• Nenhum resultado encontrado

Técnicas imagiológicas para avaliação da função miocárdica

Nos últimos anos, múltiplas técnicas imagiológicas foram desenvolvidas e aplicadas na ava-

liação morfológica e funcional do coração.

A ecocardiografia, sendo a mais antiga

[100]

, continua também a ser, por questões de acessibili-

dade, portabilidade, segurança e custo, a modalidade de imagem mais utilizada

[101-104]

. A avaliação

das dimensões das câmaras, e da massa e função ventriculares são das indicações mais frequen-

tes para a requisição de um ecocardiograma

[105]

. De acordo com as recomendações actuais, a

ecocardiografia é o método de imagem de primeira linha na avaliação de doentes com suspeita

de insuficiência cardíaca, fornecendo informação estrutural (anatomia, volumes e massa) e fun-

cional (incluindo a análise da função diastólica)

[106]

. No entanto várias limitações dos diferentes

parâmetros ecocardiográficos devem ser tidas em conta aquando da sua utilização. Por exem-

plo, a fracção de ejecção, apesar de ser a medida mais generalizada de função sistólica global e

ter, comprovadamente, importância prognóstica, não é um índice de contractilidade e depende

fortemente da pré- e pós-carga, da frequência cardíaca e da função valvular

[106]

. O mesmo se

aplica aos índices classicamente utilizados para avaliação da função diastólica

[78, 107, 108]

. Novos

métodos ecocardiográficos entretanto desenvolvidos poderão permitir ultrapassar algumas

destas limitações, permitindo uma análise quantitativa da deformação miocárdica (uma medida

indirecta do encurtamento e distensão dos miócitos durante o ciclo cardíaco). Estas novas

técnicas baseiam-se na determinação das velocidades relativas de diferentes pontos do mio-

cárdio aplicando o princípio Doppler ao movimento do músculo cardíaco (Doppler tecidular)

ou no cálculo da distância inicial e final entre vários pontos na imagem bidimensional através

do seu seguimento ao longo do ciclo cardíaco (“speckle tracking”). A medida de deformação

miocárdica define-se como strain e é expressa em percentagem. A velocidade a que a defor-

mação miocárdica se dá, ou seja, a variação do strain num período de tempo é definida como

strain rate e é expressa em 1/segundo

[109, 110]

. Não sendo medidas totalmente independentes

das condições de carga

[111-114],

strain/strain rate são sobretudo determinados pela contractilida-

de intrínseca dos miócitos e correlacionam-se bem com índices invasivos de contractilidade

[115, 116]

. A sua utilidade clínica tem sido demonstrada em diversos contextos – desde o diagnóstico

de doença subclínica (onde a sua maior sensibilidade permite detectar alterações da função

miocárdica em estadios precoces), à melhoria da acuidade diagnóstica na doença coronária e

à monitorização terapêutica

[117-122]

. Foi igualmente documentado o seu potencial na avaliação

do prognóstico

[123-126]

.

Também na análise da função diastólica, os novos métodos ecocardiográficos, particular-

mente a análise das velocidades do miocárdio por Doppler tecidular, assumiram uma impor-

tância crescente. A velocidade de deslocamento do anel mitral no início da diástole (E’) é um

parâmetro mais sensível de relaxamento que as variáveis do fluxo mitral, correlacionando-se

bem com a constante Tau de relaxamento medida invasivamente

[127-130].

Mais importante ainda

é a boa correlação da razão entre a velocidade da onda E mitral por Doppler pulsado (E) e

a velocidade da onda E’ com as pressões de enchimento do ventrículo esquerdo

[130, 131]

. Esta

observação resulta do facto da velocidade E’ ser um indicador da quantidade do volume de

sangue que entra no ventrículo esquerdo durante a fase de enchimento rápido enquanto que a

velocidade da onda E representa o gradiente de pressão necessário para que essa quantidade

de sangue entre no ventrículo esquerdo. Assim, a razão E/E’ reflecte a quantidade de sangue

que entra no ventrículo esquerdo para um dado gradiente de pressão; uma razão E/E’ elevada

representa uma pequena mudança de volume para um gradiente aurícula esquerda/ventrículo

esquerdo elevado, e é um marcador de disfunção diastólica. Visto de outra forma, a velocidade

da onda E depende do relaxamento, do gradiente de pressão AE/VE e da idade enquanto que

a velocidade E’ depende sobretudo do relaxamento e da idade; deste modo, a razão entre as

duas permite eliminar o efeito do relaxamento e da idade traduzindo apenas o gradiente de

pressão entre as duas câmaras e a pressão de enchimento do ventrículo esquerdo

[132]

. Atenden-

do a estes achados, a medição das velocidades diastólicas do anel mitral por Doppler tecidular

e a determinação da razão E/E’ são, de acordo com as recomendações actuais, mandatórias na

avaliação ecocardiográfica da função diastólica

[80]

.

A ressonância magnética cardíaca (RMC) tem, nos últimos anos, adquirido crescente impor-

tância na avaliação do sistema cardiovascular

[133]

. A sua excelente resolução espacial permite-

lhe definir, com exactidão, os bordos endocárdico e epicárdico, sem dependência de qualquer

“janela acústica”. Deste modo, a RMC é considerada o método “gold-standard” na avaliação

dos volumes cardíacos e da fracção de ejecção

[133, 134]

. Esta técnica permite igualmente avaliar

os vários componentes da deformação miocárdica utilizando diferentes técnicas

[135-138]

. Final-

mente, a capacidade de caracterização tecidular da RMC, permite a quantificação de áreas de

edema ou fibrose, com identificação precisa de lesão miocárdica (mesmo subclínica) assim

como de miocárdio viável, sendo igualmente o actual “gold-standard” para a definição de via-

bilidade

[139-141]

.

Algumas destas novas modalidades de imagem foram já utilizadas na avaliação de doentes

com cirrose

[61, 64]

. No entanto, dado o pequeno número de estudos e doentes envolvidos, a sua

utilidade na detecção de alterações morfológicas e funcionais neste contexto é ainda incerta e

o seu potencial papel no diagnóstico da cardiomiopatia cirrótica não está estabelecido.

Referências

[1] Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyo- pathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270-6.

[2] Mackenzie. The study of the pulse, arterial, venous, and hepatic, and of the movements of the heart. Am J Med Sci. 1902;124:325.

[3] Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82:1111-29.

[4] Capasso JM, Li P, Guideri G, Malhotra A, Cortese R, Anversa P. Myocardial mechanical, biochemical, and structural alterations induced by chronic ethanol ingestion in rats. Circ Res. 1992;71:346-56.

[5] Beckemeier ME, Bora PS. Fatty acid ethyl esters: potentially toxic products of myocardial ethanol me- tabolism. J Mol Cell Cardiol. 1998;30:2487-94.

[6] Delbridge LM, Connell PJ, Harris PJ, Morgan TO. Ethanol effects on cardiomyocyte contractility. Clin Sci (Lond). 2000;98:401-7.

[7] Shorr E, Zweifach BW, Furchgott RF, Baez S. Hepatorenal factors in circulatory homeostasis. IV. Tissue origins of the vasotropic principles, VEM and VDM, which appear during evolution of hemorrhagi and tourniquet shock. Circulation. 1951;3:42-79.

[8] Kowalski HJ, Abelmann WH. The cardiac output at rest in Laennec’s cirrhosis. J Clin Invest. 1953;32:1025- 33.

[9] Benoit JN, Womack WA, Hernandez L, Granger DN. “Forward” and “backward” flow mechanisms of portal hypertension. Relative contributions in the rat model of portal vein stenosis. Gastroenterology. 1985;89:1092-6.

[10] Battarbee HD, Farrar GE, Spears RP. Responses to hypotension in conscious rats with chronic portal venous hypertension. Am J Physiol. 1990;259:G48-55.

[11] Zavecz JH, Bueno O, Maloney RE, O’Donnell JM, Roerig SC, Battarbee HD. Cardiac excitation-contrac- tion coupling in the portal hypertensive rat. Am J Physiol Gastrointest Liver Physiol. 2000;279:G28-39. [12] Laleman W, Landeghem L, Wilmer A, Fevery J, Nevens F. Portal hypertension: from pathophysiology to

clinical practice. Liver Int. 2005;25:1079-90.

[13] Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology. 2008;134:1715-28.

[14] Hendrickson H, Chatterjee S, Cao S, Morales Ruiz M, Sessa WC, Shah V. Influence of caveolin on cons- titutively activated recombinant eNOS: insights into eNOS dysfunction in BDL rat liver. Am J Physiol Gastrointest Liver Physiol. 2003;285:G652-60.

[15] Bolognesi M, Sacerdoti D, Piva A, Di Pascoli M, Zampieri F, Quarta S, et al. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vaso- dilatation in cirrhotic rats. J Pharmacol Exp Ther. 2007;321:187-94.

[16] Woitas RP, Heller J, Stoffel-Wagner B, Spengler U, Sauerbruch T. Renal functional reserve and nitric oxide in patients with compensated liver cirrhosis. Hepatology. 1997;26:858-64.

[17] D’Amico G, Morabito A, Pagliaro L, Marubini E. Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig Dis Sci. 1986;31:468-75.

[18] Gines P, Quintero E, Arroyo V, Teres J, Bruguera M, Rimola A, et al. Compensated cirrhosis: natural his- tory and prognostic factors. Hepatology. 1987;7:122-8.

[19] Gerbes AL, Remien J, Jungst D, Sauerbruch T, Paumgartner G. Evidence for down-regulation of beta-2- adrenoceptors in cirrhotic patients with severe ascites. Lancet. 1986;1:1409-11.

[20] Lee SS, Marty J, Mantz J, Samain E, Braillon A, Lebrec D. Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology. 1990;12:481-5.

[21] Ceolotto G, Papparella I, Sticca A, Bova S, Cavalli M, Cargnelli G, et al. An abnormal gene expression of the beta-adrenergic system contributes to the pathogenesis of cardiomyopathy in cirrhotic rats. Hepa- tology. 2008;48:1913-23.

[22] Ma Z, Miyamoto A, Lee SS. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology. 1996;110:1191-8.

[23] Ma Z, Meddings JB, Lee SS. Membrane physical properties determine cardiac beta-adrenergic receptor function in cirrhotic rats. Am J Physiol. 1994;267:G87-93.

[24] Ma Z, Lee SS, Meddings JB. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J Hepatol. 1997;26:904-12.

[25] Gazawi H, Ljubuncic P, Cogan U, Hochgraff E, Ben-Shachar D, Bomzon A. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem Pharmacol. 2000;59:1623-8.

[26] Ward CA, Liu H, Lee SS. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardio- myopathy. Gastroenterology. 2001;121:1209-18.

[27] Ward CA, Ma Z, Lee SS, Giles WR. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J Physiol. 1997;273:G537-44.

[28] Glenn TK, Honar H, Liu H, ter Keurs HE, Lee SS. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats. J Hepatol. 2011;55:1249-55.

[29] Gaskari SA, Honar H, Lee SS. Therapy insight: Cirrhotic cardiomyopathy. Nat Clin Pract Gastroenterol Hepatol. 2006;3:329-37.

[30] De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: a general view and latest addi- tions. Br J Pharmacol. 2004;141:765-74.

[31] Gaskari SA, Liu H, Moezi L, Li Y, Baik SK, Lee SS. Role of endocannabinoids in the pathogenesis of cir- rhotic cardiomyopathy in bile duct-ligated rats. Br J Pharmacol. 2005;146:315-23.

[32] Batkai S, Mukhopadhyay P, Harvey-White J, Kechrid R, Pacher P, Kunos G. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am J Physiol Heart Circ Physiol. 2007;293:H1689-95.

[33] Liu H, Gaskari SA, Lee SS. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J Gastroenterol. 2006;12:837-42.

[34] Moezi L, Gaskari SA, Lee SS. Endocannabinoids and liver disease. V. endocannabinoids as mediators of vascular and cardiac abnormalities in cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2008;295:G649- 53.

[35] Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000;118:937-44.

[36] Herring N, Danson EJ, Paterson DJ. Cholinergic control of heart rate by nitric oxide is site specific. News Physiol Sci. 2002;17:202-6.

[37] Seddon M, Shah AM, Casadei B. Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res. 2007;75:315-26.

[38] Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84:253-6.

[39] van Obbergh L, Vallieres Y, Blaise G. Cardiac modifications occurring in the ascitic rat with biliary cir- rhosis are nitric oxide related. J Hepatol. 1996;24:747-52.

[40] Garcia-Estan J, Ortiz MC, Lee SS. Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clin Sci (Lond). 2002;102:213-22.

[41] Liu H, Song D, Lee SS. Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. Am J Physiol Gastrointest Liver Physiol. 2001;280:G68-74.

[42] Liu H, Lee SS. Nuclear factor-kappaB inhibition improves myocardial contractility in rats with cirrhotic cardiomyopathy. Liver Int. 2008;28:640-8.

[43] Zardi EM, Abbate A, Zardi DM, Dobrina A, Margiotta D, Van Tassell BW, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56:539-49.

[44] Timoh T, Protano MA, Wagman G, Bloom M, Vittorio TJ. A perspective on cirrhotic cardiomyopathy. Transplant Proc. 2011;43:1649-53.

[45] Moller S, Sondergaard L, Mogelvang J, Henriksen O, Henriksen JH. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis. Hepatology. 1995;22:472-8.

[46] Rector WG, Jr., Adair O, Hossack KF, Rainguet S. Atrial volume in cirrhosis: relationship to blood volume and plasma concentration of atrial natriuretic factor. Gastroenterology. 1990;99:766-70.

[47] Valeriano V, Funaro S, Lionetti R, Riggio O, Pulcinelli G, Fiore P, et al. Modification of cardiac function in cirrhotic patients with and without ascites. Am J Gastroenterol. 2000;95:3200-5.

[48] Keller H, Bezjak V, Stegaru B, Buss J, Holm E, Heene DL. Ventricular function in cirrhosis and portasys- temic shunt: a two-dimensional echocardiographic study. Hepatology. 1988;8:658-62.

[49] Ahmed SS, Howard M, ten Hove W, Leevy CM, Regan TJ. Cardiac function in alcoholics with cirrhosis: absence of overt cardiomyopathy--myth or fact? J Am Coll Cardiol. 1984;3:696-702.

[50] Gould L, Shariff M, Zahir M, Di Lieto M. Cardiac hemodynamics in alcoholic patients with chronic liver disease and a presystolic gallop. J Clin Invest. 1969;48:860-8.

[51] Kelbaek H, Rabol A, Brynjolf I, Eriksen J, Bonnevie O, Godtfredsen J, et al. Haemodynamic response to exercise in patients with alcoholic liver cirrhosis. Clin Physiol. 1987;7:35-41.

[52] Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut. 2001;49:268-75.

[53] Grose RD, Nolan J, Dillon JF, Errington M, Hannan WJ, Bouchier IA, et al. Exercise-induced left ventricu- lar dysfunction in alcoholic and non-alcoholic cirrhosis. J Hepatol. 1995;22:326-32.

[54] Bernardi M, Rubboli A, Trevisani F, Cancellieri C, Ligabue A, Baraldini M, et al. Reduced cardiovascular responsiveness to exercise-induced sympathoadrenergic stimulation in patients with cirrhosis. J Hepa- tol. 1991;12:207-16.

[55] Krag A, Bendtsen F, Mortensen C, Henriksen JH, Moller S. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. Eur J Gastroenterol Hepatol. 2010;22:1085-92.

[56] Limas CJ, Guiha NH, Lekagul O, Cohn JN. Impaired left ventricular function in alcoholic cirrhosis with ascites. Ineffectiveness of ouabain. Circulation. 1974;49:754-60.

[57] Laffi G, Barletta G, La Villa G, Del Bene R, Riccardi D, Ticali P, et al. Altered cardiovascular responsiveness to active tilting in nonalcoholic cirrhosis. Gastroenterology. 1997;113:891-8.

[58] Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, et al. Stress echocar- diography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008;9:415-37.

[59] Dahl EK, Moller S, Kjaer A, Petersen CL, Bendtsen F, Krag A. Diastolic and autonomic dysfunction in early cirrhosis: a dobutamine stress study. Scand J Gastroenterol. 2014;49:362-72.

[60] Kim MY, Baik SK, Won CS, Park HJ, Jeon HK, Hong HI, et al. Dobutamine stress echocardiography for evaluating cirrhotic cardiomyopathy in liver cirrhosis. Korean J Hepatol. 2010;16:376-82.

[61] Kazankov K, Holland-Fischer P, Andersen NH, Torp P, Sloth E, Aagaard NK, et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 2011;31:534-40.

[62] Lunseth JH, Olmstead EG, Abboud F. A study of heart disease in one hundred eight hospitalized patients dying with portal cirrhosis. AMA Arch Intern Med. 1958;102:405-13.

[63] Ortiz-Olvera NX, Castellanos-Pallares G, Gomez-Jimenez LM, Cabrera-Munoz ML, Mendez-Navarro J, Moran-Villota S, et al. Anatomical cardiac alterations in liver cirrhosis: an autopsy study. Ann Hepatol. 2011;10:321-6.

[64] Lossnitzer D, Steen H, Zahn A, Lehrke S, Weiss C, Weiss KH, et al. Myocardial late gadolinium enhan- cement cardiovascular magnetic resonance in patients with cirrhosis. J Cardiovasc Magn Reson. 2010;12:47.

[65] How to diagnose diastolic heart failure. European Study Group on Diastolic Heart Failure. Eur Heart J. 1998;19:990-1003.

[66] Wiese S, Hove JD, Bendtsen F, Moller S. Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol. 2014;11:177-86.

[67] Pozzi M, Carugo S, Boari G, Pecci V, de Ceglia S, Maggiolini S, et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology. 1997;26:1131-7. [68] Wong F, Liu P, Lilly L, Bomzon A, Blendis L. Role of cardiac structural and functional abnormalities in

the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci (Lond). 1999;97:259-67.

[69] Finucci G, Desideri A, Sacerdoti D, Bolognesi M, Merkel C, Angeli P, et al. Left ventricular diastolic func- tion in liver cirrhosis. Scand J Gastroenterol. 1996;31:279-84.

[70] Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol. 2005;45:87-92.

[71] Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol. 2003;42:1206-7.

[72] Boomsma F, van den Meiracker AH. Plasma A- and B-type natriuretic peptides: physiology, methodology and clinical use. Cardiovasc Res. 2001;51:442-9.

[73] Caruana L, Davie AP, Petrie M, McMurray J. Diagnosing heart failure. Eur Heart J. 1999;20:393.

[74] Palmieri V, Innocenti F, Pini R, Celentano A. Reproducibility of Doppler echocardiographic assessment of left ventricular diastolic function in multicenter setting. J Am Soc Echocardiogr. 2005;18:99-106. [75] Cahill JM, Horan M, Quigley P, Maurer B, McDonald K. Doppler-echocardiographic indices of diastolic

function in heart failure admissions with preserved left ventricular systolic function. Eur J Heart Fail. 2002;4:473-8.

[76] Thomas MD, Fox KF, Wood DA, Gibbs JS, Coats AJ, Henein MY, et al. Echocardiographic features and brain natriuretic peptides in patients presenting with heart failure and preserved systolic function. He- art. 2006;92:603-8.

[77] Petrie MC, Hogg K, Caruana L, McMurray JJ. Poor concordance of commonly used echocardiographic measures of left ventricular diastolic function in patients with suspected heart failure but preser- ved systolic function: is there a reliable echocardiographic measure of diastolic dysfunction? Heart. 2004;90:511-7.

[78] Choong CY, Herrmann HC, Weyman AE, Fifer MA. Preload dependence of Doppler-derived indexes of left ventricular diastolic function in humans. J Am Coll Cardiol. 1987;10:800-8.

[79] Thomas JD, Choong CY, Flachskampf FA, Weyman AE. Analysis of the early transmitral Doppler velocity curve: effect of primary physiologic changes and compensatory preload adjustment. J Am Coll Cardiol. 1990;16:644-55.

[80] Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165-93. [81] Bernardi M, Calandra S, Colantoni A, Trevisani F, Raimondo ML, Sica G, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology. 1998;27:28-34.

[82] Bal JS, Thuluvath PJ. Prolongation of QTc interval: relationship with etiology and severity of liver disease, mortality and liver transplantation. Liver Int. 2003;23:243-8.

[83] Ytting H, Henriksen JH, Fuglsang S, Bendtsen F, Moller S. Prolonged Q-T(c) interval in mild portal hyper- tensive cirrhosis. J Hepatol. 2005;43:637-44.

[84] Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Moller S. Dyssynchronous electrical and mechani- cal systole in patients with cirrhosis. J Hepatol. 2002;36:513-20.

[85] Moller S, Henriksen JH. Cardiovascular complications of cirrhosis. Gut. 2008;57:268-78.

[86] Lebrec D, Giuily N, Hadengue A, Vilgrain V, Moreau R, Poynard T, et al. Transjugular intrahepatic por- tosystemic shunts: comparison with paracentesis in patients with cirrhosis and refractory ascites: a randomized trial. French Group of Clinicians and a Group of Biologists. J Hepatol. 1996;25:135-44.

[87] Franco D, Vons C, Traynor O, de Smadja C. Should portosystemic shunt be reconsidered in the treat- ment of intractable ascites in cirrhosis? Arch Surg. 1988;123:987-91.

[88] Kovacs A, Schepke M, Heller J, Schild HH, Flacke S. Short-term effects of transjugular intrahepatic shunt on cardiac function assessed by cardiac MRI: preliminary results. Cardiovasc Intervent Radiol. 2010;33:290-6.

[89] Gines P, Uriz J, Calahorra B, Garcia-Tsao G, Kamath PS, Del Arbol LR, et al. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin for refractory ascites in cirrhosis. Gastroen- terology. 2002;123:1839-47.

[90] Huonker M, Schumacher YO, Ochs A, Sorichter S, Keul J, Rossle M. Cardiac function and haemodyna- mics in alcoholic cirrhosis and effects of the transjugular intrahepatic portosystemic stent shunt. Gut. 1999;44:743-8.

[91] Cazzaniga M, Salerno F, Pagnozzi G, Dionigi E, Visentin S, Cirello I, et al. Diastolic dysfunction is asso- ciated with poor survival in patients with cirrhosis with transjugular intrahepatic portosystemic shunt. Gut. 2007;56:869-75.

[92] Rabie RN, Cazzaniga M, Salerno F, Wong F. The use of E/A ratio as a predictor of outcome in cirrhotic pa- tients treated with transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2009;104:2458- 66.

[93] Ruiz-del-Arbol L, Urman J, Fernandez J, Gonzalez M, Navasa M, Monescillo A, et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepa- tology. 2003;38:1210-8.

[94] Ruiz-del-Arbol L, Monescillo A, Arocena C, Valer P, Gines P, Moreira V, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology. 2005;42:439-47.

[95] Krag A, Bendtsen F, Henriksen JH, Moller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59:105-10.

[96] Krag A, Bendtsen F, Burroughs AK, Moller S. The cardiorenal link in advanced cirrhosis. Med Hypotheses. 2012;79:53-5.

[97] Ruiz-del-Arbol L, Achecar L, Serradilla R, Rodriguez-Gandia MA, Rivero M, Garrido E, et al. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension, and a nor- mal creatinine. Hepatology. 2013;58:1732-41.

[98] Alexopoulou A, Papatheodoridis G, Pouriki S, Chrysohoou C, Raftopoulos L, Stefanadis C, et al. Diastolic myocardial dysfunction does not affect survival in patients with cirrhosis. Transpl Int. 2012;25:1174-81. [99] Nazar A, Guevara M, Sitges M, Terra C, Sola E, Guigou C, et al. LEFT ventricular function assessed by

echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58:51-7.

[100] Edler I, Hertz C. Use of ultrasonic reflectoscope for the continuous recording of movements of heart walls. Kungl Fysiogr Sallsk Lung Forth 1954;24.

[101] Kirkpatrick JN, Vannan MA, Narula J, Lang RM. Echocardiography in heart failure: applications, utility, and new horizons. J Am Coll Cardiol. 2007;50:381-96.

[102] Dokainish H, Nguyen JS, Bobek J, Goswami R, Lakkis NM. Assessment of the American Society of Echocardiography-European Association of Echocardiography guidelines for diastolic function in pa- tients with depressed ejection fraction: an echocardiographic and invasive haemodynamic study. Eur J Echocardiogr. 2011;12:857-64.

[103] Nagueh SF, Bhatt R, Vivo RP, Krim SR, Sarvari SI, Russell K, et al. Echocardiographic evaluation of hemo-

Documentos relacionados