• Nenhum resultado encontrado

6 CONCLUSÕES E SUGESTÕES

6.2 SUGESTÕES

 Estudar a influência na utilização da platina ou outro metal, com diferentes teores, como disperso nos suportes de CexM1-xO2 (M = Zr ou Mn);

 Sintetizar suportes de zircônio e manganês seguindo as composições teóricas sugeridas nesse trabalho e,

 Avaliar a utilização de um suporte com alta área superficial específica nesses materiais, por exemplo, alumina. Desta maneira, poderiam ser obtidas maiores dispersões metálicas, melhorando o desempenho destes catalisadores durante os testes catalíticos na oxidação parcial.

REFERÊNCIAS

ABU-SAMRA, A.; MORRIS, J. S. Wet ashing of some biological samples in a microwave oven. Journal of Analytical Chemical, v. 47, p. 1475-1477, 1975. AHMED, S.; KUMAR, R.; KRUMPETT, M. Fuel processing for fuel cell power systems. Fuel Cells Bulletin, v. 2, n. 12, p. 4-7, 1999.

ANDERSON, H. U.; PENNEL, M .J.; GUHA, J. P. Polymeric synthesis of lead magnesium niobate powders. Ceramic Powder Science, v. 21, 91-98, 1987. ARMOR, J. N. The multiple roles for catalysis in the production of H2. Applied

Catalysis A: general, v. 176, p. 159-176, 1999.

BARROS, B. S. Reforma a seco e a vapor do metano sobre os precursores catalíticos LaNiO3/α-Al2O3 e La2NiO4/α-Al2O3 preparados por autocombustão

assistida por microondas. 2009. 190f. Tese (Doutorado em Materiais) - Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal do Rio Grande do Norte, Natal-RN, 2009.

BHARADWAY, S. S.; SCHMIDT, L. D. Catalytic partial oxidation of natural gas to syngas. Fuel Processing Technology, v. 42, p. 109-127, 1995.

BLANKS, R. F.; WITTRIG, T. S.; PETERSON, D. A. Bidirectional adiabatic synthesis gas generator. Chemical Engineering Science, v. 45, p. 2407-2413, 1990.

BOARO, M.; VICARIO, M.; LEITENBURG, C.; DOLCETTI, J.; TROVARELLI, A. The use of temperature-programmed and dynamic/transient methods in catalysis:

Characterization of ceria-based, model three-way catalysts. Catalysis Today, n. 77, p. 407-417, 2003. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0920586102003838. Acesso em: 17 nov. 2008.

BRADFORD, M. C. J.; VANNICE, M. A. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Applied Catalysis A: general, n. 142, p. 97-122, 1996.

BRASIL. Lei nº 9478, de 06 de agosto de 1997. Dispõe sobre a política energética nacional. Seção II - Definições Técnicas, artigo 6°. Diário Oficial da União. Brasília, 08 de dezembro de 1997. Disponível em:

http://www.planalto.gov.br/ccivil_03/leis/l9478.htm. Acesso em:

CHEN, Y.; ZHOU W.; SHAO, Z.; XU, N. Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas. Catalysis Communications, v. 9, p. 1418-1425, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S1566736707005328. Acesso em: 06 mai. 2010.

COSTA, A. C. F. M.; VIEIRA, D. A.; LULA, R. P. TP.; KIMINAMI, R. H. G. A.; GAMA, L. Influência da uréia e glicina na síntese de por reação de combustão do suporte ZnAl2O4. In: CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS

MATERIAIS, 17., 2006, Foz do Iguaçu/PR. Resumo... Foz de Iguaçu/PR, 2006. Disponível em: http://www.metallum.com.br/17cbecimat/resumos/17cbecimat-113- 014.pdf. Acesso em: 17 jun. 2009.

CULF, J.P.; BLANCHARD, G.; TOURET, O.; SEIGNEURIN, A.; MARCZI, M.; QUÉMÉRÉ, E. (Ce, Zr)O2 solid solutions for three-way catalysts. SAE Technical Paper, n. 970463, 1996.

DANTAS, S. C.; ESCRITORI, J. C.; SOARES, R. R.; HORI, C. E. Ni/CeZrO2 - based

catalysts for H2 production. In: NORONHA, F. B; SCHMAL, M.; SOUSA_AGUIAR, E.

F. Natural Gas Convertion. Amsterdan/New York: Elsevier, 2007. n. 8. (Studies in surface science and catalysis, v. 167). Proceedings of the 8th Natural Gas

Conversion Symposium, Natal, Brazil, maio 27-31,2007.

DELIMARIS, D.; LOANNIDES, T. VOC oxidation over MnOx-CeO2 catalysts prepared

by a combustion method. Applied Catalysis B: environmental, v. 84, p. 303-312, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926337308001355. Acesso em: 12 jun. 2010.

DOBBER, D.; KIEBLING, D.; SCHMITZ, W.; WENDT, G. MnOx-ZrO2 catalysts for the

total oxidation of methane and chloromethane. Applied Catalysis B: environmental, v. 52, 135-143, 2004. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926337304001018. Acesso em: 15 set. 2009.

DONG, W. S.; ROH, H. S.; JUN, K. W.; PARK, S. E.; OH, Y. S. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Applied Catalysis A: general, n.

226, p. 63-72, 2002. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926860X01008833. Acesso em: 30 jun. 2009.

FORNASIERO, P.; DI MONTE, R.; RANGA RAO, G.; KASPAR, J.; MERIANI, S.; TROVARELLI, A.; GRAZIANI, M. Rh-loaded CeO2-ZrO2 solid solutions as highly

efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties. Journal of Catalysis, n. 151, p. 168- 177, 1995.

FRENI, S.; CALOGERO, G.; CAVALLARO, S. Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources, v. 87, p. 28- 38, 2000.

FUMO, D. A.; MORELLI, M. R.; SEGADÃES, A. M. Combustion synthesis of calcium aluminates. Materials Research Bulletin, v. 3, n. 10, p. 1243-1255, 1996.

GIBOT, P.; LAFFONT, L. Hydrophilic and hydrophobic nano-sized Mn3O4 particles.

http://www.sciencedirect.com/science/article/pii/S0022459606006256. Acesso em: 24 abr. 2009.

HORI, C.E.; PERMANA, H.; SIMON NG, K.Y.; BRENNER, A.; MORE, K.;

RAHMOELLER, K.M.; BELTON, D. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Applied Catalysis B: environmental, n. 16, p. 105-117,

1998.

HUSZAR, K.; RACZ, G.; SZEKELY, G. Investigation of the partial catalytic oxidation of methane, I – Conversion rates in a single-grain reactor. Acta Chimica Academiae Scientiarum Hungaricae, v. 70, p. 287-299, 1971.

INOUE, M.; SATO, K.; NAKAMURA, T.; INUI, T. Glycothermal synthesis of zirconia- rare earth oxide solid solutions. Catalysis Letters, n. 65, p. 79-83, 2000.

KIMINAMI, R. H. G. A.; FOLZ, D. C.; CLARCK, D. E. Microwave synthesis of alumina powders. Ceramic Bulletin, v. 70, n. 3, p. 63-67, 2000.

LAOSIRIPOJANA, N.; CHADWICK, D.; ASSABUMRUNGRAT, S. Effect of high surface CeO2 and Ce-ZrO2 supports over Ni catalyst on CH4 reforming with H2O in

the presence of O2, H2 and CO2. Chemical Engineering Journal, v. 138, p. 264-

273, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S1385894707003737. Acesso em: 20 mar. 2009.

JAIN, S. R.; ADIGA, K. C.; VERNERKER, V. A new approach to thermo chemical calculations of condensed fuel - oxidizer mixture. Combustion and Flame, v. 40, 71- 79, 1981.

LEE, S. H.; CHO, W.; JU, W. S.; CHO, B. H.; LEE, Y. C.; BAEK, Y. S. Tri-reforming of CH4 using CO2 for production of synthesis gas to dimethyl ether. Catalysis Today,

v. 87, 133-137, 2003. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0920586103005443. Acesso em: 25 jul. 2008.

LESSING, P. A. Mixed-cation oxide powders via polymeric precursors. American Ceramic Society Bulletin, v. 68, n. 5, p.1002-1007, 1989.

LIU, X.; LU, J.; QIAN, K.; HUANG, W.; LUO, M. A comparative study of

formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts.

Journal of Rare Earths, v. 27, n. 3, p. 418, 2009. Disponível em:

http://www.sciencedirect.com/science/article/pii/S100207210860263X. Acesso em: 22 nov. 2008.

MAHAN, K. I., FODERARO, T. A.; GARZA, T. L.; MARTINEZ, R. M.; MARONEY, G. A.; TRIVISONNO, M. R.; WILLGING, E.M. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead and zinc in sediments. Journal of Analytical Chemical, v. 59, 938-945, 1987.

MANOHARAN, S. S.; PATIL, K. C. Combustion synthesis of metal chromite powders. Journal of the American Ceramic Society, v. 75, p. 1012-1015, 1992.

MATTOS, L. V.; OLIVEIRA, E.R.; NORONHA, F. B.; PASSOS, F. B.; RESENDE, P. D. Partial oxidation of methane on Pt/Ce-ZrO2 catalysts. Catalysis Today, n. 77, p.

245-256, 2002. Disponível em:

http://www.sciencedirect.com/science/article/pii/S092058610200250X. Acesso em: 20 set. 2008.

MCLELLAN, B.; SHOKO, E.; DICKS, A. L. Hydrogen production and utilization opportunities for Australia. International Journal of Hydrogen Energy, v. 30, n. 6, p. 669-679, 2005. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0360319904002484. Acesso em: 18 mar. 2009.

MESKO, M. F. Combustão iniciada por microondas em sistema fechado para a decomposição de amostras biológicas. 2004. 115 f. Dissertação (Mestrado em Química Analítica) - Programa de Pós Graduação em Química, Universidade Federal de Santa Maria, Santa Maria-RS, 2004. Disponível em:

http://cascavel.cpd.ufsm.br/tede/tde_busca/arquivo.php?codArquivo=1610. Acesso em: 19 ago. 2010.

MIAO, Q.; XIONG, G.; SHENG, S. Partial oxidation of methane to syngas over nickel- based catalysts modified by alkali metal oxide and rare earth metal oxide, Applied Catalysis A: general, v. 154, p. 17-27, 1997.

OLIVEIRA, H. F. N.; TRINCA, R. B.; GUSHIKEM, Y. Síntese e estudos de

ortossilicatos de zinco luminescentes com aplicação da técnica sol-gel. Química Nova. V. 32, n 5, p. 1346-1349, 2009. Disponível em:

http://quimicanova.sbq.org.br/qn/qnol/2009/vol32n5/44-ED08454.pdf. Acesso em: 14 jul. 2010.

PANTU, P.; KIM, K.; GAVALAS, G.R. Methane partial oxidation on Pt/CeO-ZrO2 in

the absence of gaseous oxygen. Applied Catalysis A: general, n. 193, p. 203-214, 2000.

PECHINI, M. P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent, n° 3330697, 1967.

PENGPANICH, S.; MEEYOO, V.; RIRKSOMBOON, T.; BUNYAKIAT, K. Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared

via urea hydrolysis. Applied Catalysis A: general, n. 234, p. 221-233, 2002. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926860X02002302. Acesso em: 26 ago. 2008.

PETTERSON, L. J.; WESTERHOLN, R. State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs. International Journal of Hydrogen Energy, v. 26, p. 243-264, 2001.

PICASSO, G.; GUTIERREZ, M.; PINA, M. P.; HERGUIDO, J. Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion:

Application to catalytic membrane reactors. Chemical Engineering Journal, v. 126, p. 119-130, 2007. Disponível em:

http://www.sciencedirect.com/science/article/pii/S1385894706003792. Acesso em: 19 jun. 2010.

POMPEO, F.; NICHIO, N. N.; FERRETTI, O. A. RESASCO, D. Study of Ni catalyst on differents supports to obtain synthesis gas. International Journal of Hydrogen Energy, v. 30, 1399-1405, 2005. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0360319904003313. Acesso em: 20 jun. 2008.

PRASAD, D. H.; JUNG, H. Y.; JUNG, H. G.; KIM, B. K.; LEE, H. W.; LEE, J. H. Single step synthesis of nano-sized NiO–Ce0.75Zr0.25O2 composite powders by

glycine nitrate process. Materials Letters, n. 62, p. 587-590, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0167577X0700612X. Acesso em: 05 abr. 2010.

PRETTRE, M.; EICHNER, C.; PERRIN, M. The catalytic oxidation of methane to carbon monoxide and hydrogen. Transactions of the Faraday Society, n. 43, p. 335-340. 1946.

RAMESH, K.; CHEN, L.; CHEN, F.; LIU, Y.; WANG, Z.; HAN, Y. F. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts.

Catalysis Today, v. 131, p. 477-482, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S092058610700661X. Acesso em: 23 jan. 2010.

RAO, T.; SHEN, M.; JIA, L.; HAO, J.; WANG, J. Oxidation of ethanol over Mn-Ce-O and Mn-Ce-Zr-O complex compounds synthesized by sol–gel method. Catalysis Communications, n. 8, p. 1743-1747, 2007. Disponível em:

http://www.sciencedirect.com/science/article/pii/S1566736707000465. Acesso em: 23 mai. 2009.

ROCHA, R. A. Obtenção e caracterização de eletrólitos sólidos de céria- gadolínea. 2001. 92 f. Dissertação (Mestrado em Tecnologia Nuclear) - Programa de Pós Graduação em Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo-SP, 2001. Disponível em:

http://www.teses.usp.br/teses/disponiveis/85/85134/tde-07122005-141227/en.php. Acesso em: 24 set. 2010.

ROH, H. S.; JUN, K. W.; DONG, W. S.; PARK, S. E.; BACK, Y. S. Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane. Catalysis

Letters, v. 74, p. 31-36, 2001.

RUIZ, J. A. C.; PASSOS, F. B.; BUENO, J. M. C.; SOUZA-AGUIAR, E. F.; MATTOS, L.V.; NORONHA, F. B. Syngas production by autothermal reforming of methane on supported platinum catalysts. Applied Catalysis A: general, v. 334, p. 259 -267, 2008. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926860X09003810. Acesso em: 02 dez. 2009.

SANTOS, E. M.; ZAMALLOA, G. C.; VILLANUEVA, L. D.; FAGÁ, M. T. W. Gás Natural: estratégias para uma energia nova no Brasil. São Paulo: ed. Annablume, 2002.

SEGADÄES, A. M.; MORELLI, M. R.; KIMINAMI, R. G. A. Combustion synthesis of aluminium titanate. Journal of the European Ceramic Society, v. 18, p. 771-781, 1998.

SHEN, S.; LU, Y.; XUE, J.; YU, C.; LIU, Y. Mechanistic investigation on the partial oxidation of methane to syngas over a nickel-on-alumina catalyst. Applied Catalysis A: general, v. 174, p. 121-128, 1998.

SILVA, F. A; RUIZ, J. A. C.; SOUZA, K. R.; BUENO, J. M. C.; MATTOS, L. V.;

NORONHA, F. B.; HORI, C. E. Partial oxidation of methane on Pt catalysts: Effect of the resence of ceria-zirconia mixed oxide and of metal content. Applied Catalysis A: general, n. 364, p. 122-129, 2009. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926860X09003810. Acesso em: 07 fev. 2010.

SILVEIRA, V. R. Estudo do desempenho de resinas poliméricas para remoção de H2S do gás natural. 2006. 100 f. Dissertação (Mestrado em Química) - Programa

de Pós-Graduação em Química, Universidade Federal do Rio Grande do Norte, Natal-RN, 2006. Disponível em:

http://bdtd.bczm.ufrn.br/tedesimplificado/tde_arquivos/35/TDE-2007-10-30T022238Z- 887/Publico/ValdeliceRS.pdf. Acesso em: 02 jun. 2010.

SMITH, F. E.; ARSENAULT, E. A. Microwave-assisted sample preparation in analytical chemistry. Talanta, v. 43, n. 8, p. 1207-1268, 1996.

SOUZA, V. C. et al. Combustion synthesized ZnO powders for varistor ceramics. International Journal of Inorganic Materials, v.1, p. 235-241, 1999.

STOBBE, E. R.; BOER, B. A.; GEUS, J. W. The reduction and oxidation behaviour oh manganese oxides. Catalysis Today, v. 47, p. 161-167, 1999.

TANG, X. F.; LI, Y. G.; HUANG, X. M.; XU, Y. D.; ZHU, H. Q.; WANG, J. G.; SHEN, W. J. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:

effect of preparation method and calcinations temperature. Applied Catalysis, B: environmental, v. 62, p. 265–273, 2006. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926337305003048. Acesso em: 30 jun. 2009.

TOMISHIGE, K.; CHEN, Y. G.; FUGIMOTO, K. Studies on carbon deposition in CO2

reforming of CH4 over nickel-magnesia solid solution catalysts. Journal of Catalysis,

TRIMM, D. L. Catalysts for the control of coking during steam reforming. Catalysis Today, v. 49, p. 3-10, 1999.

VIDAL, H.; KASPAR, J.; PIJOLAT, M.; COLON, G.; BERNAL, S.; CORDÓN, A.; PERRICHON, V.; FALLY, F. Redox behavior of CeO2-ZrO2 mixed oxides II. Influence

of redox treatments on low surface area catalysts. Applied Catalysis B: environmental, n. 30, p. 75-85, 2001.

XINGYI, W.; QIAN, K.; DAO, L. Catalytic combustion of chlorobenzene over MnOx-

CeO2 mixed oxide catalysts. Applied Catalysis B: environmental, v. 86, p.166-175,

2009. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926337308002956. Acesso em: 20 fev. 2010.

XU, R.; WANG, X.; WANG, D. S.; ZHOU, K. B.; LI, Y. D. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. Journal of Catalysis, v.

237, p. 426, 2006. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0021951705004185. Acesso em: 26 jul. 2009.

XUESONG, L.; JIQING, L.; KUN, Q.; WEIXIN, H.; MENGFEI, L. A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts.

Journal of Rare Earths, v. 27, n. 3, p. 418, 2009. Disponível em:

http://www.sciencedirect.com/science/article/pii/S100207210860263X. Acesso em: 25 ago. 2010.

YAMAMOTO, S.; KAKIHANA, M.; KATO, S. A polymer complex solution route to the low-temperature synthesis of tetragonal Zr0,88Ce0,12O2 with a reduced amount of

organic substance. Journal of Alloys and Compounds, n. 297, 81-86, 2000. ZHU, J.; ZHANG, D.; KING, K. D. Reforming of CH4 by partial oxidation

thermodynamic and kinetic analysis. Fuel, n. 80, p. 899-905, 2001.

WANG, X.; QIAN, K.; DAO, L. Catalytic combustion of chlorobenzene over MnOx- CeO2 mixed oxide catalysts. Applied Catalysis B: environmental, V. 86, P. 166 -

175, 2009. Disponível em:

http://www.sciencedirect.com/science/article/pii/S0926337308002956. Acesso em: 14 jul. 2010.

WILHELM, D. J. et al. Syngas production for gas-to-liquids applications:

Technologies, issues and an outlook. Fuel Processing Technology, n.71, p. 139- 148, 2001.

WU, S.; LIANG, Q.; WENG, D.; FAN, J.; RAN, R. Synthesis of CeO2-MnOx mixed

oxides and catalytic performance under oxygen-rich condition. Catalysis Today, n. 126, p. 430-435, 2007. Disponível em:

http://www.sciencedirect.com/science/article/pii/S092058610700363X. Acesso em: 08 abr. 2009.

ANEXO

Tabela 09- Medida do consumo de hidrogênio nas temperaturas de redução

PECHINI T / °C Consumo de H2 / mL g-1 COMBUSTÃO T / °C Consumo de H2 / mL g-1 P 001 528 9,019 C 001 495 18,683 660 9,546 704 15,329 PN 001 356 33,965 CN 001 349 32,051 425 13,635 470 27,536 693 6,869 693 7,205 P 002 283 1,930 C 002 469 30,482 351 8,817 811 38,440 706 15,231 - - PN 002 374 - CN 002 364 45,545 409 38,293 391 15,872 572 19,435 557 4,304 742 7,559 724 9,960 P 003 298 16,723 C 003 329 13,776 369 22,839 416 14,105 710 8,098 480 16,654 - - 707 12,220 PN 003 383 47,691 CN 003 356 27,169 406 3,364 387 10,569 572 23,177 512 46,347 727 11,414 705 8,337 P 004 430 52,891 C 004 378 28,050 712 8,824 450 38,841 - - 492 6,362 - - 689 6,992 PN 004 356 28,896 CN 004 356 31,184 432 53,625 466 62,372 572 23,495 565 9,250 712 3,884 693 2,228

Documentos relacionados