• Nenhum resultado encontrado

existam vizinhan¸ca U da origem em E e constante ρ ∈ R tais que Φ(u) ≥ ρ para todo u ∈ ∂U, Φ(0) < ρ e Φ(v) < ρ para algum v 6∈ U.

Definimos

c ≡ inf

P ∈Pmaxw∈P Φ(w) ≥ ρ,

em que P denota a classe de caminhos cont´ınuos em E unindo a origem a v 6∈ U. Ent˜ao existe sequˆencia (un) ⊂ E tal que

Φ(un) → c e Φ′(un) → 0 em E∗.

[1] Abreu, E. A., Solu¸c˜ao Positiva para uma Classe de Problemas El´ıpticos Quasilineares Envol- vendo Expoentes Cr´ıticos, Tese de Doutorado, 2001, Unicamp.

[2] Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[3] Alves, C. O., Existˆencia de Solu¸c˜ao Positiva de Equa¸c˜oes El´ıpticas N˜ao Lineares Variacionais em RN, Tese de Doutorado, 1996, Universidade de Bras´ılia.

[4] Alves, C. O., Carri˜ao, P. C., Miyagaki, O. H., Nonlinear Perturbations of a Periodic Elliptic Problem with Critical Growth, J. Math. Anal. Appl. 260 (2001), n. 1, 133–146.

[5] Alves, C. O., Gonc¸alves, J. V., Santos, C. A. P., Quasilinear Singular Equations In- volving Hardy-Sobolev and Critical Hardy-Sobolev Exponents, 2004, Preprint.

[6] Ambrosetti, A., Br´ezis, H., Cerami, G., Combined Effects of Concave and Convex Non- linearities in Some Elliptic Problems, J. Funct. Anal. 122 (1994), n. 2, 519–543.

[7] Ambrosetti, A., Garcia Azorero, J., Peral Alonso, I., Multiplicity Results for Some Nonlinear Elliptic Equations, J. Funct. Anal. 137 (1996), n. 1, 219–242.

[8] Badiale, M., Tarantello, G., A Sobolev-Hardy Inequality with Applications to a Nonlinear Elliptic Equation Arising in Astrophysics, Arch. Ration. Mech. Anal. 163 (2002), n. 4, 259–293. [9] Bartch, T., Willem, M., On a Elliptic Equation with Concave and Convex Nonlinearities,

Proc. Amer. Math. Soc. 123 (1995), n. 11, 3555–3561.

[10] Ben-Naoum, A. K., Troestler, C., Willem, M., Extrema Problems with Critical Sobolev Exponents on Unbounded Domains, Nonlinear Anal. 26 (1996), n. 4, 823–833.

[11] Berestycki, H., Lions, P. L., Nonlinear Scalar Field Equations, I: Existence of a Ground State, Arch. Rational Mech. Anal. 82 (1983), n. 4, 313–345.

[12] Bianchi, G., Chabrowski, J., Szulkin, A., On Symmetric Solutions of an Elliptic Equation with a Nonlinearity Involving Critical Sobolev Exponent, Nonlinear Anal. 25 (1995), n. 1, 41–59. [13] Boccardo, L., Murat, F., Almost Everywhere Convergence of the Gradients of Solutions to

Elliptic and Parabolic Equations, Nonlinear Anal. 19 (1992), n. 6, 581–597.

[14] Br´ezis, H., Analyse Fonctionnelle: Th´eorie et Applications, Masson, Paris, 1983.

[15] Br´ezis, H., Some Variational Problems with Lack of Compactness, Proc. Sympos. Pure Math. 45 (1986), Part 1, 165–201.

[16] Br´ezis, H., Lieb, E. H., A Relation between Pointwise Convergence of Functions and Con- vergence of Functionals, Proc. Amer. Math. Soc. 88 (1983), n. 3, 486–490.

[17] Br´ezis, H., Nirenberg, L., Positive Solutions of Nonlinear Elliptic Equations Involving Cri- tical Sobolev Exponents, Comm. Pure Appl. Math. 36 (1983), n. 4, 437–477.

[18] Br´ezis, H., Nirenberg, L., A Minimization Problem with Critical Exponent and Nonzero Data, em: “Symmetry in Nature”, Scuola Norm. Sup. Pisa, (1989) 129–140.

[19] Caffarelli, L., Kohn, R., Nirenberg, L., First Order Interpolation Inequalities with Weights, Compositio Math. 53 (1984), n. 3, 259–275.

[20] Caldiroli, P., Musina, R., On the Existence of Extremal Functions for a Weighted Sobolev Embbeding with Critical Exponent, Calc. Var. Partial Differential Equations 8 (1999), n. 4, 365– 387.

[21] Cao, D. M., Li, G. B., On a Variational Problem Proposed by H. Brezis, Nonlinear Anal. 20 (1993), n. 9, 1145–1156.

[22] Cao, D. M., Zhou, H. S., On the Existence of Multiple Solutions of Nonhomogeneous Elliptic Equations Involving Critical Sobolev Exponents, Z. Angew. Math. Phys. 47 (1996), n. 1, 89–96. [23] Cao, D. M., Chabrowski, J., Multiple Solutions of Nonhomogeneous Elliptic Equation with

Critical Nonlinearity, Differential Integral Equations 10 (1997), n. 5, 797–814.

[24] Cao, D. M., Li, G. B., Zhou, H. S., Multiple Solutions for Nonhomogeneous Elliptic Equa- tions Involving Critical Sobolev Exponent, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), n. 6, 1177–1191.

[25] Carri˜ao, P. C., Miyagaki, O. H.,Existence of Non-trivial Solutions of Elliptic Variational Systems in Unbounded Domains, Nonlinear Anal. 51 (2002), n. 1, Ser. A: Theory Methods, 155–169.

[26] Catrina, F., Wang, Z.-Q., On the Caffarelli-Kohn-Nirenberg Inequalities: Sharp Constants, Existence and non Existence and Symmetry of Extremal Functions, Comm. Pure Appl. Math. 54 (2001), n. 2, 229–258.

[27] Chen, J., Li, S., On Multiple Solutions of a Singular Quasilinear Equation on Unbounded Domain, J. Math. Anal. Appl. 275 (2002), n. 2, 733–746.

[28] Chou, K. S., Chu, W. S., On the Best Constant for a Weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993), n. 1, 137–151.

[29] Cˆırstea, F., Motreanu, D., R˘adulescu, V., Weak Solutions of Quasilinear Problems with Nonlinear Boundary Condition, Nonlinear Anal. 43 (2001), n. 5, Ser. A: Theory Methods, 623–636.

[30] Cl´ement, P., de Figueiredo, D. G., Mitidieri, E., Quasilinear Elliptic Equations with Critical Exponents, Topol. Methods Nonlinear Anal. 7 (1996), n. 1, 133–170.

[31] Dautray, R., Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology I: Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1985.

[32] de Figueiredo, D. G., Lectures on the Ekeland Principle with Applications and Detour, Springer, 1980.

[33] de Figueiredo, D. G., Gonc¸alves, J. V., Miyagaki, O. H., On a Class of Quasilinear Elliptic Problems Involving Critical Exponents, Commun. Contemp. Math. 2 (2000), n. 1, 47–59. [34] diBenedetto, E., C1+α Local Regularity of Weak Solutions of Degenerate Elliptic Equations,

Nonlinear Anal. 7 (1983), n. 8, 827–850.

[35] Ding, W. Y., Ni, W. M., On the Existence of Positive Entire Solutions of a Semilinear Elliptic Equation, Arch. Rational Mech. Anal. 91 (1986), n. 4, 283–308.

[36] Egnell, H., Existence and Nonexistence Results for m-Laplace Equations Involving Critical Sobolev Exponents, Arch. Rational Mech. Anal. 104 (1988), n. 1, 57–77.

[37] Evans, L. C., Partial Differential Equations, American Mathematical Society, Graduate Stu- dies in Mathematics, vol. 19, Providence, 1998. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[38] Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992.

[39] Garcia Azorero, J., Peral Alonso, I., Existence and Nonuniqueness for the p-Laplacian: Nonlinear Eigenvalues, Comm. Partial Differential Equations (12) (1987), n. 12, 1389–1430. [40] Garcia Azorero, J., Peral Alonso, I., Some Results about the Existence of a Second

Positive Solution in a Quasilinear Critical Problem, Indiana Univ. Math. J. 43 (1994), n. 3, 941–957.

[41] Garcia Azorero, J., Peral Alonso, I., Hardy Inequalities and some Critical Elliptic and Parabolic Problems, J. Differential Equations 144 (1998), n. 2, 441–476.

[42] Garcia Azorero, J., Peral Alonso, I., Multiplicity of Solutions for Elliptic Problems with Critical Exponent or a Nonsymmetric Term, Trans. Amer. Math. Soc. 323 (1991), n. 2, 877–895. [43] Ghoussoub, N., Yuan, C., Multiple Solutions for Quasi-Linear PDEs Involving the Critical

Sobolev and Hardy Exponents, Trans. Amer. Math. Soc. 352 (2000), n. 12, 5703–5743.

[44] Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (224). Springer-Verlag, Berlin, 1983.

[45] Gonc¸alves, J. V., Melo, A. L., Multiple Sign Changing Solutions in a Class of Quasilinear Equations, Differential Integral Equations 15 (2002), n. 2, 147–165.

[46] Guedda, M., V´eron, L.,Quasilinear Elliptic equations Involving Critical Sobolev Exponents, Nonlinear Anal. 13 (1989), n. 8, 879–902.

[47] Huang, Y. S., On Multiple Solutions of Quasilinear Equations Involving the Critical Sobolev Exponent, J. Math. Anal. Appl. 231 (1999), n. 1, 142–160.

[48] Kavian, O., Introduction `a la Th´eorie des Points Critiques et Applications aux Probl`emes Elliptiques, Math´ematiques & Applications, 13. Springer-Verlag, Paris, 1993.

[49] Lieb, E. H., Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities, Ann. of Math. (2) 118 (1983), n. 2, 349–374.

[50] Lieb, E. H., Loss, M., Analysis, Graduate Studies in Mathematics, 14. American Mathema- tical Society, Providence, RI, 1997.

[51] Lions, P. L., The Concentration-compactness Principle in the Calculus of Variations. The locally Compact Case. I., Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 1 (1984), n. 2, 109–145. [52] Lions, P. L., The Concentration-compactness Principle in the Calculus of Variations. The

Locally Compact Case. II., Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 1 (1984), n. 4, 223–283 [53] Lions, P. L., The Concentration-compactness Principle in the Calculus of Variations. The

limit Case. I., Rev. Mat. Iberoamericana 1 (1985), n. 1, 145–201.

[54] Lions, P. L., The Concentration-compactness Principle in the Calculus of Variations. The limit Case. II., Rev. Mat. Iberoamericana 1 (1985), n. 2, 45–121.

[55] Miyagaki, O. H., On a Class of Semilinear Elliptic Problems in RN with Critical Growth,

Nonlinear Anal. 29 (1997), n.7, 773–781.

[56] Noussair, E. S., Swanson, C. A., Yang, J. F., Quasilinear Elliptic Problems with Critical Exponents, Nonlinear Anal. 20 (1993), n.3, 285–301.

[57] Peral Alonso, I., Multiplicity os Solutions for the p-Laplacian, em: Ambrosetti, A., Chang, K. C., Ekeland, I. (Eds.), Lecture Notes at the Second School on Nonlinear Functional analysis and Applications to Differential Equations at ICTP, Trieste, 1997.

[58] Rabinowitz, P., Minimax Methods in Critical Points Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, Providence, RI, 1986. [59] R˘adulescu, V., Smets, D., Critical Singular Problems on Infinite Cones, Nonlinear Anal.

54 (2003), n. 6, 1153–1164.

[60] Simon, J., R´egularit´e de la Solution d’une ´Equation non Lin´eaire dans RN, Journ´ees d’Analyse

Non Lin´eaire (Proc. Conf., Besan¸con, 1977), pp. 205–227, Lecture Notes in Math., 665, Springer, Berlin, 1978.

[61] Smets, D., A Concentration Compactness Lemma with Applications to Singular Eigenvalue Problems, J. Funct. Anal. 167 (1999), n. 2, 463–480.

[62] Struwe, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Second edition, 34. Springer-Verlag, Berlin, 1996.

[63] Talenti, G., Best Constants in Sobolev Inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.

[64] Tarantello, G., On Nonhomogeneous Elliptic Equations Involving Critical Sobolev Exponent, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 9 (1992), n. 3, 281–304.

[65] Tolksdorf, P., Regularity for a More General Class of Quasilinear Elliptic Equations, J. Differential Equations 51 (1984), n. 1, 126–150.

[66] Tshinanga, S. B., On Multiple Solutions of semilinear Elliptic equation on Unbounded Do- mains with Concave and Convex Nonlinearities, Nonlinear Anal. 28 (1997), n.5, 809–814. [67] Wang, Z.-Q., Willem, M., Singular Minimization Problems, J. Differential Equations 161

[68] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Ap- plications, 24. Birkh¨auser Boston, Inc., Boston, MA, 1996.

Measure Theory and Fine Properties of Functions (CRC Press, 1992, first printing), by Evans and Gariepy.

Documentos relacionados