTEROS, I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry. v. 39, p. 1843–1848, 2004.

BANERJEE, G.; CAR, S.; SCOTT-CRAIG, J.; HODGE, D.B.; WALTON, J.D. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnology for Biofuels, v. 4, p.16, 2011.

BAUDEL, H. M. Pré-tratamento e Hidrólise. In: iii Workshop tecnológico sobrehidrólise para produção de etanol. 2006.

BRADY D, NIGAM P, MARCHANT R, MCHALE AP Ethanol production at 45 °C by alginate-immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media. Bioproc Eng, v.16, p.101–104, 1997.

BOYLE, M; BARRON, N; MCHALE, A. P. Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biotechnology Letter, v.19, n.1, p.48-51, 1997.

CAMPOS, D. C.; SANTOS, A. S.; WOLKOFF, D. B.; MATTA, V. M.; CABRAL, L. M. C.; COURI, S. Cashew apple juice stabilization by microfiltration. Desalination., v.148, p. 61–65, 2002.

CHEN, H.; HAN, Y.; XU, J. Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, v.43, p. 1462-1466, 2008.

DAGNINO, E. P.; CHAMORRO, R. E.; ROMANO, S. D.; FELISSIA, F. E.; AREA, M. C. Optimisation of the acid pretreatment step of rice hulls for bioethanol production. Ind. Crops Prod., v. 42, p. 363- 368, 2013.

D’ALMEIDA, M. L. O. Composição química dos materiais lignocelulósicos. In: Celulose e

papel – tecnologia de fabricação da pasta celulósica. São Paulo: Senai/IPT, v. 2, p. 45-106, 1988.

DEMIRBAS, A. Products from lignocellulosic materials via degradation processes. Energy Source A, v. 30, p. 30:27–37, 2008.

ELIASSON A, CHRISTENSSON C, WAHLBOM CF, HAHN-HAGERDAL B Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, and XKS1 in Mineral Medium Chemostat Cultures. Appl Environ Microbiol, v.66, p. 3381– 3386, 2000.

FANG, J. M.; SUN, R. C.; SALISBURY, D.; Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polymer Degradation and Stability, v. 66, p. 423–432, 1999.

FONSECA, G. G.; HEINLZE, E.; WITTMANN, C; GOMBERT, A. K. The yeast

Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology Biotechnology, v. 79, p. 339-354, 2008.

FROLLINI, E.; CASTELLAN, A. Phenolic resins and composites. In: Encyclopedia of Composites, 2nd ed. John Wiley & Sons, Hoboken, New Jersey, p. 2059–2068, 2012.

GALBE, M.; ZACCHI, G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol, v. 108, p. 41-65, 2007.

GARCIA, A.; TOLEDANO, A.; ANDRES, M.A.; LABIDI, J. Study of the antioxidant capacityof Miscanthus sinensis lignins. Process Biochemistry, v.45, p. 935–940, 2010. GOULD, J. M. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnology and Bioengineering, v.27, p. 225-231, 1985.

GOVUMONI,S. P.; KOTI, S.; KOTHAGOUNI,Y. S.; VENKATESHWAR, S.; LINGA, V. R. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydrate Polymers, v. 91, p. 646–650, 2013.

HAMELINCK, C.N.; HOOIJDONK, G.V.; FAAIJ, A.P.C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and longterm. Biomass and Bioenergy, v. 28, p. 384–410, 2005.

HAHN-HÄGERDAL, B.; GALBE, M.; GORWA-GRAUSLUND, M. F.; LIDÉN G.,ZACCHI G. Bio-ethanol – the fuel of tomorrow from the residues of today. TRENDS in Biotechnology, v.24, p.549-556, 2006.

HO, N. W. Y.; CHEN, Z.; BRAINARD, A. P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied Environment Microbiology, v.64, n.5, p.1852–1859, 1998.

KARAGÖZ, P.; ROCHA, I. V.; ÖZKAN, M.; ANGELIDAKI, I. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Bioresource Technology., v.104, p. 348-357, 2012.

KARUNANITHY, C.; MUTHUKUMARAPPAN, K.; JULSON, J. L. Enzymatic hydrolysis of corn stover pretreated in high shear bioreactor. In: ASABE Annual international meeting, Paper No. 084114, Rhode Island, June 29–July 2; 2008.

KESHWANI, D. R. Microwave pretreatment of switchgrass for bioethanol production. 2009. Tese (Doutorado). Universidade Estadual da Carolina do Norte, Carolina do Norte, Estados Unidos da América.

KODALI, B.; POGAKU, R. Pretreatment studies of rice bran for the effective production of cellulose. Electron J Environ Agric Food Chem, v.5, p. 1253–64, 2006.

LEE, D.; OWENS, V. N.; BOE, A.; JERANYAMA, P. Composition of herbaceous biomass feedstocks. South Dakota State University Publication, 2007.

MATIAS, M. D. O.; DE OLIVEIRA, E. L.; GERTRUDES, E. Use of fibres obtained from thecashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment offood products. Brazilian Archives of Biology and Technology, v.48, p.143-150, 2005.

MARTINS, D. B.; DE SOUZA, C. G. J. R.; SIMOES, D. A.; DE MORAIS, M. A. Jr. The β- galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol, v.44, p.379.382, 2002.

MCINTOSH, S.; VANCOV, T. Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass and Bioenergy, v.35, p. 3094-3103, 2011.

ÖHGREN, K.; BENGTSSON, O.; GORWA-GRAUSLUND, M. F.; GALBE, M.; HAHNHÄGERDAL,B.; GUIDO, Z. Simultaneous saccharification and co-fermentation of

glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, v.126, p.488–498, 2006.

PAN, G. X.; BOLTON, J. L.; LEARY, G. J. Determination of ferulic and p-coumaric acidsin wheat straw and the amounts released by mild acid and alkaline peroxide treatment. Journal of Agriculture and Food Chemistry, v.46, p. 5283–5288, 1988.

PORTES, E.; GARDRAT, C.; CASTELLAN, A.A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids.Tetrahedron, v.63, p.9092–9099, 2007.

PITARELO, A. P. Avaliação da susceptibilidade do bagaço e da palha de cana -de-açúcar à bioconversão via pré-tratamento a vapor e hidrólise enzimática, 2007. Dissertação (Mestrado em Química) –Universidade Federal do Paraná, Curitiba.

RABELO, S. C. Avaliação de desempenho do pré-tratamento com Peróxido de hidrogênio alcalino para a hidrólise Enzimática de bagaço de cana -de-açúcar, 2007. Dissertação (Mestrado). Universidade Estadual da Campinas.

ROCHA, M. V. P.; OLIVEIRA, A. H. S.; SOUZA, M. C. M.; GONÇALVES, L. R.B. Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World Journal Microbiology Biotechnology, v.22, p.1295-1299, 2006.

ROCHA, M. V. P., RODRIGUES, T., H. S., MACEDO, G. R., GONÇALVES, L. R. B. Enzymatic Hydrolysis and Fermentation of Pretreated Cashew Apple Bagasse with Alkali and Diluted Sulfuric Acid for Bioethanol Production. Appl. Biochem. Biotechnol., v.155, p.407– 417, 2009.

ROCHA, M.V.P.; RODRIGUES, T.H.S.; MELO, V.M.M.; GONÇALVES, L.R.B.; MACEDO, G.R. Cashew apple bagasse as a source of sugars for ethanol production by

ROCHA, G. J. M.; MARTIN, C.; SOARES, I. B.; MAIOR, A. M. S.; BAUDEL, H. M.; ABREU, C. A. M. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and bioenergy, v. 35, p. 663-670, 2011a.

RODRIGUES, T. H. S.; ROCHA, M. V. P.; MACEDO, G. R.; GONÇALVES, L. R. B. Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment. Appl Biochem Biotechnol., v. 164, p. 929- 943, 2011.

SAHA, B. C. Hemicellulose bioconversion. J. Ind. Microbiol.Biotechnol.,v.30, p.279-291, 2003.

SAHA, B. C.; ITEN, L. B.; COTTA, M. A.; WU, Y. V. Dilute acid pretreatment, enzymatic saccharification, and fermentation of wheat straw to ethanol. Proc. Biochem., v. 40, p.3693- 3700, 2005.

SAHA, B. C.; COTTA, M. A. Ethanol Production from Alkaline Peroxide Pretreated Enzymatically Saccharified Wheat Straw. Biotechnol. Prog, v. 22, p. 449-453, 2006.

SAHA, B. C.; COTTA, M. A. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb. Technol. v.41, p.528-532, 2007.

SAHA, B.C.; COTTA, M.A. Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol. New Biotechnol, v.27, p.10-16. 2010.

SAHA, B.C.; NICHOLS, N.N.; COTTA, M.A. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresource Technology, v.102, p.10892–10897, 2011.

SAHA, B. C.; YOSHIDA, T.; COTTA, M. A.; SONOMOTO, K. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, v. 44, p. 367-372, 2013.

SELIG, M. J.; VINZANT, T. B.; HIMMEL, E. M.; DECKER, S.R. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol, v.155, p. 397-406, 2009.

SILVA, C. G.; GRELIER, S.; PICHAVANT, F.; FROLLINI, E.; CASTELLAN, A. Adding value to lignins isolated from sugarcane bagasse and Miscanthus. Industrial Crops and Products, v.42, p. 87– 95, 2013.

SILVA, R.; HARAGUCHI, S. K.; MUNIZ, E. C.; RUBIRA, A. F. Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim. Nova, v. 32, p. 661-671, 2009.

SINGH, A.; SHARMA, P.; SARAN, A. K.; SINGH, N.; BISHNOI, N. R. Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy, v.50, p. 488-493, 2013.

SUN, J. X.; SUN, X. F.; SUN, R. C.; SU, Y. Q. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers, v.56, p.195– 204, 2004.

TAHERZADEH, M. J.; KARIMI, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci; v.9, p. 21–51, 2008.

VANDERGHEM, C.; RICHEL, A.; JACQUET, N.; BLECKER, C.; PAQUOT, M. Impact offormic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus giganteus lignin. Polymer Degradation and Stability, v.96, p. 1761–1770, 2011.

VÁSQUEZ, M. P.; SILVA, J. N. C.; SOUZA JR., M. B.; PEREIRA JR., N. Enzymatic hydrolysis optimization to ethanol production by Simultaneous Saccharification and Fermentation. Appl. Biochem.and Biotechnol. Issues 12, p.141-154, 2007.

ZHAO, J., XIA, L. Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Processing Technology, v. 90, p. 1193–1197, 2009.

ZHANG, M.; SHUKLA, P.; AYYACHAMY, M.; PERMAUL, K.; SINGH, S. Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World Journal Microbiology Biotechnology, v.26, p.1041–1046, 2010.

WILKINS, M. R.; MUELLER, M.; EICHLING, S.; BANAT, I. M. Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochemistry, v.43, p.346-350, 2008.

YABLOCHKOVA, E. N.; BOLOTNIKOVA, O. I.; MIKHAILOVA, N. P.; NEMOVA, N. N.; GINAK, A. I. Specific Features of Fermentation of D-Xylose and D-Glucose by Xylose- Assimilating Yeasts. Appl Biochem Microbiol, v.39, p.265–269, 2003.

YABLOCHKOVA, E. N.; BOLOTNIKOVA, O. I.; MIKHAILOVA, N. P.; NEMOVA, N. N.; GINAK, A. I. The Activity of Key Enzymes in Xylose-Assimilating Yeasts at Different Rates of Oxygen Transfer to the Fermentation Medium.Microbiol,v.73, p.129–133, 2004. YAMASHITA, Y.; SHONO, M.; SASAKI, C.; NAKAMURA, Y. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, v. 79, p. 914-920, 2009.