• Nenhum resultado encontrado

1) Alemán, J.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.;

Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T.: Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry 79, 1801–1827 (2007).

2) Švec, F.: Moje srdeční záležitost: monolity (My Love Affair: Monoliths). Chemické Listy 114, 718–728 (2020).

3) Mould, D. L.; Synge, R. L. M.: Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst 77, 964–969 (1952).

4) Mould, D. L.; Synge, R. L. M.: Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membranes. Biochemical Journal 58, 571–

585 (1954).

5) Kubín, M.; Špaček, P.; Chromeček, R.: Gel Permeation Chromatography on Porous Poly(Ethylene Glycol Methacrylate). Collection of Czechoslovak Chemical Communications 32, 3881–3887 (1967).

6) Hansen, L. C.; Sievers, R. E.: Highly permeable open-pore polyurethane columns for liquid chromatography. Journal of Chromatography A 99, 123–133 (1974).

7) Hileman, F. D.; Sievers, R. E.; Hess, G. G.; Ross, W. D.: In-Situ Preparation and Evaluation of Open Pore Polyurethane Chromatographic Columns. Analytical Chemistry 45, 1126–1130 (1973).

8) Ross, W. D.; Jefferson, R. T.: In Situ-Formed Open-Pore Polyurethane as Chromatography Supports. Journal of Chromatographic Science 8, 386–389 (1970).

9) Tennikova, T. B.; Belenkii, B. G.; Svec, F.: High-Performance Membrane Chromatography. A Novel Method of Protein Separation. Journal of Liquid Chromatography 13, 63–70 (1990).

84

10) Svec, F.; Fréchet, J. M. J.: Continuous Rods of Macroporous Polymer As High- Performance Liquid-Chromatography Separation Media. Analytical Chemistry 64, 820–822 (1992).

11) Hjertén, S.; Liao, J. L.; Zhang, R.: High-performance liquid chromatography on continuous polymer beds. Journal of Chromatography A 473, 273–275 (1989).

12) Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N.: Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography.

Analytical Chemistry 68, 3498–3501 (1996).

13) Fields, S. M.: Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography. Analytical Chemistry 68, 2709–2712 (1996).

14) Kennedy, J. F.; Phillips, G. O.; Williams, P. A. Cellulosics: Materials for Selective Separations and Other Technologies (Polymer Science and Technologies). New York, Ellis Horwood 1993, p. 17–24.

15) Viklund, C.; Svec, F.; Fréchet, J. M. J.; Irgum, K.: Monolithic, "Molded", Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization. Chemistry of Materials 8, 744–750 (1996).

16) Tetala, K. K. R.; van Beek, T. A.: Bioaffinity chromatography on monolithic supports.

Journal of Separation Science 33, 422-438 (2010).

17) Jandera, P.: Advances in the development of organic polymer monolithic columns and their applications in food analysis-A review. Journal of Chromatography A 1313, 37–

53 (2013).

18) Nischang, I.; Brueggemann, O.; Svec, F.: Advances in the preparation of porous polymer monoliths in capillaries and microfluidic chips with focus on morphological aspects. Analytical and Bioanalytical Chemistry 397, 953–960 (2010).

19) Svec, F.: CEC: Selected developments that caught my eye since the year 2000.

Electrophoresis 30, S68–S82 (2009).

85

20) Svec, F.: Monolithic columns: A historical overview. Electrophoresis 38, 2810–2820 (2017).

21) Švec, F.: Monolitické stacionární fáze pro HPLC. Místo narození: Praha (Monolithic Stationary Phases. Place of Birth: Prague). Chemicke Listy 98, 232–238 (2004).

22) Guiochon, G.: Monolithic columns in high-performance liquid chromatography.

Journal of Chromatography A 1168, 101–168 (2007).

23) Svec, F.; Huber, C. G.: Monolithic materials: promises, challenges, achievements.

Analytical Chemistry 78, 2100–2107 (2006).

24) Zou, H. F.; Huang, X. D.; Ye, M. L.; Luo, Q. Z.: Monolithic stationary phases for liquid chromatography and capillary electrochromatography. Journal of Chromatography A 954, 5–32 (2002).

25) Svec, F.: My favorite materials: Porous polymer monoliths. Journal of Separation Science 32, 3–9 (2009).

26) Svec, F.: Organic polymer monoliths as stationary phases for capillary HPLC. Journal of Separation Science 27, 1419–1430 (2004).

27) Nischang, I.: Porous polymer monoliths: Morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. Journal of Chromatography A 1287, 39–58 (2013).

28) Svec, F.: Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. Journal of Chromatography A 1217, 902–924 (2010).

29) Svec, F.: Preparation and HPLC applications of rigid macroporous organic polymer monoliths. Journal of Separation Science 27, 747–766 (2004).

30) Svec, F.: Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. Journal of Chromatography A 1228, 250–262 (2012).

86

31) Liang, Y.; Zhang, L. H.; Zhang, Y. K.: Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography. Analytical and Bioanalytical Chemistry 405, 2095–2106 (2013).

32) Nordborg, A.; Hilder, E. F.: Recent advances in polymer monoliths for ion-exchange chromatography. Analytical and Bioanalytical Chemistry 394, 71–84 (2009).

33) Urban, J.; Jandera, P.: Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Analytical and Bioanalytical Chemistry 405, 2123–2131 (2013).

34) Wu, R.; Hu, L. H.; Wang, F. J.; Ye, M. L.; Zou, H. F.: Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. Journal of Chromatography A 1184, 369–392 (2008).

35) Lynch, K. B.; Ren, J. T.; Beckner, M. A.; He, C. Y.; Liu, S. R.: Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Analytica Chimica Acta 1046, 48–68 (2019).

36) Vlakh, E. G.; Tennikova, T. B.: Preparation of methacrylate monoliths. Journal of Separation Science 30, 2801–2813 (2007).

37) Legido-Quigley, C.; Marlin, N. D.; Melin, V.; Manz, A.; Smith, N. W.: Advances in capillary electrochromatography and micro-high performance liquid chromatography monolithic columns for separation science. Electrophoresis 24, 917–944 (2003).

38) Miyabe, K.; Guiochon, G.: Characterization of monolithic columns for HPLC. Journal of Separation Science 27, 853–873 (2004).

39) Štulík, K.; Pacáková, V.; Suchánková, J.; Coufal, P.: Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography. Journal of Chromatography B 841, 79–87 (2006).

40) Tanaka, N.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hosoya, K.;

Ikegami, T.: Monolithic silica columns for high-efficiency chromatographic separations. Journal of Chromatography A 965, 35–49 (2002).

87

41) Svec, F.; Peters, E. C.; Sýkora, D.; Yu, C.; Fréchet, J. M. J.: Monolithic Stationary Phases for Capillary Electrochromatography Based on Synthetic Polymers: Designs and Applications. Journal of High Resolution Chromatography 23, 3–18 (2000).

42) Hilder, E. F.; Svec, F.; Fréchet, J. M. J.: Polymeric monolithic stationary phases for capillary electrochromatography. Electrophoresis 23, 3934–3953 (2002).

43) Urban, J.; Jandera, P.: Polymethacrylate monolithic columns for capillary liquid chromatography. Journal of Separation Science 31, 2521–2540 (2008).

44) Svec, F.: Recent developments in the field of monolithic stationary phases for capillary electrochromatography. Journal of Separation Science 28, 729–745 (2005).

45) Sýkora, D.; Tesařová, E.; Vosmanská, M.; Zvolánková, M.: Moderní stacionární fáze pro RP-HPLC (Modern stationary phases for RP-HPLC). Chemicke Listy 101, 190–

199 (2007).

46) Svec, F.; Peters, E. C.; Sýkora, D.; Fréchet, J. M. J.: Design of the monolithic polymers used in capillary electrochromatography columns. Journal of Chromatography A 887, 3–29 (2000).

47) Deyl, Z.; Švec, F.: Capillary electrochromatography. Amsterdam, Elsevier 2001.

48) Švec, F.; Tennikova, T. B.; Deyl, Z.: Monolithic materials: preparation, properties and applications. Amsterdam, Elsevier 2003.

49) Wang, P. G.: Monolithic chromatography and its modern applications. Glendale, ILM Publications 2010.

50) Unger, K. K.; Tanaka, N.; Machtejevas, E.: Monolithic Silicas in Separation Science:

Concepts, Syntheses, Characterization, Modeling and Applications. Weinhem, John Wiley and Sons 2011.

51) Meyers, J. J.; Liapis, A. I.: Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. Journal of Chromatography A 852, 3–23 (1999).

88

52) Leinweber, F. C.; Tallarek, U.: Chromatographic performance of monolithic and particulate stationary phases: Hydrodynamics and adsorption capacity. Journal of Chromatography A 1006, 207–228 (2003).

53) Wang, Q. C.; Svec, F.; Fréchet, J. M. J.: Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Analytical Chemistry 65, 2243–2248 (1993).

54) Lee, D.; Svec, F.; Fréchet, J. M. J.: Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins.

Journal of Chromatography A 1051, 53–60 (2004).

55) Sýkora, D.; Svec, F.; Fréchet, J. M. J.: Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. Journal of Chromatography A 852, 297–304 (1999).

56) Petro, M.; Svec, F.; Gitsov, I.; Fréchet, J. M. J.: Molded Monolithic Rod of Macroporous Poly(styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers: "On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers.

Analytical Chemistry 68, 315–321 (1996).

57) Trojer, L.; Bisjak, C. P.; Wieder, W.; Bonn, G. K.: High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. Journal of Chromatography A 1216, 6303–6309 (2009).

58) Courtois, J.; Szumski, M.; Byström, E.; Iwasiewicz, A.; Shchukarev, A.; Irgum, K.: A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. Journal of Separation Science 29, 14–24 (2006).

59) Viklund, C.; Nordström, A.; Irgum, K.; Svec, F.; Fréchet, J. M. J.: Preparation of Porous Poly(styrene-co-divinylbenzene) Monoliths with Controlled Pore Size Distributions Initiated by Stable Free Radicals and Their Pore Surface Functionalization by Grafting. Macromolecules 34, 4361–4369 (2001).

89

60) Tsujioka, N.; Hira, N.; Aoki, S.; Tanaka, N.; Hosoya, K.: A New Preparation Method for Well-Controlled 3D Skeletal Epoxy Resin-Based Polymer Monoliths.

Macromolecules 38, 9901–9903 (2005).

61) Hosoya, K.; Hira, N.; Yamamoto, K.; Nishimura, M.; Tanaka, N.: High-Performance Polymer-Based Monolithic Capillary Column. Analytical Chemistry 78, 5729–5735 (2006).

62) Bandari, R.; Prager-Duschke, A.; Kühnel, C.; Decker, U.; Schlemmer, B.; Buchmeiser, M. R.: Tailored Ring-Opening Metathesis Polymerization Derived Monolithic Media Prepared from Cyclooctene-Based Monomers and Cross-Linkers. Macromolecules 39, 5222–5229 (2006).

63) Lubbad, S.; Buchmeiser, M. R.: Monolithic High-Performance SEC Supports Prepared by ROMP for High-Throughput Screening of Polymers. Macromolecular Rapid Communications 23, 617–621 (2002).

64) Vojta, J.; Musilová-Svobodová, A.; Franc, M.; Coufal, P.; Bosaková, Z.: Příprava a aplikace monolitických kolon jako moderních separačních médií (Preparation and Application of Monolithic Columns as Modern Separation Media). Chemicke Listy 108, 127–134 (2014).

65) Svec, F.; Fréchet, J. M.: Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules 28, 7580–7582 (1995).

66) Svec, F.; Fréchet, J. M. J.: Kinetic Control of Pore Formation in Macroporous Polymers - Formation of Molded Porous Materials with High-Flow Characteristics for Separations Or Catalysis. Chemistry of Materials 7, 707–715 (1995).

67) Buchmeiser, M. R.: Polymeric monolithic materials: Syntheses, properties, functionalization and applications. Polymer 48, 2187–2198 (2007).

68) Švec, F.; Fréchet, J. M. J.: Rigid macroporous organic polymer monoliths prepared by free radical polymerization. In: Monolithic Materials: Preparation, Properties, and Applications. F. Švec, T. B. Tennikova, Z. Deyl (Eds.). Amsterdam, Elsevier, 2003, p.

19–50.

90

69) Zhang, Y.-P.; Ye, X.-W.; Tian, M.-K.; Qu, L.-B.; Choi, S.-H.; Gopalan, A. I.; Lee, K.- P.: Novel method to prepare polystyrene-based monolithic columns for chromatographic and electrophoretic separations by microwave irradiation. Journal of Chromatography A 1188, 43–49 (2008).

70) Sáfrány, Á.; Beiler, B.; László, K.; Svec, F.: Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross- linking. Polymer 46, 2862–2871 (2005).

71) Greiderer, A.; Trojer, L.; Huck, C. W.; Bonn, G. K.: Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p- vinylphenyl))ethane capillary columns. Journal of Chromatography A 1216, 7747–

7754 (2009).

72) Nischang, I.; Brüggemann, O.: On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Journal of Chromatography A 1217, 5389–5397 (2010).

73) Peters, E. C.; Petro, M.; Svec, F.; Fréchet, J. M. J.: Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. Analytical Chemistry 69, 3646–3649 (1997).

74) Xie, S. F.; Svec, F.; Fréchet, J. M. J.: Design of reactive porous polymer supports for high throughput bioreactors: Poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide-co- ethylene dimethacrylate) monoliths. Biotechnology and Bioengineering 62, 30–35 (1999).

75) Currivan, S.; Connolly, D.; Gillespie, E.; Paull, B.: Fabrication and characterisation of capillary polymeric monoliths incorporating continuous stationary phase gradients.

Journal of Separation Science 33, 484–492 (2010).

76) Hutchinson, J. P.; Hilder, E. F.; Shellie, R. A.; Smith, J. A.; Haddad, P. R.: Towards high capacity latex-coated porous polymer monoliths as ion-exchange stationary phases. Analyst 131, 215–221 (2006).

77) Currivan, S.; Jandera, P.: Post-Polymerization Modifications of Polymeric Monolithic Columns: A Review. Chromatography 1, 24–53 (2014).

91

78) Vissers, J. P. C.; Claessens, H. A.; Cramers, C. A.: Microcolumn liquid chromatography: instrumentation, detection and applications. Journal of Chromatography A 779, 1–28 (1997).

79) Haddad, P. R.; Nesterenko, P. N.; Buchberger, W.: Recent developments and emerging directions in ion chromatography. Journal of Chromatography A 1184, 456–473 (2008).

80) Gu, B. H.; Chen, Z. Y.; Thulin, C. D.; Lee, M. L.: Efficient Polymer Monolith for Strong Cation-Exchange Capillary Liquid Chromatography of Peptides. Analytical Chemistry 78, 3509–3518 (2006).

81) Aydogan, C.; Gökaltun, A.; Denizli, A.; El-Rassi, Z.: Organic polymer-based monolithic capillary columns and their applications in food analysis. Journal of Separation Science 42, 962–979 (2019).

82) Chen, X.; Tolley, H. D.; Lee, M. L.: Polymeric strong cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. Journal of Separation Science 32, 2565–2573 (2009).

83) Peters, E. C.; Petro, M.; Svec, F.; Fréchet, J. M. J.: Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 1. Fine Control of Porous Properties and Surface Chemistry. Analytical Chemistry 70, 2288–2295 (1998).

84) Chen, X.; Tolley, H. D.; Lee, M. L.: Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins. Journal of Chromatography A 1217, 3844–3854 (2010).

85) Gu, B. H.; Li, Y.; Lee, M. L.: Polymer Monoliths with Low Hydrophobicity for Strong Cation-Exchange Capillary Liquid Chromatography of Peptides and Proteins.

Analytical Chemistry 79, 5848–5855 (2007).

86) Wang, F. J.; Dong, J.; Jiang, X. G.; Ye, M. L.; Zou, H. F.: Capillary Trap Column with Strong Cation-Exchange Monolith for Automated Shotgun Proteome Analysis.

Analytical Chemistry 79, 6599–6606 (2007).

92

87) Bedair, M.; Rassi, Z. E.: Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes.

Electrophoresis 23, 2938–2948 (2002).

88) Xiong, B. H.; Zhang, L. H.; Zhang, Y. K.; Zou, H. F.; Wang, J. D.: Capillary Electrochromatography with Monolithic Poly(styrene-co-divinylbenzene-co- methacrylic acid) as the Stationary Phase. Journal of High Resolution Chromatography 23, 67–72 (2000).

89) Jin, W. H.; Fu, H. J.; Huang, X. D.; Xiao, H.; Zou, H. F.: Optimized preparation of poly(styrene-co- divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography. Electrophoresis 24, 3172–3180 (2003).

90) Huang, H.-Y.; Lin, H. Y.; Lin, S. P.: CEC with monolithic poly(styrene- divinylbenzene-vinylsulfonic acid) as the stationary phase. Electrophoresis 27, 4674–

4681 (2006).

91) Huang, H.-Y.; Liu, Y.-C.; Cheng, Y.-J.: Development of capillary electrochromatography with poly(styrene-divinylbenzene-vinylbenzenesulfonic acid) monolith as the stationary phase. Journal of Chromatography A 1190, 263–270 (2008).

92) Rocco, A.; D´Orazio, G.; Aturki, Z.; Fanali, S.: Chapter 21 - Capillary Electrochromatography: A Look at Its Features and Potential in Separation Science.

In: Liquid Chromatography. S. Fanali, P. R. Haddad, C. F. Poole, P. Schoenmakers, D. Lloyd (Eds.). Amsterdam, Elsevier, 2013, p. 469–492.

93) Moore, R. E.; Licklider, L.; Schumann, D.; Lee, T. D.: A Microscale Electrospray Interface Incorporating a Monolithic, Poly(styrene–divinylbenzene) Support for On- Line Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptides and Proteins. Analytical Chemistry 70, 4879–4884 (1998).

94) Gusev, I.; Huang, X.; Horváth, C.: Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A 855, 273–290 (1999).

93

95) Premstaller, A.; Oberacher, H.; Huber, C. G.: High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry of Single- and Double- Stranded Nucleic Acids Using Monolithic Capillary Columns. Analytical Chemistry 72, 4386–4393 (2000).

96) Premstaller, A.; Oberacher, H.; Walcher, W.; Timperio, A. M.; Zolla, L.; Chervet, J.

P.; Cavusoglu, N.; van Dorsselaer, A.; Huber, C. G.: High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies. Analytical Chemistry 73, 2390–2396 (2001).

97) Walcher, W.; Oberacher, H.; Troiani, S.; Hölzl, G.; Oefner, P.; Zolla, L.; Huber, C.

G.: Monolithic capillary columns for liquid chromatography–electrospray ionization mass spectrometry in proteomic and genomic research. Journal of Chromatography B 782, 111–125 (2002).

98) Huang, X.; Zhang, S.; Schultz, G. A.; Henion, J.: Surface-Alkylated Polystyrene Monolithic Columns for Peptide Analysis in Capillary Liquid Chromatography–

Electrospray Ionization Mass Spectrometry. Analytical Chemistry 74, 2336–2344 (2002).

99) Ivanov, A. R.; Zang, L.; Karger, B. L.: Low-Attomole Electrospray Ionization MS and MS/MS Analysis of Protein Tryptic Digests Using 20-µm-i.d. Polystyrene- Divinylbenzene Monolithic Capillary Columns. Analytical Chemistry 75, 5306–5316 (2003).

100) Wang, Q. C.; Švec, F.; Fréchet, J. M. J.: Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene-co- divinylbenzene). Journal of Chromatography A 669, 230–235 (1994).

101) Eeltink, S.; Decrop, W. M. C.; Rozing, G. P.; Schoenmakers, P. J.; Kok, W. T.:

Comparison of the efficiency of microparticulate and monolithic capillary columns.

Journal of Separation Science 27, 1431–1440 (2004).

102) Szumski, M.; Buszewski, B.: Effect of temperature during photopolymerization of capillary monolithic columns. Journal of Separation Science 32, 2574–2581 (2009).

94

103) Peters, E. C.; Svec, F.; Frechet, J. M. J.; Viklund, C.; Irgum, K.: Control of porous properties and surface chemistry in "molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules 32, 6377–6379 (1999).

104) Coufal, P.; Čihák, M.; Suchánková, J.; Tesařová, E.; Bosáková, Z.; Štulík, K.:

Methacrylate monolithic columns of 320 µm I.D. for capillary liquid chromatography.

Journal of Chromatography A 946, 99–106 (2002).

105) Grafnetter, J.; Coufal, P.; Tesařová, E.; Suchánková, J.; Bosáková, Z.; Ševčík, J.:

Optimization of binary porogen solvent composition for preparation of butyl methacrylate monoliths in capillary liquid chromatography. Journal of Chromatography A 1049, 43–49 (2004).

106) Moravcová, D.; Jandera, P.; Urban, J.; Planeta, J.: Characterization of polymer monolithic stationary phases for capillary HPLC. J. Sep. Science 26, 1005-1016 (2003).

107) Moravcová, D.; Jandera, P.; Urban, J.; Planeta, J.: Comparison of monolithic silica and polymethacrylate capillary columns for LC. Journal of Separation Science 27, 789–

800 (2004).

108) Kučerová, Z.; Szumski, M.; Buszewski, B.; Jandera, P.: Alkylated poly(styrene- divinylbenzene) monolithic columns for µ-HPLC and CEC separation of phenolic acids. Journal of Separation Science 30, 3018–3026 (2007).

109) Greiderer, A.; Ligon, S. C. Jr.; Huck, C. W.; Bonn, G. K.: Monolithic poly(1,2-bis(p- vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high- molecular-weight compounds. Journal of Separation Science 32, 2510–2520 (2009).

110) Li, Y. Y.; Tolley, H. D.; Lee, M. L.: Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins.

Journal of Chromatography A 1217, 4934–4945 (2010).

111) Li, Y. Y.; Tolley, H. D.; Lee, M. L.: Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules. Journal of Chromatography A 1218, 1399–1408 (2011).

95

112) Lubbad, S. H.; Buchmeiser, M. R.: Highly cross-linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. Journal of Separation Science 32, 2521–2529 (2009).

113) Lubbad, S. H.; Buchmeiser, M. R.: Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths. Journal of Chromatography A 1217, 3223–3230 (2010).

114) Davankov, V. A.; Tsyurupa, M. P.: Structure and properties of hypercrosslinked polystyrene - the first representative of a new class of polymer networks. Reactive Polymers 13, 27–42 (1990).

115) Pastukhov, A. V.; Tsyurupa, M. P.; Davankov, V. A.: Hypercrosslinked polystyrene:

A polymer in a non-classical physical state. Journal of Polymer Science, Part B:

Polymer Physics 37, 2324–2333 (1999).

116) Davankov, V.; Tsyurupa, M.; Ilyin, M.; Pavlova, L.: Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review. Journal of Chromatography A 965, 65–73 (2002).

117) Tsyurupa, M. P.; Davankov, V. A.: Porous structure of hypercrosslinked polystyrene:

State-of-the-art mini-review. Reactive and Functional Polymers 66, 768–779 (2006).

118) Ahn, J. H.; Jang, J. E.; Oh, C. G.; Ihm, S. K.; Cortez, J.; Sherrington, D. C.: Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins. Macromolecules 39, 627–632 (2006).

119) Davankov, V. A.; Tsyurupa, M. P.: Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications. Amsterdam, Elsevier 2011.

120) Germain, J.; Hradil, J.; Fréchet, J. M. J.; Svec, F.: High Surface Area Nanoporous Polymers for Reversible Hydrogen Storage. Chemistry of Materials 18, 4430–4435 (2006).

96

121) Veverka, P.; Jeřábek, K.: Influence of hypercrosslinking on adsorption and absorption on or in styrenic polymers. Reactive and Functional Polymers 59, 71–79 (2004).

122) Urban, J.; Svec, F.; Fréchet, J. M. J.: Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. Journal of Chromatography A 1217, 8212–8221 (2010).

123) Urban, J.; Svec, F.; Fréchet, J. M. J.: Efficient Separation of Small Molecules Using a Large Surface Area Hypercrosslinked Monolithic Polymer Capillary Column.

Analytical Chemistry 82, 1621–1623 (2010).

124) Aoki, H.; Tanaka, N.; Kubo, T.; Hosoya, K.: Poly(glycerin 1,3-dimethacrylate)-based monolith with a bicontinuous structure tailored as HPLC column by photoinitiated in situ radical polymerization via viscoelastic phase separation. Journal of Polymer Science, Part A: Polymer Chemistry 46, 4651–4673 (2008).

125) Santora, B. P.; Gagné, M. R.; Moloy, K. G.; Radu, N. S.: Porogen and Cross-Linking Effects on the Surface Area, Pore Volume Distribution, and Morphology of Macroporous Polymers Obtained by Bulk Polymerization. Macromolecules 34, 658–

661 (2001).

126) Wieder, W.; Lubbad, S. H.; Trojer, L.; Bisjak, C. P.; Bonn, G. K.: Novel monolithic poly(p-methylstyrene-co-bis(p-vinylbenzyl)dimethylsilane) capillary columns for biopolymer separation. Journal of Chromatography A 1191, 253–262 (2008).

127) Cabrera, K.; Lubda, D.; Eggenweiler, H. M.; Minakuchi, H.; Nakanishi, K.: A New Monolithic-Type HPLC Column For Fast Separations. Journal of High Resolution Chromatography 23, 93–99 (2000).

128) Huang, J.; Turner, S. R.: Hypercrosslinked Polymers: A Review. Polymer Reviews 58, 1–41 (2018).

129) Janků, S.; Škeříková, V.; Urban, J.: Nucleophilic substitution in preparation and surface modification of hypercrosslinked stationary phases. Journal of Chromatography A 1388, 151–157 (2015).

97

130) Lv, Y. Q.; Lin, Z. X.; Svec, F.: Hypercrosslinked Large Surface Area Porous Polymer Monoliths for Hydrophilic Interaction Liquid Chromatography of Small Molecules Featuring Zwitterionic Functionalities Attached to Gold Nanoparticles Held in Layered Structure. Analytical Chemistry 84, 8457–8460 (2012).

131) Maya, F.; Svec, F.: A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using external crosslinkers and application of these monolithic columns for separation of small molecules. Polymer 55, 340–346 (2014).

132) Svobodová, A.: Monolitické kolony pro kapilární kapalinovou chromatografii.

Diplomová práce, Přírodovědecká fakulta, Univerzita Karlova, Praha 2007.

133) Walters, M. J.: Classification of Octadecyl-Bonded Liquid-Chromatography Columns.

Journal of the Association of Official Analytical Chemists 70, 465–469 (1987).

134) Soukupová, K.: Moderní reverzní stacionární fáze na bázi silikagelu, oxidu zirkoničitého a organických monolit; využití v analýze biologicky aktivních látek.

Disertační práce, Přírodovědecká fakulta, Univerzita Karlova, Praha 2008.

135) Bristow, P. A.; Knox, J. H.: Standardization of test conditions for high performance liquid chromatography columns. Chromatographia 10, 279–289 (1977).

136) Yang, Y.; Belghazi, M.; Lagadec, A.; Miller, D. J.; Hawthorne, S. B.: Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A 810, 149–159 (1998).

98

No documento 2. Seznam použitých zkratek a symbolů (páginas 83-98)

Documentos relacionados