• Nenhum resultado encontrado

 Analisar a influência da granulometria.

 Realizar a comparação entre o plasma de descarga luminescente de corrente contínua com a redução a gás de hidrogênio na pressão atmosférica.

 Utilização de leito fluidizado no processo.

 Verificar a possibilidade de produção do plasma de descarga luminescente de corrente contínua em pressão atmosférica para a redução de pós de Cu2O.

 Realizar a mudança da configuração do plasma para outro tipo com maior grau de ionização como, por exemplo, plasma de radiofrequência (RF) ou micro- ondas.

REFERÊNCIAS

ABRIL, I.; GRAS-MARTI, A.; VALLES-ABARCA, J. A. The contribution of fast neutrals to cathode erosion in glow discharges. Journal of Physics D - Applied

Physics, v. 17, p. 1841-1849, 1984.

ALMEIDA, P. G. C.; BENILOV, M. S. Multiples solution in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-

producing gases and 3D modelling. Physics of Plasmas, v. 20, out. 2013.

ALMEIDA, P. G. C.; BENILOV, M. S.; FARIA, M. J. Three-dimensional modelling of self-organization in dc glow microdischarges. Transactions on Plasma Science, v. 39, n. 11, p. 2190-2191, Nov. 2011.

ANGER, G.; WINKLER, A.; RENDULIC, K. D. Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surface Science, v. 220, p. 1-

17, 1989.

BACAL, M. et al. Pressure and eletron temperature dependence of H- density in a

hydrogen plasma. Journal of Applied Physics, p. 1247-1254, jul. 2009.

BERGH, A. A. Atomic hydrogen as a reducing agent. The Bell System Technical

Journal, Nova York, v. 44, n. 2, p. 261-271, Fev. 1965.

BHARATHI, P. et al. Signature of fast H atoms from cathode glow region of a dc discharge. Physics of Plasmas, v. 16, mar. 2009.

BHATTACHARYA, R. S.; ECKSTEIN, W.; VERBEEK, H. Positive charge fractions of H, D, and He backscattered from solid surfaces. Surface Science, v. 93, mar. 1980.

BIAGI - V8.9 DATABASE. Plasma Data Exchange Project. Disponivel em: <www.lxcat.net>. Acesso em 1. Mar. 2014.

BISH, D. L.; HOWARD, S. A. Quantitative phase analysis using the Rietveld method.

Journal of Applied Crystallography, v. 21, p. 86-91, 1988.

BISWAS, K. et al. Comment on ‘‘Uncovering the complex behavior of hydrogen in Cu2O". Physical Review Letters, p. 219703-1, maio 2012.

BOGAERTS, A.; GIJBELS, R. Collisional-radiative model for an argon glow

BOHM, C.; PERRIN, J. Retardingfield analyzer for measurements of ion energy distributions and secondary electron emission coefficients in lowpressure radio frequency discharges. Review of Scientific Instruments, v. 64, n. 1, p. 31-44, jan. 1992.

BOND, W. D.; CLARK, W. E. Reduction of Cupric Oxides by Hydrogen - I. Fundamental Kinetics. Oak Ridge: Oak Ridge National Laboratory, 1960. 4-22p.

BRAY DATABASE. Plasma Data Exchange Project. Disponivel em: <www.lxcat.net>. Acesso em 1. Mar. 2014.

BROWN, M. E. The Prout-Tompkins rate equation in solid-state kinetics.

Thermochimica Acta, v. 300, p. 93-106, 1997.

BRUNATTO, S. F. et al. Sintering iron using a hollow cathode discharge. Materials

Science and Engineering A, v. 343, p. 163-169, mar. 2003.

BULLARD, D. E.; LYNCH, D. C. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metallurgical and Materials Transactions B, v. 28B, p. 1069- 1080, dez. 1997.

BURCAT, A.; RUSCIC, B. Third Millennium Ideal Gas and Condensed Phase - Thermochemical Database for Combustion with Updates from Active

Thermochemical Tables. Oak Ridge: Argonne National Laboratory, 2005. 417p.

CACCIATORE, M.; BILLING, G. D. Dissociation and atom recombination of H2 and

D2 on metalic surfaces: A theoretical survey. Pure & Applied Chemistry, v. 68, p.

1075-1081, 1996.

CHABERT, P. et al. On the influence of the gas velocity on dissociation degree and gas temperature in a flowing microwave hydrogen discharge. Journal of Applied

Physics, v. 84, n. 1, p. 161-167, jul. 1998.

CHAMPION, Y. et al. Sintering of copper nanopowders under hydrogen: an in situ X- ray diffraction analysis. Materials Science and Engineering A, v. 360, p. 258-263, maio 2003.

CHAPMAN, B. Glow Discharge Process - Sputtering and Plasma Etching. New York: Wiley-Interscience, 1980. 21-133p.

CONRADS, H.; SCHMIDT, M. Plasma generation and plasma sources. Plasma

DAVENPORT, W. G. et al. Extractive Metallurgy of Cooper. 4. ed. Oxford: Elsevier Science, 2002. 1-16p.

DAVID, W. I. F. Powder Diffraction: Least-Squares and Beyond. Journal of

Research of The National Institute of Standards and Technology, v. 109, n. 1, p.

107-123, jan./fev. 2004.

DAVIS, W. D.; VANDERSLICE, T. A. Ion energies at the cathode of a glow discharge. Physical Review, p. 219-230, jul. 1963.

DEXTER, A. C.; FARREL, T.; LEES, M. I. Electronic and ionic processes and ionic bombardment of the cathode in a DC hydrogen glow. Journal of Physics D:

Applied Physics, v. 22, p. 413-430, 1989.

DOWNS, R. T.; HALL-WALLACE, M. The American Mineralogist Crystal Structure Database. American Mineralogist, v. 88, p. 247-250, 2003.

ECKSTEIN, W.; VERBEEK, H. Reflection of light ions from solids. Nuclear Fusion, 1984.

ELIASSON, B.; KOGELSCHATZ, U. Nonequilibrium volume plasma chemical

processing. Transactions on Plasma Science, v. 19, n. 6, p. 1063-1077, dez. 1991.

FAROUK, T. et al. Modeling of direct current micro-plasma discharges in atmosphere pressure hydrogen. Plasma Sources Science and Technology, v. 16, p. 619-634, jul. 2007.

FLEISCH, T. H.; MAINS, G. J. Reduction of cooper oxides by uv radiation and atomic hydrogen studied by XPS. Applications of Surface Science, v. 10, p. 51-62, ago. 1981.

FRANZ, G. Low Pressure Plasmas and Microstructuring Technology. Berlin: SpringerBerlin Heidelberg, 2009. 5-40 p.

GAMAN, C.; OKSUZ, L.; ELLINGBOE, A. R. Ion energy distribution function in the afterglow of a hydrogen discharge. In: XXVIITH ICPIG, 2005, Eindhoven.

Anais…Eindhoven: XXVIIth ICPIG, 2005. p. 18-22.

GELB, A.; CARDILHO, M. Classical trajectory studies of hydrogen dissociation on a Cu(100) surface. Surface Science, v. 59, p. 128-140, 1976.

GENGER, T.; HINRICHSEN, O.; MUHLER, M. The temperature-programmed desorption of hydrogen from copper surfaces. Catalysis Letters, v. 59, p. 137-141, 1999.

GOEBEL, D. M. et al. Erosion of graphite by high flux hydrogen plasma bombardment. Nuclear Fusion, v. 28, n. 6, p. 1041-1052, 1988.

GOOS, E.; BURCAT, A.; RUSCIC, B. New NASA thermodynamic polynomials

database with active thermochemical tables updates. Oak Ridge: Argonne

National Laboratory, 2005. 417p.

GOUGOUSI, T.; JOHNSEN, R.; GOLDE, M. F. Recombination of H3+ and D3+ ion in a

flowing afterglow plasma. International Journal of Mass Spectrometry and Ion

Processes, v. 149/150, p. 131-151, maio 1995.

GRAVIS, D. B. Plasma Processing. Transactions on Plasma Science, v. 22, n. 1, p. 31-42, fev. 1994.

GRAZULIS, S. et al. Crystallography Open Database – an open-access collection of crystal structures. Journal of Applied Crystallography, v. 42, p. 726-729, 2009.

GRAZULIS, S. et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic

Acids Research, v. 40, p. D420-D427, 2012.

GREENWOOD, N. N.; EARNSHAW, A. Chemistry of the Elements. 2ª. ed. Butterworth Heinemann, 1997. 1173-1200p.

HAGELAAR, G. J. K.; PITCHFORD, L. C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources

Science and Technology, v. 14, p. 722-733, out. 2005.

HAMADA, S.; KUDO, Y.; TOJO, T. Preparation and reduction kinetics of uniform cooper particles from copper (I) oxides with hydrogen. Colloids and Surfaces, v. 67, p. 45-51, nov. 1992.

HAMMER, B.; SCHEFFLER, M. Multidimensional potential energy surface for H2

dissociation over Cu (111). Physical Review Letters, v. 73, n. 10, p. 1400-1403, set. 1994.

HAND, M. R.; HOLLOWAY, S. A theoretical study of the dissociation of H2/Cu. The Journal of Chemical Physics, v. 91, n. 11, p. 7209-7219, dez. 1989.

HAYDEN, B. E.; LAMONT, C. L. A. Coupled Translational-Vibrational Activation in Dissociative Hydrogen Adsorption on Cu(110). Physical Review Letters, v. 63, n. 17, p. 1823-1825, out. 1989.

HENRICH, V. E. The surface of metal oxides. Applied Physics, v. 48, p. 1481-1541, mar. 1985.

HIEBLER, H.; PLAUL, J. F. Hydrogen plasma smelting reduction - an option for steelmaking for the future. Metalurgija, v. 43, n. 3, p. 155-162, abr. 2004.

HILL, R. J. . H. C. J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. Journal of Applied Crystallography, v. 20, p. 467-476, 1987.

HISKES, J. R.; KARO, A. M. Recombination and dissociation of H2+ and H3+ ions on

surface to form H2(v"): Negative ion formation on low work function surface. Journal of Applied Physics, v. 67, p. 6621-6632, jun. 1990.

HISKES, K.; KARO, A. M. Recombination and dissociate recombination of H2+ and

H3+ ions on surfaces with application to hydrogen negative ion sources. Microwave and Particle Beam Sources and Direted Energy Concepts, SPIE 1061, p. 542-

546, 1989.

HUET, S. et al. Reduction of TiO2 assisted by a microwave plasma at atmospheric

pressure. Thin Solid Films, v. 475, p. 63-67, set. 2004.

INAN, U.; GOLKOWSKI, M. Principles of Plasma Physics for Engineers and

Scientists. New York: Cambridge University Press, 2011. 1-13p.

IST-LISBON DATABASE. Plasma Data Exchange Project. Disponivel em: <www.lxcat.net>. Acesso em 1. Mar. 2014.

JELENKOVIC, B. M.; PHELPS, A. V. The cathode-fall of low-pressure hydrogen discharges: absolute spectral emission and model. Physics of Plasmas, v. 18, out. 2011.

JELIC, D.; TOMIC-TUCAKOVIC, B.; MENTUS, S. A kinetic study of copper (II) oxide powder reduction with hydrogen, based on thermogravimetry. Thermochimica Acta, v. 521, p. 211-217, 2011.

JOHNSEN, R. Kinectics process in recombining H3+ plasmas. Phisolophical Transactions of The Royal Society A, p. 5109-5117, out. 2012.

KATAYAMA, K. et al. Erosion of carbon deposition layer by hydrogen RF plasma.

KATSCH, H. M.; QUANDT, E. Production of negatve hydrogen ions in a pulsed low pressure volume discharge. Journal of Physics D - Applied Physics, v. 25, p. 430- 435, 1992.

KAWAKAMI, K. Isothermal crystallization of imwitor 742 from supercooled liquid state. Pharmaceutical Research, v. 24, p. 738-747, abr. 2007.

KHAWAM, A.; FLANAGAN, D. R. Solid state kinetic models: basics and

mathematical fundamentals. The Journal of Physical Chemistry B, v. 110, p. 17315-17328, 2006.

KIM, J. Y. et al. Reduction of CuO and Cu2O with H2: H Embedding and Kinetics

Effects in the Formation of Suboxides. Journal of American Chemical Society, v. 125, n. 35, p. 10684-10692, 2003.

KOKOOULINE, V.; GREENE, C. Theoretical study of the H3+ ion dissociative

recombination process. Journal of Physics: Conference Series 4, p. 74-82, 2005.

KOMPANIETS, T. N.; KURDYUMOV, A. A. Surface processes in hydrogen permeation through metal membranes. Surface Science, v. 17, p. 75-152, 1984.

KORZHAVYI, P. A.; JOHANSSON, B. Literature review on the properties of

cuprous oxide Cu2O and the process of copper oxidation. Stockholm: Svensk

Karnbranslehantering AB, 2011. 41p.

KUNC, J. A.; GUNDERSEN, M. A. Analytical expressions for H+, H2+ and H3+ ion

densities in a hydrogen glow discharge. Physics Fluids, v. 27, p. 2862-2867, dez. 1984.

KUZMIN, A.; LUISIER, M.; SCHENK, O. Fast Methods for Computing Selected

Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations. Euro-Par 2013, LNCS 8097. Springer-Verlag Berlin Heidelberg. 2013.

533-544p.

LEE, S. Y. et al. Copper oxide reduction through vacuum annealing. Applied

Surface Science, v. 206, p. 102-109, 2003.

LEVENBERG, K. A method for the solution of certain problems in least squares.

Quarterly of Applied Mathematics, v. 2, p. 164-168, 1944.

LI, J. et al. Oxidation and reduction of copper thin films. Journal of Applied Physics, v. 69, p. 1020-1029, jun. 1991.

LIEBERMAN, M. A.; LICHTEMBERG, A. J. Principals of plasma discharges and

materials processing. 2 ed. Wiley Interscience, 2005. 165-206,535-569 p.

LIU, J.-Y.; GAO, Y.; WANG, G. Main reaction process simulation of hydrogen gas discharge in a cold cathode electric vacuum device. Pranama - Journal of Physics, p. 113-124, jul. 2012.

LLOYD, P. B.; KRESS, J. W.; TARTACHUK, B. J. Surface and bulk interactions of hydrogen with copper. Applied Surface Science, v. 119, p. 275-287, 1997.

LYUBOCHKO, V. A.; MALIKOV, V. V.; PARFENOV, O. G. . B. N. V. Reduction of aluminiun oxide in a nonequilibrium hydrogen plasma. Journal of Engineering

Physics and Thermophysics, v. 73, n. 3, p. 568-572, 2000.

MALISKA, A. M. et al. The influence of ion energy bombardment on the surface porosity of plasma sintering iron. Materials Science and Engineering A, v. 352, p. 273-278, 2003.

MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial and Applied Mathematics, v. 11, n. 2, p. 431-441, jun. 1963.

MARQUES, L. et al. Capacitively coupled hydrogen discharges: modeling vs. experiment. High Technology Plasma Processes, v. 8, p. 499-518, 2004.

MARQUES, L.; JOLLY, J.; ALVES, L. L. Capacitively coupled radio-frequency hydrogen discharges: The role of kinetics. Journal of Applied Physics, v. 102, p. 063305-1/14, set. 2007.

MASON, R. S.; ALLOTT, R. M. The theory of cathodic bombardment in a glow discharge by fast neutrals. Journal of Physics D - Applied Physics, v. 27, p. 2372- 2378, 1994.

MATSUTANI, A.; OHTSUKI, H.; KOYAMA, F. Characterization of H2O - inductively

coupled plasma for dry etching. Journal of Physics: Conference Series, v. 100, p. 062022, 2008.

MCCUSKER, L. B. et al. Rietveld refinement guidelines. Journal of Applied

Crystallography, v. 32, p. 36-50, 1999.

MÉNDEZ, I. et al. Aton and ion chemistry in low pressure hydrogen dc plasmas. The

MÉNDEZ, I.; HERRERO, V. J.; TANARRO, I. Ion and neutral species in H2, H2+Ar

and H2+N2 plasmas generated in low pressure dc discharge. International Conference on Phenomena in Ionized Gases, Prague, p. 164-167, 2007.

MORGAN DATABASE. Plasma Data Exchange Project. Disponivel em: <www.lxcat.net>. Acesso em 1. Mar. 2014.

MORGAN, P. E. D. et al. Syntesis of paramelaconite: Cu4O3. Journal of Solid State Chemistry, v. 121, p. 33-37, out. 1995.

NORGATE, T. E.; JAHANSHAHI, S.; RANKIN, W. J. Assessing the environmental impact of metal production processes. Journal of Cleaner Production 15, v. 18, p. 838-848, set. 2006.

NOVAKOVIC, J. et al. Plasma reduction of bronze corrosion developed under long- term artificial ageing. Analytical and Bioanalytical Chemistry, v. 395, p. 2235- 2244, ago. 2009.

OGORODNIKOVA, O. V. Comparison of hydrogen gas, aton and ion-metal interactions. Journal of Nuclear Materials, v. 277, p. 130-142, 2000.

OKA, T. Chemistry, astronomy and physics of H3+. Phisolophical Transactions of The Royal Society A, p. 4991-5000, out. 2012.

OLIVEIRA, L. P. et al. Influência do fluxo gasoso na redução de óxido de cobre sob plasma de hidrogênio. In: 69º CONGRESSO ANUAL DA ABM – INTERNACIONAL, 2014, São Paulo. Anais... São Paulo: 69º Congresso Anual da ABM – Internacional, 2014.

PAGANO, D.; GORSE, C.; CAPITELLI, M. Atomic wall recombination and volume negative ion production. Review on Scientific Instruments, v. 77, p. 03A505- 03A505-3, mar. 2006.

PATNAIK, P. Handbook of Inorganic Chemicals. New York: McGraw-Hill, 2002. 253-278p.

PAVANATI, H. C. et al. Microstructural and mechanical characterization of iron samples sintered in DC plasma. Materials Science and Engineering A, v. 474, p. 15-23, 2008.

PHELPS DATABASE. Plasma Data Exchange Project. Disponivel em: <www.lxcat.net>. Acesso em 1. Mar. 2014.

PHELPS, A. V. Energetic ion, atom and molecule reactions and excitation in low- current H2 discharge: Model. Physical Review E, v. 79, jun. 2009.

PICK, M. A.; SONNENBERG, K. A model for atomic hydrogen-metal interactions - application to recycling, recombination and permeation. Journal of Nuclear

Materials, v. 131, p. 208-220, 1984.

PLASIL, R. et al. Measurements of EEDF in recombination dominated afterglow plasma. Journal of Physics: Conference Series, v. 192, p. 1-4, 2009.

POULSTON, S. et al. Surface oxidation and reduction of CuO and Cu2O studied

using XPS and XAES. Surface and Interface Analysis, v. 24, p. 811-820, 1996.

PRADO, L. M. S. et al. Influência da pressão na redução de óxido de cobre sob plasma de hidrogênio. In: 69º CONGRESSO ANUAL DA ABM – INTERNACIONAL, 2014, São Paulo. Anais... São Paulo: 69º Congresso Anual da ABM – Internacional, 2014.

QUINN, J. M. P. Gas-laser determination of the electron density in the afterglow of a hydrogen discharge. Plasma Physics (Journal of Nuclear Energy Part C), v. 7, p. 113-122, 1965.

RIETVELD, H. M. Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Crystallographica A, v. 22, p. 151-152, jul. 1967.

RIETVELD, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures.

Acta Crystallographica, v. 2, p. 65-71, nov. 1969.

ROBINO, C. V. Representation of mixed reactive gaseson free energy (Ellingham- Richardson) diagram. Metallurgical and Materials Transactions B, v. 27B, p. 65- 69, fev. 1996.

RODRIGUEZ, J. A. et al. Reduction of CuO in H2: in situ time-resolved XRD studies. Catalysis Letters, v.85, n. 3-4, p. 247-254, 2003.

RODRIGUEZ-CARVAJAL, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, v. 192, n. 1-2, p. 55- 69, out. 1993.

SALABAS, A. et al. Systematic characterization of low-pressure capacitively coupled hydrogen discharges. Journal of Applied Physics, v. 95, mar. 2004.

SAWADA, Y. et al. The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge. Journal of Physics D:

Applied Physics, v. 29, p. 2539-2544, 1996.

SCANLON, D. O.; WATSON, G. W. Uncovering the Complex Behavior of Hydrogen in Cu2O. Physical Review Letters, v. 106, p. 186403/1-4, maio 2011.

SCANLON, D. O.; WATSON, G. W. Erratum: Uncovering the Complex Behavior of Hydrogen in Cu2O [Phys. Rev. Lett. 106, 186403 (2011)]. Physical Review Letters,

v. 108, p. 129901-1, mar. 2012.

SCHENK, O.; BOLLHOEFER, M.; ROEMER, R. A. On Large Scale Diagonalization

Techniques for the Anderson Model of Localization, ago. 2005. Disponível em:

<www.arXix.org>. Acesso em 1. Mar. 2014.

SCHENK, O.; WACHTER, A.; HAGEMANN, M. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior- point optimization. Computational Optimization and Applications, v. 36, p. 321- 341, abr. 2007.

SCHWARTZ, S. J.; OWEN, C. J.; BURGESS, D. Astrophysical Plasmas. London: University of London, 2002. 11p.

ST-ONGE, L.; MOISAN, M. Hydrogen atom yield in RF and microwave hydrogen discharges. Plasma Chemistry and Plasma Processing, v. 14, n. 2, p. 87-116, 1994.

TORAYA, H. Estimation of statistical uncertainties in quantitative phase analysis using the Rietveld method and the whole-powder-pattern decomposition method.

Journal of Applied Crystallography, v. 33, p. 1324-1328, dez. 2000.

VOLLATH, D. Plasma synthesis of nanopowders. Journal of Nanoparticle

Research, v. 10, p. 39-57, jun. 2008.

WILES, D. B.; YOUNG, R. A. A new computer program for Rietveld analysis of X-ray powder diffraction patterns. Journal of Applied Crystallography, v. 14, p. 149-151, 1981.

WILSON, R. G. Vacuum Thermionic Work Functions of Polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and Type 304 Stainless Steel. Journal of Applied Physics, v. 37, n. 6, p. 2261-2267, maio 1966.

YOUNG, R. A. The Rietveld method. New York: Oxford University Press, 1995. 298p.

ZANOTTO, E. D. The applicability of the general theory of phase transformations to glass crystallization. Thermochimica Acta, v. 280/281, p. 73-82, 1996.

ZHANG, W. et al. The de-oxidation of partially oxidized titanium by hydrogen plasma.

Materials Forum, v. 31, p. 76-83, 2007.

ZHANG, Y. et al. Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow

discharge. Transactions of Nonferrous Metals Society of China, v. 15, n. 3, p. 594-599, jun. 2005.

Documentos relacionados