• Nenhum resultado encontrado

O Teorema das Curvaturas Principais

Dedicamos este cap´ıtulo a demonstra¸c˜ao do Teorema das Curvaturas Principais. Este teorema determina o comportamento das curvaturas principais das hipersuperf´ıcies euclidianas completas. A t´ecnica usada por Brian Smyth e Frederico Xavier, na demons- tra¸c˜ao desse teorema, foi criar uma perturba¸c˜ao adequada na hipersuperf´ıcie dada (com segunda forma fundamental A) obtendo uma hipersuperf´ıcie (com segunda forma funda- mental A) com curvatura seccional n˜ao negativa. Dai, foi usado o teorema de Sacksteder- van Heijenoort garantindo que a hipersuperf´ıcie perturbada ´e uma hipersuperf´ıcie convexa. Al´em disso, o conjunto de autovalores de A coincide com o de A. Para concluir a demons- tra¸c˜ao foi usado o teorema de Hung-Hsi Wu para hipersuperf´ıcie convexa. Interessantes consequˆencias saem do teorema das curvaturas principais, essas consequˆencias s˜ao tema do pr´oximo cap´ıtulo.

Inicialmente provamos o lema que segue:

Lema 3.0.16. Sejam f : Mn −→ Rn+1 uma hipersuperf´ıcie completa e orient´avel e A a

segunda forma fundamental de f com respeito ao compo normal unit´ario ξ : Mn−→ Sn−1.

Considere Λ⊂ R o conjunto dos autovalores n˜ao nulos de A e Λ± = Λ∩ R±. Se Λ+, Λ

s˜ao ambos n˜ao vazios e inf Λ+ 6= 0 ou sup Λ+6= 0 ent˜ao, para cada ponto de M, A possui

autovalores positivo e negativo. Em particular f tem a propriedade da envolt´oria convexa. Prova: Primeiro mostremos que, em cada ponto de M, A possui um autovalor positivo. Equivalentemente, se N ={p ∈ Mn: λ

i(p) > 0 para algum i∈ (1, ..., n)} ent˜ao Mn = N .

Com efeito, N 6= ∅ j´a que Λ+ 6= ∅, i.´e, existe p

1 ∈ Mn e existe i ∈ (1, ...n) tal

que λi(p1) > 0. Dado que uma inclus˜ao ´e ´obvia, provemos que Mn ⊂ N. Suponha que

M6⊂ N, i.´e, existe p2 ∈ Mn tal que, para todo i∈ (1, ..., n) temos λi(p2)≤ 0. Considere

uma curva C que liga p1 a p2.

22

Da conexidade de M e da continuidade de λi : Mn −→ R, obtemos que λi(C) ´e

um intervalo com extremos em λi(p2)≤ 0 e λi(p1) > 0. Portanto existe sequˆencia (pk)k∈N

em C com λi(pk) > 0 tal que λi(pk)−−−→

k→∞ 0. Isto ´e uma contradi¸c˜ao pois estamos supondo

que inf Λ+ > 0. Portanto Mn = N e A possui um autovalor positivo em cada ponto de

M.

Para concluir a prova do lema, suponha por absurdo que existe um ponto p0 ∈ Mn

tal que λi(p0) > 0 para todo i. Da hip´otese Λ− 6= ∅ e com os mesmos argumentos de

conexidade de M e continuidade de λi, obtemos sequˆencia (pk)k∈N tal que λi(pk) −−−→ k→∞ 0

contradizendo que inf Λ+ 6= 0. Portanto para todo ponto p ∈ Mn existe i tal que

λi(p) < 0.

Concluimos ent˜ao que, para cada ponto de M, A possui autovalores positivo e negativo. Pelo teorema 2.1.5, f tem a propriedade da envolt´oria convexa.

A prova deste resultado segue de forma an´aloga se supormos que sup Λ+ 6= 0. 

Teorema 3.0.17. (Curvaturas Principais) Sejam f : Mn −→ Rn+1 uma hipersuperf´ıcie

e seja A a segunda forma fundamental de f com respeito a um campo normal unit´ario global ξ : Mn −→ Sn−1 . Considere Λ ⊂ R o conjunto dos autovalores n˜ao nulos de A e

Λ±= Λ∩ R±. Se Λ+ e Λs˜ao n˜ao vazios ent˜ao inf Λ+= sup λ= 0.

Demonstra¸c˜ao:

Suponha por absurdo que inf Λ+ = 2c > 0. Seja t

0 = 1/c e defina

f = f + toξ : Mn −→ Rn+1

Afirma¸c˜ao 3.0.18. Seja h, i a m´etrica induzida por f. Ent˜ao a aplica¸c˜ao f ´e uma hipersuperf´ıcie com a m´etrica dada porhu; vi = h(I − t0A)2u; vi.

Prova: Para todo ponto p ∈ M, a aplica¸c˜ao dfp : TpM −→ Tf(p)M ´e injetiva. Caso

contr´ario existiria q ∈ M e TqM∋ v 6= 0 tal que

0 = dfq(v) = dfq(v) + t0dξq(v) = dfq(v)− t0dfq(Aqv) = dfq(v− t0λqv).

Onde a terceira igualdade ´e dada por 1.3.1. Da injetividade de dfq vem que v− t0λpv = 0

donde temos λ(p) = 1t

0 = c e isto ´e um absurdo pois inf Λ

+ = 2c. Portanto v = 0 e df p ´e injetiva. Al´em disso, hu; vi = h(I − t0A)2u; vi =hu; vi − 2t0hAu; vi + t20hA2u, vi.

23

Por outro lado,

hdfpu; dfp(v)i = hdfp(u)− t0dfp(Au); dfp(v)− t0dfp(Av)i

=hdfp(u); dfp(v)i − 2t0hλu, vif + t20hλu; λvi

=hdfp(u); dfp(v)i − 2t0hAu, vi + t20hAu; Avi.

Usando que A ´e um opearador auto-adjunto, obtemos

hdfpu; dfp(v)i = hu; vi − 2t0hAu; vi + t20hA2u, vi.

Portanto hu; vi = hdfp(u); dfp(v)i e f ´e uma isometria. 

Note que, se bλ s˜ao os autovalores do operador I − t0A ent˜ao bλ ´e maior ou igual

a unidade em valor absoluto.

De fato, (I − t0A)v = bλv ⇔ v − t0λv = bλv ⇔ 1 − t0λ = bλ. Se supormos que

|bλ| < 1 ent˜ao −2 < −t0λ < 0 e teriamos 0 < λ < 2t

0 = 2c o que ´e um absurdo pois

inf Λ+ = 2c. Portanto |bλ| > 1.

Afirma¸c˜ao 3.0.19. Munida da m´etrica hu; vi, M ´e completa.

Prova: Seja α : [0, +∞) −→ M uma curva divergente. De acordo com 1.2.6, se l(α) ´e o comprimento de α com respeito a m´eticah; i, basta mostrar que l(α) ´e ilimitado. Para cada t∈ [0, +∞), seja {e1(t), ...en(t)} uma base ortonormal de Tα(t)M que diagonaliza o

operador P = I− t0A e tem { bλ1, ..., cλn} como autovalores associados. Podemos escrever

α′(t) = n X i=1 αi(t)ei(t) Assim, teremos |α′ (t)|2 =′ (t); α′ (t)i =h(I − t0A)α ′ (t); (I − t0A)α ′ (t)i =hP α′(t); P α′(t)i =h n X i=1 αi(t)P ei(t); n X i=1 αj(t)P ej(t)i = n X i=1 (αi(t))2( bλi)2 ≥ n X i=1 (αi(t))2 (pois| bλi| ≥ 1) =|α′(t)|2

24 Portanto, l(α) = lim s→∞ Z s 0 |α ′ (t)| dt ≥ l(α) = lim s→∞ Z s 0 |α ′ (t)| dt

Sendo M, com a m´etricah; i, uma variedade completa segue que l(α) ´e ilimitado.  Afirma¸c˜ao 3.0.20. A imers˜ao f possui segunda forma fundamental A = (I − t0A)−1A

com respeito ao mesmo campo de vetores normal unit´ario ξ. Al´em disso, se K ´e a cur- vatura seccional de f (M) ent˜ao K > 0.

Prova: Para mostrar que o campo global, normal e unit´ario com respeito a A ´e ξ, assumiremos que A = (I− t0A)−1A. Esta igualdade ser´a provada em seguida.

Se N ´e o campo global, normal e unit´ario com respeito a A ent˜ao, dN =−df(A) =−(df + t0dξ)A =−df(A) + t0df (AA) =−df(A − t0AA) =−df((I − t0A)A) =−df(A) = dξ portanto ξ = N.

Ademais, como a derivada covariante do Rn+1, com respeito ao campo de vetores

X ´e ´unica, vem que

−df(AX) = DXξ = −df(AX)

=−(df(AX) − t0df (AAX))

=−df(AX − t0AAX)

=−df((I − t0A)AX)

Sendo f uma imers˜ao, (I− t0A)AX = AX e portanto AX = (I − t0A)−1AX.

Provemos que K > 0. Se λ ´e um autovalor de A ent˜ao podemos escrever λ = λ

1− t

= λc c− λ.

25

inf Λ+ = 2c segue que c−λ < 0 logo λ ≤ 0. Portanto a curvatura seccional K = λ

iλj ≥ 0.

Do lema 3.0.16, A possui posto r≥ 2 e como A tem o mesmo posto de A conclu´ı-se que

K n˜ao ´e identicamente nula. 

Podemos aplicar o teorema 2.1.13 a f . Assim, f ´e uma hipersuperf´ıcie convexa em Rn+1 e podemos decompor M e f (veja [5] p´ag. 1) como segue:

M = Mr1× Rn−r e f = f1× f2

Tal que,

f1 : Mr

1 −→ Rr+1 e f2 : Rn−r −→ Rn−r

Onde f2 ´e a aplica¸c˜ao identidade e f1 ´e uma hipersuperf´ıcie convexa em Rr+1. A segunda

forma fundamental A1 com respeito a f2 tem posto r em algum ponto de Mr1. Portanto

podemos escrever A = A1 × A0 em que A0 ´e a segunda forma fundamental com respeito

a f2. Segue que A0 = 0 e como o posto de A ´e igual ao posto de A, podemos supor que

r = n.

Afirma¸c˜ao 3.0.21. A imagem da aplica¸c˜ao de Gauss ξ : Mn −→ Sn com rela¸c˜ao a

imers˜ao f , tem interior n˜ao vazio.

Prova: Do par´agrafo anterior, existe p ∈ M tal que Ap possui posto n, i.´e, λi(p) 6= 0

para todo i = 1, ..., n. Da continuidade de λi, existe vizinhan¸ca de p, Vi ⊂ M, tal que

λi(p)6= 0 ∀q ∈ Vi.

Se U =

n

\

i=1

Vi ent˜ao a aplica¸c˜ao de Gauss ξ : U −→ Sn ´e um difeomorfismo sobre

sua imagem.

De fato, dξp = dfp(−Ap) logo, se v ∈ TpM e dξp(v) = dfp(−Ap(v)) = 0 ent˜ao,

da injetividade de dfp temos que −Ap(v) = 0. Como o posto de A|U ´e igual a n, obtemos

que v = 0. Portanto dξp ´e injetiva e do teorema da fun¸c˜ao inversa ξ|U ´e um difeomorfismo

sobre sua imagem. J´a que um difeomorfismo ´e uma aplica¸c˜ao aberta, ξ(M) tem interior

n˜ao vazio. 

Do corol´ario 2.1.11 e do teorema 2.1.14, M ´e homeomorfa ao Rn. Podemos ent˜ao

aplicar o corol´ario 2.1.15 a hipersuperf´ıcie f e concluir que Πn+1◦ f(M) ´e pr´opria.

Afirma¸c˜ao 3.0.22. Πn+1◦ f := (Πn+1)|f(|M ) : f (M)−→ R ´e pr´opria.

Prova: Como Πn+1◦ f ´e cont´ınua, ´e suficiente mostrar que (Πn+1◦ f)−1(K) ´e compacto

em f (M), para qualquer compacto K∈ R. J´a que (Πn+1◦ f)−1(K) est´a contido em Rn+1,

26

Seja (xn)n∈N sequˆencia em (Πn+1◦ f)−1(K). Sabemos que, para ξ = (ξ1, ...ξn+1)

Πn+1◦ f(xn) = Πn+1◦ f(xn) + t0ξn+1(xn).

Como Πn+1◦ f(xn) ∈ K e kξn+1k ≤ 1 segue que Πn+1◦ f(xn) pertence a um compacto

K′. Sendo assim, existe subsequˆencia (xnk) de (xn)n∈N tal que Πn+1◦ f(xnk) converge. Se

Πn+1◦ f ´e uma aplica¸c˜ao pr´opria ent˜ao (xnk) tamb´em ´e convergente, digamos a x.

Ademais, da continuidade de Πn+1 ◦ f obtemos que Πn+1 ◦ f(xnk) converge a

Πn+1◦ f(x). Como Πn+1◦ f(xnk)∈ K temos Πn+1◦ f(x) ∈ K logo x ∈ (Πn+1◦ f)

−1(K)

provando que (Πn+1◦ f)−1(K) ´e sequencialmente compacto. 

Decorre do teorema de Sard [7] e do teorema da fun¸c˜ao impl´ıcita que, para quase todo valor regular a > 0 de Πn+1 ◦ f : M −→ R, temos que (Πn+1 ◦ f)−1(a) ´e uma

hipersuperf´ıcie de M. Seja ent˜ao a > 0 um valor regular de Πn+1 ◦ f e seja M1 =

(Πn+1◦ f)−1(a). J´a que Πn+1◦ f ´e pr´opria, ent˜ao M1 ´e uma hipersuperf´ıcie compacta de

Mn que podemos assumir que ´e conexa (caso contr´ario, consideramos uma componente

conexa de M1).

Considere agora o homeomorfismo h : Mn −→ Rn

e note que h(M1) ´e uma

hipersuperf´ıcie (topol´ogica) compacta de Rn. Uma generaliza¸c˜ao do teorema de Jordan

nos permite afirmar que h(M1) decomp˜oe o Rn em dois abertos L1 e Rn\ L1, onde L1 ´e

relativamente compacto e Rn\ L

1 ´e ilimitado.

Seja ent˜ao Ω = h−1(L

1). Observe que Ω ´e um aberto relativamente compacto em

Mn e que,

h(M1) = ∂L1 = ∂h(Ω) = h(∂Ω).

Portanto,

∂Ω = M1 = (Πn+1◦ f)−1(a) = f−1(Π−1n+1(a)).

Assim, f (∂Ω) = Π−1n+1(a) = Ha. Em particular Envf (∂Ω) = Env(Ha) = Ha. Pelo

lema 3.0.16 f tem a propriedade da envolt´oria convexa. Segue que f (Ω)⊂ Env(f(∂Ω)). Portanto f (Ω)⊂ Ha (hiperplano) e f possui segunda forma fundamental nula em Ω. Isto

´e uma contradi¸c˜ao pois estamos supondo que inf Λ+ 6= 0.

Para provar que sup Λ− = 0, basta supor por absurdo que sup Λ= −2c < 0 e

proceder de forma an´aloga ao acima.

Cap´ıtulo 4

Aplica¸c˜oes

Aqui, usamos o Teorema das Curvaturas Principais para provar que: Se n = 3 e Mn ´e uma variedade completa e orient´avel com curvatura de Ricci menor ou igual a uma

constante negativa ent˜ao, essa variedade n˜ao pode ser imersa isometricamente no R4. E

para n ≥ 4, isso tamb´em ´e v´alido se, a curvatura seccional n˜ao assume todos os valores reais. Isto pode ser enunciado de forma equivalente, a saber, se M ´e uma variedade completa e orient´avel, de dimens˜ao trˆes, com curvatura de Ricci n˜ao positiva ent˜ao, a curvatura de Ricci est´a pr´oxima de zero quanto se queira, i.´e, o ´ınfimo da curvatura de Ricci ´e igual a zero. E, se a dimens˜ao ´e maior ou igual a quatro, isso tamb´em ´e v´alido se a curvatura seccional n˜ao assume todos os valores reais.

Acrescentamos a este resultado, obtido por Smyth e Xavier [11], que isso ´e tamb´em v´alido para as curvaturas de Gaus-Kronecker e escalar.

Para demonstrar o proposto em dimens˜ao trˆes, necessitamos do pr´oximo teorema. Teorema 4.0.23. Seja f : Mn −→ Rn+1 uma hipersuperf´ıcie completa e orient´avel com

curvatura de Ricci n˜ao positiva e A a segunda forma fundamental de f . Suponha que A possui assinatura, i.´e, A tem um autovalor positivo e n− 1 autovalores negativos, ou vice versa, para todo p∈ M. Ent˜ao

inf

p∈MkApk := inf kAk = 0

inf

p∈M v∈TpM

kRicp(v)k := inf kRick = 0

Prova: Sejam λ1(p), λ2(p), ..., λn(p) os autovalores de Ap, escolhamos uma orienta¸c˜ao

para M tal que Appossua um autovalor positivo e n−1 autovalores negativos. Da hip´otese

sobre a curvatura de Ricci temos

Ricp(v)≤ 0 ⇔

X

i6=j

Kp(ei, ej)≤ 0.

28

Segue da equa¸c˜ao de Gauss que

Kp(ei, ej) = λi(p)λj(p),

donde temos que

X i6=j Kp(ei, ej)≤ 0 ⇒ X i6=j λi(p)λj(p)≤ 0 ⇒ λi(p) X i6=j λj(p)≤ 0

Assim, obtemos que

λi(p) n

X

j=1

(λj(p)− λi(p))≤ 0.

Note que, para i = 2, λ2(p) n X j=1 (λj(p)− λ2(p))≤ 0 ⇒ λ2(p)λ1(p) + λ2(p) n X j=3 λj(p) ≤ 0 ⇒ λ1(p)≥ − n X j=3 λj(p) = n X j=3 kλj(p)k. Portanto, λ1(p)≥ kλj(p)k para todo j 6= 2.

De forma an´aloga, para i = 3,

λ1(p)≥ kλj(p)k para todo j 6= 3.

Segue que

29

Do Teorema das Curvaturas Principais, inf Λ+ = inf

p∈Mλ1(p) = 0. Logo existe uma

sequˆencia (pk)k∈N em M, tal que λ1(pk)−−−→

k→∞ 0. Como λ1(p) ≥ kλj(p)k para todo j ent˜ao,

ao longo dessa mesma sequˆencia λj(pk)−−−→ k→∞ 0.

Ademais, para todo p∈ M,

kApk2 = n X j=1 (λj(p))2. Em particular para pk, kApkk 2 = n X j=1 (λj(pk))2 −−−→ k→∞ 0. Portanto, infkAk = 0. Al´em disso, se vk ´e uma sequˆencia em TpkM obtemos

Ricpk(vk) = X ik6=jk Kpk(eik, ejk) = X ik6=jk λik(pk)λjk(pk)−−−→ k→∞ 0. Portanto, infkRick = 0. 

Com esse teorema vimos que, as hipersuperf´ıcies completas e orient´aveis com curvatura de Ricci n˜ao positiva, que possui segunda forma fundamental com assinatura, tem ´ınfimo da curvatura de Ricci igual a zero. Nessas condi¸c˜oes, as hipersuperf´ıcies de uma variedade de dimens˜ao trˆes tem automaticamente segunda forma fundamental com assinatura. Isso pode ser facilmente provado pelo lema que segue.

Lema 4.0.24. Seja f : M3 −→ R4 uma hipersuperf´ıcie com curvatura de Ricci negativa e A a segunda forma fundamental de f . Ent˜ao A possui assinatura.

Prova: Sejam λ1(p), λ2(p) e λ3(p) os autovalores de Ap. Da hip´otese sobre a curvatura

de Ricci temos, Ricp(v) < 0⇒ λi(p) X i6=j λj(p) < 0 . Para i = 1, λ1(p) X i6=j λj(p) < 0 e supondo λ1(p) > 0 teremos λ2(p) + λ3(p) < 0 o

que nos d´a λ2(p) < 0 ou λ3(p) < 0.

Se λ2(p) < 0 e λ3(p) < 0 nada a fazer. Caso λ2(p) < 0 e λ3(p) > 0 mudamos a

30

Se λ1(p) < 0 o resultado ´e an´alogo. Portanto Ap possue um autovalor positivo e

n− 1 autovalores negativos. 

Com esse lema podemos provar a generaliza¸c˜ao de Efimov [4] em dimens˜ao trˆes, a saber,

Teorema 4.0.25. Se f : M3 −→ R4 ´e uma hipersuperf´ıcie completa e orient´avel com curvatura de Ricci negativa ent˜ao infkRick = 0.

Prova: Seja f : M3 −→ Rn+1 uma hipersuperf´ıcie e A a segunda forma fundamental de f . Pelo lema 4.0.24 A possui assinatura e pelo teorema 4.0.23 infkRick = 0. 

N´os adicionamos ao trabalho de Smyth e Xavier [11] que este ´ultimo resultado tamb´em ´e v´alido para as curvaturas de Gauss-Kronecker e escalar. Como podemos ver nos dois pr´oximos teoremas.

Teorema 4.0.26. Seja f : M3 −→ R4 uma hipersuperf´ıcie completa e orient´avel com curvatura de Ricci n˜ao positiva ent˜ao inf

p∈M|Gp| = 0. Em particular se Gp = cte para todo

p∈ M3, teremos G≡ 0.

Prova: Pela afirma¸c˜ao 4.0.24 A possui um autovalor positivo e dois autovalores nega- tivos ou vice-versa. Da demonstra¸c˜ao de 4.0.23 existe sequˆencia em M, (pk)k∈N, tal que

λi(pk)−−−→ k→∞ 0 para todo i∈ {1, 2, 3}. Portanto, lim k→∞G(pk) = limk→∞ 3 Y i=1 λi(pk) = 0. Logo, inf p∈M|Gp| = 0. 

31

Teorema 4.0.27. Seja f : M3 −→ R4 uma hipersuperf´ıcie completa e orient´avel com curvatura de Ricci n˜ao positiva ent˜ao inf

p∈M|τ(p)| = 0. Em particular se τ(p) = cte para

todo p∈ M3, teremos τ ≡ 0.

Prova: Do teorema 4.0.23, Ricpk(vk)−−−→

k→∞ 0. Ent˜ao ao longo desta mesma sequˆencia,

τ (pk) = 3 X j Ricpk(vj)−−−→ k→∞ 0. Logo, inf p∈M|τ(p)| = 0. 

Agora, apresentamos um teorema o qual mostra que uma hipersuperf´ıcie com- pleta e orient´avel, com curvatura de Ricci n˜ao positiva, pode ser um cilindro. Al´em disso, mostra uma rela¸c˜ao entre a curvatura m´edia e a curvatura de Ricci. Esta rela¸c˜ao ser´a usada para mostrar uma generaliza¸c˜ao de Efimov para n≥ 4.

Teorema 4.0.28. Seja f : M3 −→ Rn+1 uma hipersuperf´ıcie completa e orient´avel com curvatura de Ricci n˜ao positiva e H a curvatura m´edia de M.

(i) Ou inf

p∈M|Hp| = inf kHk := 0 ou f(M) ´e um cilindro sobre uma curva plana em R n+1.

(ii) Se inf H 6= −∞ ou sup H 6= +∞ ent˜ao inf kRick = 0. Em particular, se H = constante6= 0 ent˜ao f(M)´e um cilindro.

Prova: Para a prova de (i), suponhamos inicialmente que Λ+ ou Λ´e vazio. Se Λ+ =

Λ−=∅ ent˜ao M´e um hiperplano e H ≡ 0.

Caso Λ+ = ∅ e Λ6= ∅, da hip´otese sobre a curvatura de Ricci sabemos que

λi(p) X i6=j λj(p) ≤ 0. ent˜ao X i6=j

λj(p)≥ 0 o que nos d´a λj(p) = 0 para todo j 6= i.

Dessa forma, Kp(ei, ej) = λi(p)λj(p) = 0 para todo p ∈ M. Por Hartman-

Niremberg [2] pag. 72, f (M) ´e um cilindro sobre uma curva plana.

Supondo que nem Λ+ nem Λs˜ao vazios, assuma por absurdo que inf

p∈M|Hp| 6= 0.

Se Hp ≥ ε > 0, da condi¸c˜ao sobre a curvatura de Ricci λ(p)(nHp − λ(p)) ≤ 0 para todo

λ(p) ∈ Λ o que nos d´a n · Hp ≤ λ(p) para todo λ(p) ∈ Λ+. Do teorema das curvaturas

principais inf

p∈Mn· Hp ≤ inf Λ

+ = 0. Isto ´e um absurdo pois estamos supondo inf

32

Caso Hp ≤ −ε < 0, teremos que n · Hp ≥ λ(p) para todo λ(p) ∈ Λ−. Analoga-

mente, usando o teorema das curvaturas principais chegamos a uma contradi¸c˜ao. Portanto inf H = 0 e isto conclui a prova de (i).

Para provar (ii) suponha que existe c ∈ R tal que Ricp(v) ≤ −c2, equivalente-

mente, λ(p)(nHp− λ(p)) ≤ −c2 para todo λ(p)∈ Λ. Disto segue que nHp ≤ −c 2

λ(p) + λ(p) para todo λ(p)∈ Λ+.

Como inf Λ+ = 0 existe uma sequˆencia (p

k)k∈N em M tal que λ(pk) −−−→ k→∞ 0. Portanto lim k→∞( −c2 λ(pk)

+ λ(pk)) = −∞ e ao longo dessa mesma sequˆencia H −−−→ k→∞ −∞.

Analogamente, usando que nHp ≥ −c 2

λ(p) + λ(p) para todo λ(p) ∈ Λ− e que sup Λ− = 0, obtemos que sup H = +∞. 

Teorema 4.0.29. Seja f : Mn −→ Rn+1 (n ≥ 4) uma hipersuperf´ıcie completa e ori-

ent´avel com curvatura de Ricci negativa. Se a curvatura seccional de M n˜ao assume todos os valores reais ent˜ao inf

p∈MkRicpk = 0.

Prova: Inicialmente vamos provar que, nas condicoes do teorema, sup K 6= +∞. Com efeito, suponha que inf K = −∞. Da continuidade da fun¸c˜ao curvatura seccional e da hip´otese sobre sua imagem temos que sup K 6= +∞.

Caso inf K 6= −∞ suponha por absurdo que sup K = +∞. Ent˜ao, existem sequˆencias (pk)k∈N e (vk, uk)k∈N em M e TpkM respectivamente, onde lim

k→∞Kpk(eik, ejk) = +∞. Al´em

disso, existe c > 0 tal que inf K ≥ −c.

Da hip´otese sobre a curvatura de Ricci, X ik6=jk Kpk(eik, ejk) < 0⇒ X K>0 Kpk(eik, ejk) + X K<0 Kpk(eik, ejk) < 0. E portanto, X K>0 Kpk(eik,ejk) <− X K<0 Kpk(eik,ejk) ≤ c.

Isto ´e um absurdo pois estamos supondo que sup K = +∞.

Provemos o teorema: se a segunda forma fundamental de M tem um autovalor positivo e n− 1 autovalores negativos o resultado segue do teorema 4.0.23.

Caso contr´ario A possui pelo menos dois autovalores positivos e dois autovalores negativos. Como λ(p)(nHp− λp) < 0 para todo λ ∈ Λ ent˜ao nHp < λ(p) para λ(p) > 0.

33 Ent˜ao, para Hp > 0 ( nHp < λi1(p) nHp < λi2(p). Portanto, λi1(p)· λi2(p) ≥ n 2(H p)2 ⇒ Kp(ei1, ei2)≥ n 2(H p)2. Logo,

+∞ 6= sup K ≥ sup Kp(ei1, ei2)≥ sup H.

Do teorema 4.0.28 (ii),

inf

p∈MkRicpk = 0.

Documentos relacionados