• Nenhum resultado encontrado

5. Conclusão

5.1. Sugestões para trabalhos futuros

De acordo com os resultados e conclusões apresentados, é possível sugerir melhorias e novas etapas para proceder em sequência deste trabalho, buscando-se a otimização dos mecanismos de sinterização estudados. No entanto, torna-se indispensável a produção de um novo fio em que não haja contaminação por MgO, a fim de se obter resultados quantitativos nas caracterizações supercondutoras.

Com relação à estrutura do fio, a espessura de 2,00 mm (Øexterno – Øinterno) da barreira

de Nb usada no primeiro embutimento do fio supercondutor se mostrou insuficiente para suportar a difusão acentuada do Cu nos perfis a altas temperaturas, tornando-se essencial o uso de barreiras mais grossas para esses tratamentos, ou até a escolha de outro componente metálico menos reativo como barreira de difusão.

Sugere-se também o refinamento do processo de deformação mecânica para que se consiga atingir fios com diâmetro próximos a 1,00 mm, a fim de se avaliar a ação dos tratamentos térmicos na microestrutura de fios que contenham dimensões e reduções percentuais dos componentes mais próximas da realidade das aplicações. Ainda, a análise topográfica por elétrons secundários na microscopia eletrônica de varredura é essencial para o profundo entendimento da ação dos tratamentos na morfologia do pó de MgB2. Com a análise

da porosidade, compactação e conectividade, será possível uma melhor qualificação da eficiência da auto-sinterização do MgB2 e da sua decomposição MgB2 ⇌ Mg + MgB4 nos

perfis a 900ºC/24h e 900ºC/10min+650ºC/1h, respectivamente.

Desejando-se ainda otimizar o efeito da decomposição em trabalhos futuros, o qual mostrou melhor resultado no presente trabalho, recomenda-se o uso de pequenas dopagens de Cu na síntese do pó, visto que a presença de fases Mg-Cu líquidas a altas temperaturas são capazes de promover significativamente a migração de material pela matriz e aumentar ainda mais a conectividade granular (CHENG et al., 2017).

REFERÊNCIAS

AGATSUMA, K. et al. Properties of MgB2 superconductor by doping impurity of SiC,

Graphite, C 60, and C nano-tube. IEEE Transitions on Applied Superconductivity, v. 16, n. 2, p. 1407-1410, 2006.

ASM International. Properties and Selection: Nonferrous Alloys and Special-Purpose

Materials. Metals Handbook, vol. 2, 10th ed, 1990.

KUMAKURA, H. et al. Fabrication and properties of powder-in-tube-processed MgB2 tape

conductors. Physica C, v. 456, p. 196-202, 2007.

BABIC, E. et al. Magnetic nanoparticles in MgB2: Vortex pinning, pair breaking and connec-

tivity. Journal of Magnetism and Magnetic Materials, v. 400, p. 88-92, 2016.

BALLARINO, A. et al. The BEST PATHS Project on MgB2 Superconducting Cables for Very

High Power Transmission IEEE Transactions on Applied Superconductivity, v. 26, 5401705, 2016.

BARDEEN, J. et al. Theory of Superconductivity. Physical Review, v. 108, p. 1175-1204, 1957.

BOVONE, G. et al. Synthesis temperature effects on ex-situ manufactured MgB2 wires useful

for power applications. Journal of Alloys and Compounds, v. 660, p. 342-356, 2016.

BRACCINI, V. et al. Development of ex situ processed MgB2 wires and their applications to

magnets. Physica C, v. 456, p. 209-217, 2007.

BUD’KO, S. L. et al. Boron Isotope Effect in Superconducting MgB2. Physical Review Let- ters, v. 86, p. 1877, 2001.

BUZEA, C.; YAMASHITA, T. Review of the superconducting properties of MgB2. Super- conductor Science and Technology, v. 14, P. R115, 2001.

CAI, Q et al. Second-phase segregation and micro strain/lattice parameter dependent transi- tion temperature in polycrystalline MgB2. Superconductor Science and Technology, v. 29,

105013, 2016.

CANFIELD, P. C. et al. Superconductivity in dense MgB2 wires. Physical Review B, v. 86,

p. 2423, 2001.

CDA (Copper Development Association). High Conductibity Coppers, CDA publication 122, 1998.

CHENG, F. Enhancement of grain connectivity and critical current density in the ex-situ sin- tered MgB2 superconductors by doping minor Cu. Jounal of Alloy and Compounds, v. 727,

p. 1105-1109, 2017.

DA SILVA, F. R. Efeito da relaxação de fluxo magnético na força de levitação em man-

cais supercondutores. 2010. 45 f. Trabalho de Conclusão de Curso (Graduação em Ciências)

– Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010.

DA SILVA, L. et al. MgB2 superconductors with addition of other diborides and SiC. IEEE Transitions on Applied Superconductivity, v. 21, p. 2639-2642, 2011.

DA SILVA, L. Otimização das propriedades de transporte em supercondutores de MgB2

com a adição de compostos de estrutura cristalina do tipo AlB2 e fontes distintas de car-

bono. 2013. 222 f. Tese (Doutorado em Ciências) – Departamento de Engenharia de Materi-

ais da Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena. 2013.

DA SILVA, L. Fabrication of 42-filaments PIT-processed MgB2 superconducting wire with

TaB2 and SiC addition. IEEE Transitions on Applied Superconductivity, v. PP, p. 1-1,

2018.

DANCER, C. E. J. et al. A study of the sintering behaviour of magnesium diboride, Journal

DOU, S.X. et al. Enhancement of the critical current density and flux pinning of MgB2 super-

conductor by nanoparticle SiC doping. Applied Physics Letter, v. 81, p. 3419-3421, 2002.

FENG, Y. et al. Enhanced flux pinning in Zr-doped MgB2 bulk superconductors prepared at

ambient pressure. Journal of Applied Phisics, v. 92, p. 2614, 2002.

FUJII, H. et al. Influence of MgB2 powder quality on the transport properties of Cu-sheathed

MgB2 tapes. Physica C, v. 363, p. 237, 2001.

GUREVICH, A. Limits of the upper critical field in dirty two-gap superconductors. Physica

C, v. 456, p. 160, 2007.

HANDSTEIN, A. et al. Fully dense MgB2 superconductor textured by hot deformation. Journal of Alloys and Compounds, v.329, p.285-289, 2001.

HASSLER, W. et al. MgB2 Multicore Wire Prepared by IMD Technology: Investigation of

the MgB2 Layer Formation During Annealing. {IEEE} Transactions on Applied Supercon- ductivity, v. 27, p. 1-4, 2017.

HIMIKATUS.RU. B-Mg (Boron-Magnesium). Disponível em:

http://www.himikatus.ru/art/phase-diagr1/B-Mg.php. Acesso em: 26 de fev. de 2018.

HOFFMANNER L.A., Rotary swaging of bars and tubes. ASM Handbook. Materials pard,

Ohio: ASM International, v.14, p. 128-144, 1990

HUANG, X. et al. Design of a Dual-Stator Superconducting Permanent Magnet Wind Power Generator With Different Rotor Configuration. IEEE Transactions on Magnets, v. 53, 8700204, 2017.

HWANG, S. M. Effect of Mechanical Alloying on the Microstructure and Properties of C- Doped MgB2 Wire by Ex-Situ Process. {IEEE} Transactions on Applied Superconductivi- ty, v. 19, p. 2710-2713, 2009.

ence. Superconductor Science and Technology, v. 30, 053001, 2017.

JHA, R. et al. Robust superconductivity with large upper critical field in Nb2PdS5. Journal of Applied Physics 115:213903, 2014.

JIE, H. et al. Superior transport J(c) obtained in in-situ MgB2 wires by tailoring the starting

materials and using a combined cold high pressure densification and hot isostatic pressure treatment. Scripta Materialia, v. 129, p.79-83, 2017.

KIM, J. H. et al. The effects of sintering temperature on superconductivity in MgB2/Fe wires Superconductor Science and Technology, v. 20, p. 448, 2007.

KODAMA, M. et al. Electromagnetic properties and microstructures of in situ MgB2 wires

made from three types of boron powders. Superconductor Science and Technology, v. 29, 105016, 2016.

KODAMA, M. et al. High-performance dense MgB2 superconducting wire fabricated from

mechanically milled poder. Superconductor Science and Technology, v. 30, 044006, 2017.

KOPARAN, E. T. et al. Improving magnetic properties of MgB2 bulk superconductors by

synthetic engine oil treatment. Physica C, v.527, p. 36-40, 2016.

KORTUS, J. et al. Superconductivity of metallic boron in MgB2. Physical Review Letter, v.

86, p. 4656-4659, 2001.

KOVÁC, P. et al. Structure, grain connectivity and pinning of as-deformed commercial MgB2

powder in Cu and Fe/Cu sheaths. Superconductor Science and Technology, v. 15, p. 1127, 2002.

KOVÁC, P. et al. Properties of as-deformed and post-annealed MgB2/Fe(Fe-alloy) composite

wires. Superconductor Science and Technology, v. 16, p. 292, 2003.

KOVÁC, P. et al. Effects influencing the grain connectivity in ex-situ MgB2 wires. Physica C: Superconductivity, v. 470, p. 340-344, 2010.

KRESIN, V.Z.; WOLF, S.A. Major normal and superconducting parameters of high Tc ox-

ides. Physical Review B, v.41, n.7, p. 4278-4285, 1990.

KULICH, M. et al. Effect of C and SiC additions into in situ or mechanically alloyed MgB2

deformed in Ti sheath. Physica C, v. 469, p. 827-831, 2009.

KUMAKURA, H. et al. Influence of Particle Size of Mg Powder on the Microstructure and Critical Currents of In Situ Powder-in-tube Processed MgB2 Wires. The Japan Institute of Metals and Materials, v. 80, p. 452-456, 2016.

LALIENA, C. et al. Effect of ball milling on the local magnetic flux distribution and microstructure of in situ Fe/MgB2 conductors. Journal of Alloys and Compounds, v. 717, p.

164-170, 2017.

LARBALESTIER, D. C. et al. Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature,v. 410, p. 186–189, 2001.

LEE J. H. et al. Superconducting properties of MgB2 prepared from attrition ball-milled boron

poder. Journal of Alloys and Compounds, v. 476, p. 919–924, 2009.

LI , W.; DOU S. X. Superconducting Properties of Carbonaceous Chemical Doped MgB2

Superconductor. In Tech, chapter 6, 2010.

MA, Y. Doping effects of ZrC and ZrB2 in the powder-in-tube processed MgB2 tapes. Chi- nese Science Bulletin, v. 51, n. 21, p. 2669-2672, 2006.

MASUI, T. et al. Carbon-substituition effect on superconducting properties in MgB2 single

crystals. Physica C, v. 412-414, p. 303-306, 2004.

MAXIMO, A. Comparação entre a soldagem de champas finas de tântalo e monel 400

com laser pulsado de ND:YAG e com laser contínuo de fibra. 2015. 96 f. Tese (Mestrado

em ciências) – Instituto de pesquisas energéticas nucleares, Autarquia associada à Universi- dade de São Paulo, São Paulo. 2015

MALAGOLI, A. et al. Long Length MgB2 Conductors for Industrial Applications. Advances in Science and Technology, v. 47, p. 238, 2006.

MALAGOLI, A. et al. Study of the MgB2 grain size role in ex situ multifilamentary wires

with thin filaments. Superconductor Science and Technology, v. 23, 025032, 2010.

MATSUMOTO, A. et al. Evaluation of connectivity, flux pinning, and upper critical field contributions to the critical current density of bulk pure and SiC-alloyed MgB2. Applied Physics Letter, v. 89, 132508, 2006.

MAZIN, I. I. et al. Superconductivity in MgB2: Clean or Dirty?. Physical Review Letter, v.

89, 107002, 2002.

MCMILLAN, W. L. Transition temperature of strong-coupled superconductors. Physical

Review,v 167, P. 331-344, 1968.

MIKHEENKO, P. et al. Grain boundaries and pinning in bulk MgB2. Superconductor Sci- ence and Technology, v. 20, p. 264-270, 2007.

MIZUTANI, S. et al. Understanding routes for high connectivity in ex-situ MgB2 by self-

sintering. Superconductor Science and Technology, v. 27, p. 044012, 2014.

NAGAMATSU, J. et al. Superconductivity at 39 K in magnesium diboride. Nature, v. 410, p. 63, 2001.

OKAMOTO, H. Cu-Nb (Copper-Niobium). Journal of Phase Equilibria and Diffusion, v. 33, p. 344, 2012

OTUBO, J. Desenvolvimento de fios supercondutores multifilamentares de Nb-Ti. 1986. 117 f. Tese (Mestrado em Ciências) – Instituto de Física, Universidade de São Paulo. São Paulo. 1986.

PACHLA. W. et al. Structural characterization of multifilament heat treated ex situ MgB2

17, p. 1289, 2004.

PAN, A. V. et al. Properties of superconducting MgB2 wires: in situ versus ex situ reaction

technique. Superconductor Science and Technology, v. 16, p. 639 ,2003.

PASSOS, W. A. C. et al. Paramagnetic Meissner Effect and Magnetic Remanence in Granular MgB2. Brazilian Journal of Physics, v. 32, n. 3, p 777-779. 2002.

PENG, J. et al. Enhancement of critical current density by a “MgB2-MgB4” reversible reac-

tion in self-sintered ex-situ MgB2 bulks. Journal of Alloys and Compounds. V. 694, p. 24-

29, 2017.

PLAKIDA, N. High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications. Berlin: Springer Berlin. 2003.

POOLE JR, C. et al. Superconductivity, 2ª ed. Academic Press, 2007.

QAID, S. A. S. et al. The role of sintering conditions on the superconducting parameters of MgB2. Journal of Materials Science: Materials in Electronics, v. 28, p. 14696-14701,

2017.

RODRIGUES JR., D. et al. Preparation and caracterization of MgB2 bulk samples using high-

energy ball milling and hot isostatic pressing. Advances in Cryogenic Engineering, v. 54, p. 359-366, 2008.

RODRIGUES JR, D. el al. Superconducting Properties of MgB2 with addition of other AlB2 –

type diborides and carbon sources, prepared using high-energy ball milling and HIP. Physics

Procedia, v. 36, p. 468-474, 2012.

SAITO, Y. et al. Improvement in microstructure and superconducting properties of single- filament powder-in-tube MgB2 wires by cold working with a swaging machine. Supercon- ductor Science and Technology, v. 30, 065005, 2017.

Rontgenstrahlen. Mathematisch-Physikalische Klasse, vol. 2, p. 98-100,1918.

SENKOWICZ, B. J. et al. Improved upper critical field in bulk-form magnesium diboride by mechanical alloying with carbon. Applied Physics Letters, v. 86, 202502, 2005.

SERRANO, G. et al. SiC and carbon nanotube distinctive effects on the superconducting properties of bulk MgB2. Journal of Applied Physics, v. 103, p. 023907, 2008.

SHAH, M. S. et al. Enhanced critical current density in undoped MgB2 prepared by in situ/ex

situ combination technique. Solid State Communications, v. 218, p. 31-34, 2015.

SOLTANIAN, S. et al. Effect of grain size and doping level of SiC on the superconductivity and critical current density in MgB2 superconductor. IEEE Transactions on Applied Super- conductivity, v. 13, p. 3273, 2003.

SOLTANIAN, S. High transport critical current density and large Hc2 and Hirr in nanoscale

SiC doped MgB2 wires sintered at low temperature. Superconductor Science and Techno- logy, v. 18, p. 658, 2005.

SURYANARAYANA, C. Mechanical alloying and milling. Progress in material Science, v. 46, p. 1-184, 2001.

SUSNER, M.A. et al. Drawing induced texture and the evolution of superconductive proper- ties with heat treatment time in powder-in-tubein situprocessed MgB2 strands. Superconduc- tor Science and Technology, v. 25, 065002, 2012.

TANAKA, H. et al. Strongly connected ex-situ MgB2 polycrystalline bulks fabricated by sol-

id-state self-sintering. Superconductor Science and Technology, v. 25, 115022, 2012.

ULGEN, A. T; BELENLI, I. The Effect of Fe Diffusion on Some Physical and Superconducting Properties of MgB2. Journal of Superconductivity and Novel Magnetism,

v. 30, p 1089–1095, 2017.

properties of MgB2 bulks prepared by PSIT method in air. Journal of Alloys and Compounds. v. 484, p. 734-738, 2009.

VIGNOLO, M. et al. Role of the Grain Oxidation in Improving the In-Field Behavior of MgB2 Ex-Situ Tapes. IEEE Transactions on Applied Superconductivity. v. 19, p. 2718,

2009.

VINNIKOV et al. Vortex structure in MgB2 single crystals observed by the Bitter decoration

technique. Physica Review, v. 67, 092512, 2003.

WANG, C. et al. Effect of high-energy ball milling time on superconducting properties of MgB2 with low purity boron powder. Superconductor. Science and Technology, v. 25, p.

035018, 2012.

XU, H.L. Enhancement of critical current density in graphite doped MgB 2 wires. China

Physics Letters, v. 21, p. 2511-2513, 2004.

YAKINCI, M. E. et al. Degradation of Superconducting Properties in MgB2 by Formation of

the MgB4 Phase. Journal of Superconductivity, v. 15, p. 607–611, 2002.

YAMAMOTO, A. et al. Towards the realization of higher connectivity in MgB2 conductors:

in-situ or sintered ex-situ. Journal of Applied Physics, v. 51, p. 010105, 2011.

YAN, S. C. et al. Enhancement of the upper critical field in sub-micron carbon-doped MgB2

by two-step reaction method. Superconductor Science and Technology, v. 20, p. 377, 2007.

ZHANG, X. et al. Improved critical current densities in MgB2 tapes with ZrB2 doping. Applied Physics Letters, v. 89, p. 132510, 2006.

ZHAO, Y. High critical current density og MgB2 bulk superconductor doped with Ti and

sintered at ambient pressure. Applied Physics Letters, v. 79, p. 1154, 2001.

ZHAO, Y. et al. Comparative study of in-situ and ex-situ MgB2 films prepared by PLD. Supercondutor Science and Technology, v. 17, p. S482-S485, 2004.

ZHAO, Y. et al. Doping effect of nano-diamond and carbon-nanotubes on flux pinning properties of MgB2. Physica C, v. 463-465, p. 165-169, 2007.

ZHOU, S. et al. Influence of Ag, Cu and Fe sheaths on MgB2 superconducting tapes. Superconductor Science and Technology, v. 15, p. 236, 2002.

Documentos relacionados