• Nenhum resultado encontrado

Conclusões e Sugestões de Trabalhos Futuros

4.2 Sugestões de trabalhos futuros

a) Adicionar outras restrições a função custo do FS-MBPC, incorporando por exemplo, termos associados a redução da frequência média de chaveamento e a restrição da tensão de estator (Vs < Vs nominal)

b) Utilizar estratégias de enfraquecimento de campo visando melhorar a eficiência energética do motor

c) Investigar outras técnicas de otimização on-line dos fatores de ponderação, incorporando conceitos como critério de decisão baseado em lógica Fuzzy, de modo que os valores de ajuste dos fatores de ponderação variem de acordo com o ponto de operação do motor

d) Realizar a discretização das variáveis de estado através da aplicação de técnicas mais precisas como, os métodos de Henu e a Euler de segunda ordem

e) Reduzir os níveis de oscilação do torque eletromecânico e do fluxo magnético, bem como a distorção harmônica da corrente, através da introdução de técnicas como o controle Duty Cycle, que propõe a otimização dos estados de chaveamento e da frequência de discretização do inversor.

Capítulo 4: Conclusões e Sugestões de Trabalhos Futuros 63 f) Utilizar horizontes longos de predição h > 1 a fim de aperfeiçoar a performance do

FS-MBPC

g) Aplicar técnicas de estimação da velocidade mecânica do motor, de maneira não-invasiva, por meio de aquisição e processamento de sinais elétricos, sem a necessidade de intervenção física direta no motor.

h) Utilizar a estratégia de controle FS-MBPC com controlador SM no controle de velocidade do motor de indução multifásico e do motor síncrono de ímãs permanentes

64

REFERÊNCIAS

[1] F. Blaschke, “A New Method for the Structural Decoupling of AC Induction Machines”, IFAC Conf. Rec., Duesseldorf, Germany, pp. 1-15, Oct. 1971.

[2] T. Noguchi and I. Takahashi, “Quick Torque Response Control of an Induction Motor Based on a New Concept”, IEEJ Tech. Meeting Rotating Mach, vol. RM84-76, pp. 61-70, Sep. 1984.

[3] I. Takahashi and T. Noguchi, “A New Quick-Response and High Efficiency Control Strategy of an Induction Machine”, IEEE Transaction Ind. applicat., vol. 22, pp. 820-827, Sep/Oct. 1986.

[4] I. Takahashi and Y. Ohmori, “High-Performance Direct Torque Control of an Induction Motor”, IEEE Trans. Ind. Applicat., vol. 25, pp. 257-264, Mar./Apr. 1989.

[5] D. Casadei, F. Profumo, G. Serra and A. Tani, “FOC and DTC: Two Viable Schemes for Induction Motors Torque Control”, IEEE Transaction on Power Electronics, vol. 17, no. 5, pp. 779-787, Sep. 2002.

[6] J.Holtz and S. Stadtfeld, “A Predictive Controller for the Stator Current Vector of AC Machines Fed from a Switched Voltage Source”, IEEE Int. Power Electron. Conf. IPEC, vol. 2, pp. 1665-1675, Mar.27-31,1983.

[7] R. Kennel and D. Schoder, “A Predictive Control Strategy for Converters”, IFAC Control in Power Electronics and Electrical Drives, pp. 415-442, 1983.

[8] F. Wang, Z. Zhang, A. Davari, J. Rodríguez and R. Kennel, “An Experimental Assessment of Finite-State Predictive Torque Control for Electrical Drives by Considering Different Online-Optimization Methods”, Control Engineering Practice, pp. 1-8, Jul. 2014.

[9] P. Cortés, M. Kazmierkowski, R. Kennel, D. Quevedo and J. Rodríguez, “Predictive Control in Power Electronics and Drives”, IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312-4324, Dec. 2008.

Referências 65 [10] T. Geyer, G. Papafotiou and M. Morari, “Model Predictive Direct Torque Control –

Part I: Concept, Algorithm and Analysis”, IEEE Transaction on Industrial Electronics, vol. 56, no. 6, pp. 1894-1905, Jun. 2009.

[11] H. Miranda, P. Cortés, J. Yuz and J. Rodríguez, “Predictive Torque Control of Induction Machines Based on State-Space Models”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1916-1924, Jun. 2009.

[12] C. Rojas, J. Yuz, C. Silva and J. Rodríguez, “Comements and Corrections on Predictive Torque Control of Induction Machines Based on State-Space Models”, IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1635-1638, Mar. 2014.

[13] S. Kouro, P. Cortés, R. Vargas, U. Ammann and J. Rodríguez, “Model Predictive Control – A Simple and Powerful Method to Control Power Converters”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, Jun. 2009.

[14] T. laczynski and A. Mertens, “Predictive Stator Current Control for Medium Voltage Drives With LC Filters”, IEEE Transactions on Power Electronics, vol. 24, no. 11, pp.2427-2435, Nov. 2009.

[15] P. Cortes, A. Wilson, S. Kouro, J. Rodríguez and H. Abu-Rub, “Model Predictive Control of Multilevel Cascaded H-bridge Inverters”, IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2691-2699, Aug. 2010.

[16] F. Defay, A. Llor and M. Fadel, “Direct Control Strategy for a Four-Level Three-phase Flying-Capacitor Inverter”, IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2240-2248, Jul. 2010.

[17] D. Toit, H. Mouton, R. Kennel and P. Stolze, “Predictive Control of Series Stacked Flying-Capacitor Active Rectifiers”, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 697-707, May. 2013.

[18] R. Vargas, U. Ammann, B. Hudoffsky, J. Rodríguez and P. Wheeler, “Predictive Torque Control of an Induction Machine Fed by a Matrix Converter With Reactive Input Power Control”, IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1426- 1426, Jun. 2010.

Referências 66 [19] R. Vargas, U. Ammann and J. Rodríguez, “Predictive Approach to increase Efficiency

and Reduce Switching Losses on Matrix Converters”, IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 894-902, Apr. 2009.

[20] P. Correa, J. Rodríguez, I. Lizama and D. Andler, “A Predictive Control Scheme for Current-Source Rectifiers”, IEEE Transactions on Industrial Electronics, vol. 56, no. 5. pp. 1813-1815, May 2009.

[21] M. Perez, J. Rodríguez, E. Fuentes and F. Kammerer, “Predictive Control of AC/AC Modular Multilevel Converters”, IEEE Transactions on Industrial Electronics, vol. 29, no. 7, pp. 2832-2839, Jul. 2012.

[22] T. Geyer, “A Comparison of Control and Modulation Shemes for Medium-Voltage Drives: Emerging Predictive Control Concepts Versus PWM-Based Shemes”, IEEE Transactions on Insustry Applications, vol. 47, no. 3, pp. 1380-1389, May/Jun 2011. [23] J. Rodríguez, R. Kennel, J. Espinoza, M. Trincado, C. Silva and C. Rojas, “High-

Performance Control Strategies for Electrical Drives: An Experimental Assessment”, IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 812-820, Feb. 2012. [24] F. Wang, “Model Predictive Torque Control for Electrical Drive Systems With and

Without an Encoder”, Lehrstuhl fur Elektrische Antriebssysteme und Leistungselektronik der Technischen Universitat Munchen, Dissertation, Mar. 2014. [25] M. Nemec, D. Nedeljkovic and V. Ambrozic, “Predictive Torque Control of Induction

Machines Using Immediate Flux Control”, IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2009-2047, Aug. 2007.

[26] P. Correa, M. Pacas and J. Rodríguez, ”Predictive Torque Control for Inverter-Fed Induction Machines”, IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1073-1079, Apr. 2007.

[27] J. Rodriguez, M. Kazmierkowski, J. Espinoza, P. Zanchetta, H. Abu-Rub, H. Young and C. Rojas, “State of the Art of Finite Control Set Model Predictive Control in Power Electronics”, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 1003-1016, May 2013.

Referências 67 [28] G. Papafotiou, G. Demetriades and V. Agelidis, “Technology Readiness Assessment of

Model Predictive Control in Medium and High Voltage Power Electronics”, IEEE Transactions on Idustrial Electronics, vol. 63, no. 9, pp. 5807-5815, Sep. 2016.

[29] C. Rojas, J. Rodríguez, F. Villarroel, J. Espinoza, C. Silva and M. Trincado, “Predictive Torque and Flux Control Without Weighting Factors”, IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 681690, Feb. 2013.

[30] V. Muddineni, A. Bonala, S. Sandepudi, “Enhanced Weighting Factor Selection for Predictive Torque Control of Induction Motor Drive Based on VIKOR Method”, IET Electr. Power Appl., vol. 10, no. 9, pp. 877-888, 2016.

[31] V. Kumar, P. Gaur and A. Mittal, “Predictive Torque and Flux Control of an Induction Machine Drive Using Fuzzy Multi-Criteria Decision Making”, Indian Academy of Sciences, Sãdhanã, vol. 42, no. 3, pp. 343-352, Mar. 2017.

[32] F. Villarroel, J. Espenoza, C. Rojas, J. Rodríguez, Marco Rivera and Daniel Sbárbaro, “Multiobjective Switching State Selector for Finite-States Model Predictive Control Based on Fuzzy Decision Making in a Matrix Converter”, IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 589-599, Feb. 2013.

[33] C. Rojas, J. Rodríguez, S. Kouro and F. Villarroel, “Multiobjective Fuzzy-Decision- Making Predictive Torque Control for an Induction Motor Drive”, IEEE, Transactions on Power Electronics, vol. 32, no. 8, pp. 6245-6260, Aug. 2017.

[34] P. Guazzelli, “Controle Preditivo de Torque do Motor de Indução com Otimização dos Fatores de Ponderação por Algoritmo Genético Multiobjetivo”, Universidade de São Carlos – USP, Escola de Engenharia de São Carlos, Departamento de Engenharia Elétrica e de Computação, Dissertação de Mestrado, Feb. 2017.

[35] T. Su, T. Tsou, S. Wang, T. Li and H. Vu, “Torque Ripple Reduction of Induction Motor Based on a Hybrid Method of Model Predictive Torque Control and Particle Swarm Optimization”, Advances in Mechanical Engineering, vol. 8, no. 10, pp. 1-13, 2016. [36] Y. Zhang, and H. Yang, “Two-Vector-Based Model Predictive Torque Control Without

Weithting Factors for Induction Motor Drives”, IEEE, Transactions on Power Electronics, vol. 31, no. 2, pp. 1381-1390, Feb. 2016.

Referências 68 [37] Y. Zhang, and H. Yang, “Model-Predictive Flux Control of Induction Motor Drives

With Switching Instant Optimization”, IEEE, Transactions on Energy Conversion, vol. 30, no. 3, pp. 1113-1122, Sep. 2015.

[38] Y. Zhang, H. Yang and B. Xia, “Model-Predictive Control of Induction Motor Drives: Torque Control Versus Flux Control”, IEEE, Transactions on Industry Applications, vol. 52, no. 5, pp. 4050-4060, Sep./Oct. 2016.

[39] N. Noaman, “Speed Control for IFOC Induction Machine Eith Robust Sliding Mode Controler”, Asian Journal of Scientific Reserch, vol. 4, pp. 324-337, 2008.

[40] C. Milosavljevic, B. Drazenovic and B. Veselic, “High-Performance Discrete-Time Chattering-Free Sliding Mode-Based Speed Control of Induction Motor”, Electr Eng, vol. 99, no. 583-593, 2017.

[41] J. Lick and L. Shiau, “On Stability and Performance of Induction Motor Speed Drives With Sliding Mode Current Control”, Asian Journal of Control, vol. 2, no. 2, pp. 122-131, Jun. 2000.

69

APÊNDICE A

Documentos relacionados