• Nenhum resultado encontrado

Weakly coherent collisional models

N/A
N/A
Protected

Academic year: 2023

Share "Weakly coherent collisional models"

Copied!
1
0
0

Texto

(1)

Weakly coherent collisional models

Franklin Luis S. Rodrigues, Instituto de Física, Universidade de São Paulo

Gabriele de Chiara, Center for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast

Mauro Paternostro, Center for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University Belfast

Gabriel T Landi, Instituto de Física, Universidade de São Paulo

Quan

tum thermodynam ics

IFUSP

Collisional models

Prepare system ρS and unit ρA uncor- related.

• Interact: U = exp{−iVτ}.

• Throw unit away.

• Repeat.

Global Map:

ρ0SA = U(ρS ⊗ ρA)U For the system:

ρ0S = TrA{U(ρS ⊗ ρA)U}.

Perturbative coherence

Introducing weakly coherent states:

ρA = ρth + √

τλχ.

Scaling for dissipative effect:

V → V/ √ τ For small τ:

ρ0S = ρS − iτ[HS + λG, ρS] + τD[ρS], G = TrA{Vχ},

D = −1

2TrA{[V, [V, ρS ⊗ ρth]]},

• Thermal state induces dissipation

• Weak coherence induces non- commutative unitary evolution

Continuum limit

Taking

ρ˙ = lim

τ0

ρ0S − ρS τ , then:

ρ˙S = −i[HS + λG, ρS] + D[ρS]

• Exact master equation

• Lindblad dissipator

Parametrization

Parametrization of energy preserving interac- tion:

V = X

k

gk(LkAk + LkAk),

where the eigenoperators Lk and AK are de- fined as

[HS, Lk] = ωkLk, [HS, Ak] = ωkAk.

G = X

k

gk(LkhAkiχ + LkhAkiχ)

D[ρS] = X

k

|gk|2 (

hAkAkithD[Lk] + hAkAkithD[Lk] )

Example : Qubits

V = g(σS+σA + σSσA+), ρA = f 0

0 1 − f

!

+ 0 q q 0

! , then

G = gqσx, and

D(ρS) = γ

"

σSρSσS+ − 1

2{σS+σS, ρS}

#

+ γ+

"

σS+ρSσS − 1

2{σSσS+, ρS}

# , where

γ = g2(1 − f ), γ+ = g2 f. (1) For

√τλ = 0.7, q = 0.1, ω = 1, g = 0.25 and f = 0.4:

EME vs Exact Dynamics

0 10 20 30 40 50

0.4

0.35

0.3

0.25

0.2

t hσzi

0 20 40 60 80 100

0.2

0.1 0 0.1 0.2

t hσxi

Energy Balance

A ≡ Q˙

S = iλ tr{[HS, G]ρS} + tr{D[ρ]HS}.

˙

Wc ≡ iλ tr{[HS, G]ρS}

˙

Qinc ≡ τ tr{D[ρ]HS}. H˙ S = −Q˙ = W˙ c + Q˙ inc.

• Transformation process: Disordered to ordered energy.

• Quantum coherence as a resource.

• No work! Interaction preserves en- ergy.1

Entropy production

Defined as:2

Σ = I(S : A)0 + K(ρ0A||ρA) ≥ 0,

where I and K are the mutual in- formation and Kullback-Leibler diver- gence respectively.

With the map above:

˙

Wc ≥ −T C˙ A

• CA is the coherence entropy, is a measure for coherence.

• Coherence consumption bounds ordered energy produced

Moreover:

Σ =˙ β( ˙Wc − F˙ S) = S˙ S − βQ˙ inc.

• Modified second law

Next Steps

Study thermal engines mixing classical and quantum resources

Include external work

References

1 G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro, A. J.

Roncaglia, and M. Antezza, Reconciliation of quantum local master equations with thermodynamics, New Journal of Physics 20, 113024 (2018), 1808.10450.

2 P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions, arXiv 021003, 1 (2016), 1610.01829.

Referências

Documentos relacionados

O tema escolhido e a ser tratado neste trabalho é a baixa adesão ao tratamento anti-hipertensivo devido à grande quantidade de pacientes com controle dos