• Nenhum resultado encontrado

Energia livre de superfície do esmalte dentário tratado com hexametafosfato de sódio, cálcio e fosfato

N/A
N/A
Protected

Academic year: 2017

Share "Energia livre de superfície do esmalte dentário tratado com hexametafosfato de sódio, cálcio e fosfato"

Copied!
64
0
0

Texto

(1)

José Guilherme Neves

José Guilherme Neves

ENERGIA LIVRE DE SUPERFÍCIE DO ESMALTE

DENTÁRIO TRATADO COM HEXAMETAFOSFATO DE

SÓDIO, CÁLCIO E FOSFATO

(2)

José Guilherme Neves

José Guilherme Neves

ENERGIA LIVRE DE SUPERFÍCIE DO ESMALTE

DENTÁRIO TRATADO COM HEXAMETAFOSFATO DE

SÓDIO, CÁLCIO E FOSFATO

Dissertação apresentada à Faculdade de Odontologia da

Universidade Estadual Paulista “Júlio de Mesquita Filho”,

Campus de Araçatuba, para obtenção de título de Mestre em

Ciência Odontológica - Área de Concentração: Biomateriais.

Orientador: Prof. Titular Alberto Carlos Botazzo Delbem

Coorientadora: Profa. Dra. Marcelle Danelon

(3)

José Guilherme Neves Catalogação na Publicação (CIP)

Diretoria Técnica de Biblioteca e Documentação – FOA / UNESP

Neves, José Guilherme.

N518e Energia livre de superfície do esmalte dentário tratado com hexametafosfato de sódio, cálcio e fosfato / José Guilherme Neves. - Araçatuba, 2016

64 f. : il. ; tab. + 1 CD-ROM

Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba

Orientador: Prof. Alberto Carlos Botazzo Delbem Coorientadora: Profa.Marcelle Danelon

1. Fosfatos 2. Esmalte dentário 3. Energia I. Título

Black D15

(4)

José Guilherme Neves

Dados Curriculares

José Guilherme Neves

Nascimento 09.03.1992 – Piracicaba-SP

Filiação

Rodinei José Neves

Fernanda Aparecida Cabral Neves

2011/2014 Curso de Graduação em Odontologia pelo Centro

Universitário Hermínio Ometto- Uniararas

2015/2016 Desenvolvimento de Projeto de Mestrado com auxílio da

Coordenação de Pessoal de Nível Superior - CAPES

Associações CROSP - Conselho Regional de Odontologia de São Paulo.

(5)

José Guilherme Neves

COMISSÃO EXAMINADORA

DISSERTAÇÃO PARA OBTENÇÃO DO GRAU DE

MESTRE

Prof. Titular Alberto Carlos Botazzo Delbem – Orientador, Professor Titular do Programa de Pós-Graduação em Ciência Odontológica, Departamento de Odontologia Infantil e Social, Disciplina de Odontopediatria da Faculdade de Odontologia - Araçatuba, UNESP - Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba.

Prof. Dr. Douglas Roberto Monteiro – Professor Permanente do Programa de Pós-Graduação em Ciência Odontológica, Departamento de Odontologia Infantil e Social. Área de concentração Biomateriais- Faculdade de Odontologia - Araçatuba, UNESP - Universidade Estadual Paulista Júlio de Mesquita Filho, Araçatuba.

(6)

José Guilherme Neves

(7)

José Guilherme Neves Primeiramente gostaria de dedicar este trabalho às pessoas que mais

me apoiaram desde o dia do meu nascimento.

Meus pais,

Rodinei e Fernanda

.

Muitas vezes me faltam palavras para descrever tudo o que eu sinto

por vocês. Talvez gratidão e amor possam traduzir apenas uma parte do

que eu sinto. Gratidão por vocês terem me concebido, e desde então não

medirem esforços para sempre nos dar o melhor, muitas vezes deixando

seus próprios limites de lado.

Nesse período o qual permaneci um pouco distante de vocês, me fez

ver o quanto o amor entre nós é forte, o quanto cada momento perto de

vocês é especial. Me sinto amado por vocês em todos os momentos, em

todos os gestos, e em todas as palavras.

Eu aprendo muito com vocês, com o caráter de vocês, com a forma

com a qual vocês lidam com as situações. Vocês são as pessoas mais

integras, honestas e com o coração voltado em fazer a vontade de Deus

que eu já conheci.

Obrigado por sonharem comigo esse grande sonho! Vocês podem

ter a certeza que um dia eu irei retribuir tudo isso!! Eu irei honrá-los até

meus últimos dias!!

Amo vocês com todas as forças

“Quero consagrar meu lar a Ti, o nosso futuro para te servir.

Com toda minha força e entendimento, quero dedicar o meu lar a

(8)

José Guilherme Neves

(9)

José Guilherme Neves

A Deus

Pai, como sou grato ao Senhor por me escolher desde o ventre da

minha mãe. Por me dar o dom da vida, e me fazer crescer em graça e

estatura. Obrigado por confiar em mim talentos os quais eu sempre usarei

para louvar e glorificar o Teu nome.

Não há nada que eu anseie mais em minha vida, do que estar no

centro da Tua vontade. Em fazer com que os Teus planos em minha vida

sejam cumpridos conforme a Tua vontade. Eu sou um servo sempre pronto

a Te servir, aonde quer que eu esteja.

Sou grato por me amar incondicionalmente, me proteger, me guiar,

me confortar e me fazer entender que as coisas ruins são para o

amadurecimento e formação do meu caráter.

Os meus lábios sempre proclamarão Tua verdade, o Teu amor e Tuas

obras.

Eu te amo mais do que o meu entendimento, e com a certeza de que

o Senhor está me guiando em todos os lugares onde eu estiver.

Ao Senhor Jesus toda a glória, louvor, honra e minha adoração.

Ao meu irmão Vinicius,

Obrigado por sempre estar comigo, sempre me apoiando em todos

os meus sonhos e projetos. Você é um grande espelho para mim! Conte

(10)

José Guilherme Neves

A minha sobrinha Luiza,

A você que trouxe ainda mais vida, alegria e amor para as nossas

vidas, o meu agradecimento! Você reafirmou o meu amor pela minha

profissão e me fez entender melhor o seu mundo. Ouvir sua voz, e te ver

crescer me faz acreditar em um futuro melhor.

Talvez hoje você não entenda as palavras, as quais estou escrevendo,

mas o dia que você tiver a oportunidade de ler, saiba que o meu amor por

você é incondicional e que você me enche de luz e amor!

Eu te amo minha amiguinha...

A minha querida e amada avó Neusa Ricci,

Como sou grato à senhora por me amar com a força, a qual me ama!

A senhora me conhece como ninguém, conhece os meus anseios, sonhos,

insegurançass e medos. A senhora é minha confidente, minha melhor

amiga, em quem eu confio tudo! Se eu pudesse fazer um pedido a Deus, eu

pediria que a senhora fosse para sempre minha,

Como nossas tardes são especiais, sempre regadas de longas

conversas, risadas, e com a senhora me ouvindo cantar com aquele olhar

de admiração.

Obrigado por todos os dias interceder por mim perante Deus e os

(11)

José Guilherme Neves

A minha grande parceira da vida Larissa Leibholz,

Que sorte a nossa das nossas vidas terem se cruzado! Ter você ao

meu lado me faz sentir que eu estou em paz, que estou no meu porto

seguro. Te amei desde a primeira vez que eu te vi, te amo hoje, e te amarei

para sempre!

A minha irmã do coração Vanessa Marques,

Nossa história começou quando na primeira aula do mestrado

decidimos fazer dupla em alguns seminários. Mal sabíamos nós, que Deus

tinha nos colocado ali para que algo muito maior fosse construído. Nos

tornamos cumplices, amigos e irmãos.

Em momentos de alegria, você foi quem eu corri contar e comemorar

o momento festivo. Em momentos de tristeza, dor e inseguranças você foi

quem me acolheu com todo amor e carinho, enxugou minhas lagrimas e

me fez ver que aquele seria apenas um dia ruim e que um novo dia

amanheceria com alegria.

Como sou grato a Deus por ter você em minha vida, e por poder falar

que hoje, você é parte da minha família. Obrigado por todo cuidado, carinho

e atenção que dedicou a mim. Voce foi parte fundamental dessa grande

etapa da minha vida.

Meu eterno amor, carinho e gratidão a você por tudo que fez, faz e é

para mim!

(12)

José Guilherme Neves

A minha grande amiga Mayra,

Agradeço a Deus por ter te encontrado nessa fase tão importante de

nossas vidas. Compartilhamos juntos de momentos muito alegres, cheio de

risadas, e é disso que eu quero lembrar. Lembrar do seu astral, da sua

energia, sempre vendo as coisas de forma mais leve, e com um jeito lindo

de se ver a vida. Obrigado por me acolher sempre que precisei, e por

sempre me mostrar que as coisas no final sempre dariam certo.

Você é muito especial para mim, meu eterno carinho e gratidão a

você!

Eu amo você, obrigado por tudo!

Ao meu Orientador,

Prof. Titular. Alberto Carlos Botazzo Delbem

Gostaria de agradecer ao senhor pela grande oportunidade de

realizar esse sonho. Agradecê-lo por me receber e confiar em minha

capacidade para desenvolver parte do seu estudo.

Foi uma honra trabalhar com um pesquisador como o senhor, um

profissional de extrema excelência, e com um conhecimento o qual não sei

se seria possível listar.

Nesse breve período em que convivemos, fiquei ainda mais inspirado

a seguir o meu sonho de me tornar pesquisador, e por essa razão, serei

eternamente grato. Ser seu orientado foi uma honra e um prazer imenso. Ao

(13)

José Guilherme Neves

A minha Coorientadora,

Professora Doutora Marcelle Danelon

Na vida sempre encontramos pessoas especiais, pessoas que se

destacam e acabam se tornando grandes referenciais. Você foi quem me

apoiou em todos os momentos, me ensinando com toda sua excelência,

delicadeza e destreza.

Você é um exemplo de vida, de pessoa e acima de tudo de

profissional. Uma profissional completa, apaixonada pelo que faz, sempre

mostrando o lado bom das coisas. Nesse período aprendi muito com você,

não só Odontologia, metodologias, mas aprendi com a sua história, com os

seus conselhos, os quais foram fundamentais para mim nesse grande ciclo.

Eu desejo a você toda a felicidade do mundo, que Deus possa te

iluminar, e te guiar. E que todos os seus sonhos e objetivos sejam

realizados! Conte sempre comigo!

Obrigado por sempre acreditar em mim...

Meu eterno carinho e gratidão a você.

Aos meus amigos e companheiros da Pós-graduação,

Obrigado a vocês que de alguma forma contribuíram comigo nesse

período. Vou sentir muita saudade de todos! O meu desejo é que todos

alcancem seus objetivos.

(14)

José Guilherme Neves

Aos queridos alunos e amigos Francyenne, Gabriel, Sara e

Ronaldo.

Vocês me ensinaram muito nesse período. Me ensinaram sobre

determinação, capacidade e esforço. Ter alunos como vocês, com o

potencial de vocês, é algo desejado por qualquer pós-graduando e

professor.

Obrigado por todas as vezes que vocês me fizeram rir, por todos os

momentos em congressos e jornadas.

Vocês são muito especiais! Podem sempre contar comigo!

Ao aluno de Iniciação Científica Leonardo Raniel

Figueiredo,

Pela grande ajuda na realização da fase laboratorial deste trabalho, e

pela grande amizade!

Desejo a você todo o sucesso do mundo, que Deus realize todos os

seus sonhos e projetos. Eu só tenho a te agradecer por toda a ajuda, por

todos os dias que positivamente você chegava no laboratório pronto a

ajudar.

(15)

José Guilherme Neves

Aos docentes da Disciplina de Odontopediatria da

Faculdade de Odontologia de Araçatuba, UNESP,

Prof. Titular Célio Percinoto, Prof. Adj. Robson Frederico Cunha, Prof.

Ass. Dr. Juliano Pelim Pessan, Profa. Dra. Rosângela dos Santos Nery, Profa.

Adj. Sandra Maria Herondina Ávila de Aguiar, Profa. Ass. Dra. Cristiane

Duque, pela agradável convivência e conhecimentos transmitidos.

A Faculdade de Odontologia de Araçatuba,

Na pessoa dos professores: Prof. Titular Wilson Roberto Poi,

digníssimo Diretor e Prof. Titular João Eduardo Gomes Filho, digníssimo

Vice-Diretor.

Aos

funcionários

do

Departamento

de

Odontopediatria,

Obrigado a vocês que sempre nos receberam com tanto carinho,

cuidado e atenção. Obrigado por se preocuparem até com um simples café,

que nos faria despertar quando estávamos cansados.

Que Deus os abençoe sempre!

Ao Curso de Pós-Graduação em Ciência Odontológica

da Faculdade de Odontologia de Araçatuba-UNESP,

(16)

José Guilherme Neves

À Valéria, Cristiane e Lilian da Seção de Pós-Graduação

da Faculdade de Odontologia de Araçatuba-UNESP,

Pelo profissionalismo e atenção sempre carinhosa.

Ao Frigorífico FRIBOI

,

Pela permissão da coleta dos dentes bovinos.

A Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior

(CAPES) e a Fundação de Amparo à Pesquisa do

Estado de São Paulo (FAPESP)

Processo 2015/20829-5,

Pela concessão de recursos a mim e ao aluno de iniciação Científica

Leonardo Raniel Figueiredo.

(17)

José Guilherme Neves

(18)

José Guilherme Neves

“Não tenho palavras pra agradecer Tua

bondade

Dia após dia me cercas com fidelidade

nunca me deixes esquecer

Que tudo o que tenho

Tudo o que sou

O que vier a ser

Vem de Ti Senhor’’

(19)

José Guilherme Neves

(20)

José Guilherme Neves NEVES, J. G. Energia livre de superfície do esmalte dentário tratado com

Hexametafosfato de sódio, Cálcio e Fosfato. 2016 64f. Dissertação (Mestrado

em Ciência Odontológica, área de concentração Biomateriais) - Faculdade de

Odontologia de Araçatuba,Universidade Estadual Paulista, Araçatuba 2016.

Objetivo: Esse estudou avaliou a capacidade de adsorção do hexametafosfato de

sódio (HMP) em diferentes concentrações no esmalte dentário. Desenho: Blocos

de esmalte bovino (4 mm x 4 mm, n=144, 12/grupo) foram selecionados e

divididos em 12 grupos: 0%; 0,25%; 0,5%; e 1% HMP, e essas concentrações de

HMP seguida da aplicação em solução contendo Ca ou Ca-PO4 Os tratamentos

foram realizados por 1 min (1 mL/bloco), e a seguir expostos ao ar para que

houvesse a formação de película. A energia livre de superfície (mN/m) foi

calculada pela medida dos ângulos de contato de três líquidos sondas: água

deionizada, diiodometano e etileno glicol; determinando os componentes polar e

apolar da superfície do esmalte. Analisaram-se as concentrações de cálcio (Ca),

fosfato (PO4) e HMP nas soluções, antes e após os tratamentos. Os dados

apresentaram distribuição normal (Kolmogorov-Smirnov) e homogênea (Cochran)

e a seguir foram submetidos a ANOVA seguido pelo teste Student-Newman

Keuls (p<0,05). Resultado: Quanto maior a % de HMP nas soluções maior a

adsorção de HMP e a eletronegatividade na superfície do esmalte (p<0,05). A

adsorção de Ca foi maior com o aumento da % de HMP na solução (p<0,05)

reduzindo a eletronegatividade na superfície do esmalte. Maior adsorção de Ca e

PO4 ocorreu com 0,5% HMP e 1% HMP após o tratamento com solução Ca-PO4,

deixando a superfície menos eletronegativa quando comparado aos demais

(21)

José Guilherme Neves de esmalte mais eletronegativa favorecendo uma maior adsorção dos íons Ca e

PO4.

(22)

José Guilherme Neves

(23)

José Guilherme Neves NEVES, J.G. Surface free energy of enamel treated with sodium

hexametaphosphate, calcium and phosphate. 2016 64f. Dissertação

(Mestrado em Ciência Odontológica, área de concentração Biomateriais) -

Faculdade de Odontologia de Araçatuba, Universidade Estadual Paulista,

Araçatuba 2016.

Objective: This study evaluated the sodium hexametaphosphate (HMP) capacity

adsorption at different concentrations in the dental enamel. Design: Bovine

enamel blocks (4 mm x 4 mm, n = 144, 12 group) were selected and divided into

12 groups: 0%; 0.25%; 0.5%; and 1% HMP, and these HMP concentrations

followed by the application solution containing Ca or Ca-PO4. The treatments

were performed for 1 min (1 ml /block), and then exposed to air so that there was

the formation of a pelicle. The surface free energy (mN/m) was calculated by

measuring the contact angles of liquids three probes: deionized water,

diiodomethane and ethylene glycol; determining the polar and nonpolar

components of the enamel surface. It was analyzed the calcium (Ca), phosphate

(PO4) and HMP in the solutions, before and after treatment. The data were

normally distributed (Kolmogorov-Smirnov) and homogeneous (Cochran) and

then were subjected to ANOVA followed by Student-Newman Keuls test (p

<0.05). Results: The greater HMP % in solutions, the greater adsorption of HMP

and electronegative surface enamel (p<0.05). The Ca adsorption was higher with

HMP % increasin in the solution (p<0.05) reducing enamel surface

electronegativity. Increased adsorption of Ca and PO4 occurred in 0.5% and 1%

HMP and HMP after treatment with Ca-PO4 solution, leaving the less

electronegative surface when compared to the other treatments (P<0.05).

(24)

José Guilherme Neves electronegative surface enamel (p<0.05). The Ca adsorption was higher with

increasing HMP % in the solution (p<0.05) in reducing electronegativity enamel

surface. Increased adsorption of Ca and PO4 occurred in 0.5% and 1% HMP

HMP after treatment with Ca-PO4 solution, leaving the less electronegative

surface when compared to the other treatments (P <0.05). Conclusion: The HMP

promotes more electronegative in enamel surface, achieving greater adsorption of

Ca and PO4 ions.

(25)

José Guilherme Neves

(26)

José Guilherme Neves

LISTA DE FIGURAS

Figure 1. (A) Surface free-energies and their components (ϒSLW: Lifshitz-van der

Waals surface tension component; ϒSAB: Lewis acid-base interaction) with different enamel-surface treatments. (B) Influence of the treatments on the component polar of surface free energy on enamel surface: Lewis-acid (ϒS+) and Lewis-base (ϒS). Values denote mean and standard deviation (n = 12). Distinct letters show significant differences among mean considering % HMP and treatment or not with Ca and Ca and PO4 solution.

Figure 2. Mean (SD) of HMP adsorbed (A) on enamel surface after treatment

(27)

José Guilherme Neves

(28)

José Guilherme Neves

Table 1: Surface free energy and component values in test liquids

Table 2: Means (SD) of the contact angles ( °) of probing liquids and surface

(29)

José Guilherme Neves

(30)

José Guilherme Neves

LISTA DE ABREVIATURAS

ANOVA Análise de variância Ca2+ íon cálcio

CaCl2 Cloreto de Cálcio

CaF+ íon fluoreto de cálcio

HMP Hexametafosfato de sódio

HCl Ácido Clorídrico

H2O Água

LWAB Equação Ácido-base Lifhitz van der-Walls

mm Milímetro

mmol Milimol

ml Mililitro

min Minuto

mN/m MiliNilton por metro

NaOH Hidróxido de sódio

n Numero da amostra

sec Segundos

µL Microlitros

ϒ+ Componente receptor

ϒ- Componente doador

ϒLW Componente van der Walls

ϒAB

Componente Ácido-Base de Lewis

ϒL

(31)

José Guilherme Neves

(32)

José Guilherme Neves

SUMÁRIO

ABSTRACT 35

INTRODUCTION 36

MATERIALS AND METHODS 38

RESULTS 41

DISCUSION 42 ACKNOWLEDGMENTS 46 REFERENCES 46

ANEXOS 58

(33)

José Guilherme Neves

(34)

34

Surface free energy of enamel treated with sodium hexametaphosphate, calcium and phosphate

J.G. Nevesa, M. Danelona, L.R. Figueiredoa, J.P. Pessana, A.C.B. Delbema

aAraçatuba Dental School, Univ. Estadual Paulista (UNESP)

Department of Pediatric Dentistry and Public Health

Rua José Bonifácio 1193 Araçatuba, SP - Cep 16015-050 – Brazil

Short title: Surface free energy of enamel treated with sodium hexametaphosphate

Corresponding author:

Alberto Carlos Botazzo Delbem São Paulo State University – UNESP

Department of Pediatric Dentistry and Public Health Rua José Bonifácio 1193

16015-050 Araçatuba SP - Brazil Tel. +55 18 3636 3235

Fax +55 18 3636 3332

Email: adelbem@foa.unesp.br

*De acordo com as instruções aos autores do periódico Caries Research.

(Anexo A)

(35)

35

ABSTRACT

Objective: This study evaluated the sodium hexametaphosphate (HMP) capacity

adsorption at different concentrations in the dental enamel. Design: Bovine

enamel blocks (4 mm x 4 mm, n = 144, 12/group) were selected and divided into

12 groups: 0%; 0.25%; 0.5%; and 1% HMP, and these HMP concentrations

followed by the application solution containing Ca or Ca-PO4. The treatments

were performed for 1 min (1 ml/block), and then exposed to air so that there was

the formation of a pelicle. The surface free energy (mN/m) was calculated by

measuring the contact angles of liquids three probes: deionized water,

diiodomethane and ethylene glycol; determining the polar and nonpolar

components of the enamel surface. It was analyzed the calcium (Ca), phosphate

(PO4) and HMP in the solutions, before and after treatment. The data were

normally distributed (Kolmogorov-Smirnov) and homogeneous (Cochran) and

then were subjected to ANOVA followed by Student-Newman Keuls test (p

<0.05). Results: The greater HMP % in solutions, the greater adsorption of HMP

and electronegative surface enamel (p<0.05). The Ca adsorption was higher with

HMP % increasin in the solution (p<0.05) reducing enamel surface

electronegativity. Increased adsorption of Ca and PO4 occurred in 0.5% and 1%

HMP and HMP after treatment with Ca-PO4 solution, leaving the less

electronegative surface when compared to the other treatments (P<0.05) Results:

The higher HMP% solutions was greater HMP adsorption and electronegative

surface enamel (p<0.05). The Ca adsorption was higher with increasing HMP %

in the solution (p<0.05) in reducing electronegativity enamel surface. Increased

adsorption of Ca and PO4 occurred in 0.5% and 1% HMP HMP after treatment

(36)

36

José Guilherme Neves the other treatments (P<0.05). Conclusion: The HMP promotes more

electronegative in enamel surface, achieving greater adsorption of Ca and PO4

ions.

Keywords: Phosphates, Dental enamel, Energy.

INTRODUCTION

Cyclophosphates have been added to fluoride products as toothpastes [da

Camara et al., 2014; da Camara et al., 2015; de Castro et al., 2015; Danelon et

al., 2015], gels [Danelon et al., 2013; Danelon et al., 2014; Pancote et al., 2014;

Conceição et al., 2015], varnishes [Moretto et al., 2013; Manarelli et al., 2013;

Manarelli et al., 2014] and mounthrinses [Manarelli et al., 2011; Favretto et al.,

2013] with propose to increase the products capacity to reduce teeth

demineralization and enhance their remineralization. As dental caries is the most

common chronic oral disease in worldwide [Clarkson, 2010], increase the ability

of fluoride products in reduce the mineral loss can improve the effect against

dental caries. Sodium hexametaphosphate (HMP) is one of cyclic inorganic

phosphate [Kulaev et al., 2005] that reduces enamel desmineralization [da

Camara et al., 2014; da Camara et al., 2015; Conceição et al., 2015; da Camara

et al., 2016] due to its ability to adsorption on enamel surface and increase

permselectivity, facilitating the diffusion of cations into the enamel [McGaughey

and Stowell, 1977; van Dijk et al., 1980]. The assumption would be that the HMP

would retain ionic species like CaF+ and Ca2+, leading to a reticular formation of

(37)

37

José Guilherme Neves re-mineralization processes [da Camara et al., 2014; da Camara et al., 2015;

Conceição et al., 2015]. However, this hypothesis needs to be proven as HMP is

a negatively charged cyclic phosphate [Choi et al., 1993] as well as the enamel

[McGaughey and Stowell, 1977; van Dijk et al., 1980]. Thus, the study of the

interactions and chemical bonds among HMP, enamel surface and rich medium in

calcium phosphate can help us to understand and to prove the above hypothesis.

The surface reactivity is evaluated through the surface free energy (SFE)

[O`Brien, 1997] measuring the contact angle formed by different liquids on a solid

surface [Zisman, 1964]. Among the different methods to achieving these

parameters [Zisman, 1964; Owens, 1969; Neuman, 1974; Baier, 1992], the

approach described by Van Oss, Fowkes and Good and Chaudhury provides the

most complete SFE description. It allows calculating the dispersion values,

acid-base Lewis parts, polar force and hydrogen bond force, determining the Lifshitz–

van der Waals acidbase equation (LWAB) [Fowkes, 1987; van Oss, 1987; van

Oss, 1988; Good, 1992; Chaudury, 1996]. The dispersion force discusses

interactions values of nonpolar molecules, the polarity force shows the

interactions of metal molecules and the hydrogen bond strength reports the

interaction of water and hydroxyl groups [Comyn, 1992; Ueta, 2016]. This method

has the same foundation of hydrophobicity angle measurement, but

hydrophobicity is measured only by angles made with water, different from this

proposal where is used at least three liquids with different physico-chemical

properties [Blunden, 1994; Carlen, 2001; Sipahi, 2001].

Therefore, the aim of this study was to analyze the HMP adsorption and

(38)

38

José Guilherme Neves if the HMP treatment would interfere in the adsorption of calcium phosphate on

enamel. The null hypothesis was that the HMP is not adsorbed and do not alters

the SFE of the enamel and the adsorption of calcium phosphate.

MATERIAL AND METHODS

Experimental design

Enamel blocks (4 x 4 mm, n= 144) of bovine incisors were stored in

formaldehyde solution 2% for 30 days. The enamel surfaces of blocks were

sequentially polished, and as inclusion criteria the blocks should be flat, with no

risk, cracks or hypoplasia. They were divided in twelve groups (n = 12/group) and

immersed in the solutions content: free of HMP (0%), 0.25% HMP, 0.5% HMP

and 1% HMP with or without posterior treatment with calcium (1.25 mmol/L Ca) or

calcium and phosphate solutions (1.25 mmol/L Ca and 3.5 mmol/L P). Surface

free energy analysis was performed trough contact angles, and of calcium and

phosphorus concentrations determined before and after treatments.

Formulation of the solutions and treatment

Solutions were prepared using microparticulate HMP (Aldrich Chemistry,

UK), in concentrations of 0%, 0.25%, 0.5% and 1%. Solutions containing calcium

(1.25 mmol/L CaCl2·2H2O) and calcium and phosphate (1.25 mmol/L CaCl2·2H2O

and 3.5 mmol/L NaH2PO4·2H2O; Sigma, USA) also was prepared [Fejerskov,

2003]. Blocks (n = 12/group) were immersed in individual flasks containing 1 mL

(39)

39

José Guilherme Neves Brazil) over a period of 2 min. After this treatment, the blocks were washed with

deionized water for 30 seconds and dried. Twelve blocks of each group were

stored to posterior analysis, another 12 were immersed in an individual flask

containing 1 mL of a calcium solution and the last 12 blocks immersed in a

calcium/phosphate solution, under constant agitation for 1 min.

Calcium and phosphorus analysis

The Ca analysis was performed by a spectrophotometric (Microplate

Spectrophotometer EON, Biotek, USA), with a wavelength of 650 nm by adopting

a colorimetric method Arsenazo III [Vogel et al., 1983]. Aliquots of 5 µL were

taken from the samples and 50 µL of deionized water and arsenazo were added.

For calibration, standards containing 40 to 200 µg Ca/mL were used. The

phosphorus was colorimetric measured by the molybdate method through an

aliquot of 20 µL from the samples and in sequence, added to a mixture of 50 µL

of molybdate and 20 µL reactive reducer, as described by Fiske and Subbarow

(1925). This analysis was performed before and after the treatments and the

adsorption to enamel calculated from the initial concentrations of these

compounds in the solutions and the concentration after treatment (, µg). The

phosphorus of the HMP solutions was dosed after acid hydrolysis. Aliquots of

0.2 mL of the HMP solutions were added of 0.2 mL of hydrochloric acid (HCl) 1.0

(40)

40

José Guilherme Neves

SFE Measurements

The physico-chemical properties of the enamel surface were characterized

by contact angle measurements, using the sessile drop method to determine the

surface free energy. Measurements were performed by an automatic goniometer

(DSA 100S, Krüss, Hamburg, Germany) using three liquid contained within of

probes: diiodomethane, water and ethylene glycol (Table 1). The treated blocks

were exposed for 45 min in the air in order to stabilize the formed pellicle [van der

Mei et al., 2002], after this 0.5 µL of each liquid has been dispensed on the blocks

surface, and the contact angles were measured using images captured by a CCD

camera. For each specimen 5 measurements were performed at 20° C [Harnett

et al., 2007; van der Mei et al., 2002]. Different parameters, such as acid (+,

donor component), base (-, receptor component) and Lifshiz van der Waals (LW,

nonpolar component) of surface free energy (mN/m) were calculated according to

the model of van Oss, Chaudhery and Good for the determination of the

interaction free energy substrates [Van Oss et al., 1990; Della Volpe, 1997].

Statistical Analysis

The data presented a normal (Kolmogorov-Smirnov) and homogeneous

(Cochran) distribution and were submitted to analysis of variance (two-way)

followed by Student-Newman-Keuls test for multiple comparisons. Analyses were

performed using the Sigma Plot statistical software (version 12.0) with a

significance level set at 5 %. The values of contact angle, SFE parameters, HMP,

(41)

41

José Guilherme Neves HMP and post treatment with calcium and calcium/phosphate solutions as the

variation factor.

RESULTS

Treatments with HMP led to lower values of contact angles for three

probes liquids (p<0.001) compared to no-HMP (Table 2), which means that HMP

effectively affects the surface composition. Surface free energy (S) was only

higher with 0.25 % HMP (p=0.002). The values of apolar component (SLW) from

enamel surface were higher after treatment with HMP (p=0.001). The values of

polar component (SAB = Lewis acid-base) became more negative with the

increases of %HMP (p<0.017) (Figure 1). Among the parameters from SAB, S+ =

eletron-acceptor (Lewis acid) and S- = eletron-donor (Lewis base), the S- values

got greater with the increases of %HMP (p<0.001). The same was observed with

the adsorption of HMP on enamel (p<0.001) (Figure 2). There was a correlation

between values of HMP adsorption and SAB (Pearson’s r = 0.600) and S

-(Pearson’s r = -0.736).

The enamel surface without pretreatment with HMP but treated with

calcium solution presented higher values of contact angles for probes liquids

(p<0.005) as well as a reduction of S values (p=0.013) when compared to

enamel without any treatment (Table 2). Furthermore, there was not alteration in

the SAB, S+ and S- values (p>0.119) and slightly reduction of SLW values

(p=0.002). The treatment with calcium on enamel surface pretreated with HMP

(42)

42

José Guilherme Neves calcium treatment. The S values were higher for enamels treated with 0.25% and

0.5% of HMP (p<0.002). Calcium treatment led to less negatives SAB values

according to HMP content and a reduction of 57% for S- values for all % of HMP

(p<0.001). The values of SLW post treatment with calcium were lower in relation to

its correspondent % of HMP without calcium treatment (p<0.013).

The treatment with Ca-PO4 solution on enamel surface pretreated with

HMP showed higher contact angles for probes liquids compared to enamel

treated solely with HMP. The S values were higher for enamel treated with 0.5%

and 1% of HMP (p<0.002). Larger adsorption of HMP on enamel increased

absorption of calcium and phosphate after treatment with Ca-PO4 solution. There

was dose-response relationship between adsorption of HMP and Ca+ (Pearson’s

r = 0.601) and PO4 (Pearson’s r = 0.622) adsorption on enamel. As consequence,

the SAB values became positive with the increases of calcium (Pearson’s r =

-0.637) and phosphate (Pearson’s r = -0.621) adsorption on enamel. Also, S

-values decreased (p<0.002) showing correlation with calcium (Pearson’s r =

0.759) and phosphate (Pearson’s r = 0.712) adsorption on enamel.

DISCUSSION

This study evaluated the SFE alteration on enamel after treatment with

HMP and the calcium and phosphate interference. The results showed that the

adsorption of HMP on enamel enhanced the adsorption of calcium and

phosphate. Thus, the null hypothesis was rejected. A dose-response relationship

(43)

43

José Guilherme Neves adsorption, polar component (SAB = Lewis acid-base) and S (Lewis base

eletron-donor).

Considering only the contact angle with water (W), it is possible to affirm

that the treatment with HMP increases the hydrophilic character of enamel

surface, which makes it more liable to wetting, given that the contact angles were

lower than 65° [Vogle, 1998]. The surface free energy (S) and its Lifshiz van der

Waals (LW) and Lewis acid-base (AB) components also indicate that enamel

surface treated with HMP are more susceptible to bacterial adhesion [Rüttermann

et al., 2011; Rüttermann et al., 2014; Tiznado-Orozco et al., 2015].

The enamel prior to HMP treatment showed hydrophobic character and

lesser probability to bacterial adhesion inasmuch as S < 30 mN/m [Knorr et al.,

2005; Rüttermann et al., 2011] and S+ close to zero, as well as S is less than

28.5 mN/m [van Oss, 1993; van Oss, 1995]. Nevertheless, attractive interaction to

biological species, compounds and cells was present but weaker than in enamel

treated with HMP because SLW was higher than 22 mN/m [van Oss, 1993; van

Oss, 1995]. In this case, S is lower because of lower SAB values indicating a

surface less susceptible to cell adhesion [Knorr et al., 2005; Lee et al., 2009]. The

adsorption of HMP on enamel, on the other hand, occur leaving the surface

negatively charged. Despite S values higher than 28.3 mN/m that characterizes

a hydrophilic surface [van Oss, 1993; van Oss, 1995], the S remained the same

because a negative SAB even with higher and positive SLW values due the HMP

(44)

44

José Guilherme Neves cell adhesion, data from W, SLW and SAB (S+; S) effectively indicate a surface

that favors the adherence of biofilms [Olsson et al., 1992; Quirynen et al., 1989].

As the surface enamel became negatively charged due HMP the

adsorption of HMP, the adsorption of calcium on enamel is enhanced in the same

ratio as the S parameter increases. Negatively surfaces can be partly or wholly

neutralized by plurivalent cations leading to a hydrophobic surface [van Oss,

1995]. Apolar and polar components from the surface free energy were lower and

close to enamel prior to HMP, which confirms previous studies about the

reduction of enamel demineralization due the adsorption of HMP and its bond to

calcium on enamel surface [da Camara et al., 2014; da Camara et al., 2015;

Conceição et al., 2015]. Enamel without treatment adsorbed around 200% less

calcium that surfaces treated with HMP. It indicates no binding to phosphate ions

on the hydroxyapatite surface [Harding et al., 2005; Vandiver et al., 2005] since

the values of polar component (SAB) and its parameters (S+; S) did not change.

To calcium be adsorbed without changing the surface charge probably there was

a displacement of two surface H+ ions by a Ca2+ ion [Harding et al., 2005].

Nevertheless, the surface became more hydrophobic because of higher W and

lower S (as consequence of SLW) when compared to enamel prior to HMP or

calcium. Thus, the formation of HMP layer covering the enamel gives more

phosphates sites increasing the retention of calcium. As consequence, it occurs a

supersaturation these ions close to surface with possibility of higher adsorption of

phosphates ions.

The treatment of the enamel surface prior to HMP with calcium phosphate

(45)

45

José Guilherme Neves even reducing S and SLW values. As the calcium phosphate solution has the

possibility to form ionic species with different charges and activities, enamel

reactivity depends of the electrical charge created on the enamel surface.

Utilizing the PHREEQC Interactive speciation software (version 2.18.3.5570) to

calculate these species, it was possible to arrange in a descending order of

reactivity, from H2PO4 > Ca2 > HPO42 > CaH2PO4 at 37°C, pH 5.92, and

density of 1.0 g/cm3. The adsorption of Ca2 and HPO42 seems to explain the

increase of the negative charges (S = 40.3 mN/m) on enamel surface prior to

HMP faced with lower adsorption values. As the enamel surface present negative

charges after the treatment with HMP, the reactivity with Ca2 is greater leading to

more adsorption of H2PO4 and CaH2PO4, resulting in higher SAB values and

reduction in the S parameter. These differences might explain the higher ability

to reduce the demineralization or enhance the remineralization of enamel adding

HMP oral health products [da Camara et al., 2014; da Camara et al., 2015;

Conceição et al., 2015]. Although it was possible to determine the influence of

HMP in the adsorption of important ions in the process of des-remineralization of

enamel, the role played by fluorite in a such system still undetermined.

It was concluded that the adsorption of HMP on enamel increased the

adsorption of calcium and phosphate. The polar component (SAB) of the surface

free energy and its S parameter from the enamel surface were higher with the

(46)

46

José Guilherme Neves

ACKNOWLEDGMENTS

This study was supported by CAPES (Brazilian Coordination ofTraining of Higher Education Graduate) and FAPESP (The State of São Paulo Research Foundation, 2015/20829-5) for the concession of a scholarship to the four author.

REFERENCES

1. Baier RE. Principles of adhesion. Oper Dent 1992; 5: 1-9.

2. Blunden RE, Oliver RG, O’Kane CO. Microbial growth on the surfaces of various orthodontic bonding cements. Br J Orthodont 1994; 21:125-132.

3. Carlen A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 2001; 22: 481-487.

4. Chaudhury MK. Interfacial interaction between low energy surfaces. Mater Sci Engng 1996; 16:97-59.

5. Choi IK, Wen WW, Smith RW. Technical note the effect of a long chain phosphate on the adsorption of collectors on kaolinite. Miner Eng 1993; 6:1191–1197.

6. Clarkson J, Watt RG, Rugg-Gunn AJ et al. Proceedings. 9th World Congress on Preventive Dentistry (WCPD): "Community Participation and Global Alliances for Lifelong Oral Health for All," Phuket, Thailand. Adv Dent Res 2010; 22: 2–30.

7. Comyn J. Contact angles and adhesive bonding. Int J Adhes Adhesives 1992; 12:145–149

8. Conceição JM, Delbem ACB, Danelon M, Camara DM, Wiegand A, Pessan JP. Fluoride gel supplemented with sodium hexametaphosphate reduces enamel erosive wear in situ. J Dent 2015; 43: 1255–1260.

(47)

47

José Guilherme Neves 10. da Camara DM, Pessan JP, Francati TM, Santos Souza JA, Danelon M,

Delbem AC. Synergistic effect of fluoride and sodium hexametaphosphate in toothpaste on enamel demineralization in situ. J Dent 2015; 43:1249-1254. 11. da Camara DM, Pessan JP, Francati TM, Souza JA, Danelon M, Delbem AC.

Fluoride toothpaste supplemented with sodium hexametaphosphate reduces enamel demineralization in vitro. Clin Oral Investig 2016 Jan 13.

12. Danelon M, Pessan JP, Neto FN, de Camargo ER, Delbem AC. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J Dent 2015; 43:806-13.

13. Danelon M, Takeshita EM, Peixoto LC, Sassaki KT, Delbem. Effect of fluoride gels supplemented with sodium trimetaphosphate in reducing demineralization. Clin Oral Invest 2014; 18:1119–1127.

14. Danelon M, Takeshita EM, Sassaki KT, Delbem ACB. In situ evaluation of a low fluoride concentration gel with sodium trimetaphosphate in enamel remineralization. Am J Dent 2013; 26:15-20.

15. de Castro LP, Delbem AC, Danelon M, Passarinho A, Percinoto. In vitro effect of sodium trimetaphosphate additives to conventional toothpastes on enamel demineralization. Clin Oral Investig 2015; 1683-1687

16. Della Volpe C; Siboni S. Some Reflections on Acid–Base Solid Surface Free Energy Theories. J Colloid Interf Science 1997; 195:121136

17. Favretto CO, Danelon M, Castilho FC, Vieira AE, Delbem AC. In vitro evaluation of the effect of mouth rinse with trimetaphosphate on enamel demineralization. Caries Res 2013;47:532-8

18. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus J. Biol. Chem 1925; 66:375–400

19. Fowkes FM. Wetting, SCI monograph. London. Society of Chemical Industry; 1967

20. Good RJ: Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 1992; 6:1269-302.

(48)

48

José Guilherme Neves 22. Harnett EM; Alderman J; Wood T. The surface energy of various biomaterials

coated with adhesion molecules used in cell culture. Colloids and Surfaces 2007; 55:90–97

23. Kulaev IS, Vagabov VM, Kulakovskaya TV. The biochemistry of inorganic polyphosphates. 2nd ed. John Wiley & Sons 2005; pp. 294.

24. Knorr SD, Combe EC, Wolff LF, Hodges JS. The surface free energy of dental gold-based materials. Dental Materials 2005; 21: 272–277.

25. Lee SP, Lee SJ, Lim BS, Ahnd JS. Surface Characteristics of Orthodontic Materials and Their Effects on Adhesion of Mutans streptococci. Angle Orthodontist 2009; 79: 353-360.

26. Manarelli MM, Vieira AE, Matheus AA, Sassaki KT, Delbem AC. Effect of mouth rinses with fluoride and trimetaphosphate on enamel erosion: an in vitro study. Caries Res. 2011; 45:506-9.

27. Manarelli MM, Delbem ACB, Lima TMT, Castilho FCN, Pessan JP. In vitro remineralizing effect of fluoride varnishes containing sodium trimetaphosphate. Caries Res 2014; 48:299–305.

28. Manarelli MM, Moretto MJ, Sassaki KT, Martinhon CCR, Pessan JP, Delbem ACB. Effect of fluoride varnish supplemented with sodium trimetaphosphate on enamel erosion and abrasion. Am J Dent 2013; 26:307-312.

29. McGaughey C, Stowell EC. Effects of polyphosphates on the solubility and mineralization of HA: relevance to a rationale for anticaries activity. J Dent Res 1977; 56: 579–587.

30. Moretto MJ, Delbem ACB, Manarelli MM, Pessan JP, Martinhon CCR. Effect of fluoride varnish supplemented with sodium trimetaphosphate on enamel erosion and abrasion: An in situ/ex vivo study. Arch Oral Biol 2013; 41:1302-1306.

31. Neumann AW, Good RJ, Hope CJ, Seipal M. Equation of state to determine surface tensions of low energy solids from contact angles. J Colloid Interf Sci 1974; 49:291-304.

32. O’Brien WJ. Dental materials and their selection, 2nd ed. Chicago.

(49)

49

José Guilherme Neves 33. Olsson J, van der Heijde Y, Holmberg K. Plaque formation in vivo and

bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces. Caries Res 1992; 26: 428-33.

34. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci 1969; 13:1741-7.

35. Pancote LP, Manarelli MM,Danelon M, Delbem ACB. Effect of fluoride gels supplemented with sodium trimetaphosphate on enamel erosion and abrasion: In vitro study. Arch Oral Biol 2014; 59: 336-340.

36. Quirynen M Bollen CML. The influence of surface roughness and surface-free energy on supra-and subgengival plaque formation in man: a review of the literature. J Clin Periodontol 1995; 22: 1-14.

37. Rüterman S, Trellenkamp T, Bergmann N, Raab WHm, Ritter H, Janda R. A new approach to influence contact angle and surface free energy of resin-based dental restorative materials. Acta Biomaterialia 2011; 7: 1160-1165. 38. Rüterman S, Beickler T, Janda R. Contact angle and surface free energy of

experimental resin-based dental restorative materials after chewing simulation. Dental Materials 2014; 30: 702-707.

39. Sipahi C, Anil N, Bayramli E. The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. J Dent 2001; 29:197-204.

40. Tiveron AC, Delbem AC, Gaban G, Sassaki KT, Pedrini D. Effect of resin composites with sodium trimethaphosphate with or without fluoride on hardness, ion release and enamel desmineralization. Am J Dent 2013; 26:201-6.

41. Tiznado-Orozco GE, Reys-Gasga J, Elefterie F, Beyens C, Maschke U, Brès EF. Wettability modification of human tooth surface by water and UV nad eléctron-beam radiation. Materials Science and Engineering C 2015; 57: 133-146.

(50)

50

José Guilherme Neves 43. van der Mei HC1, White DJ, Kamminga-Rasker HJ, Knight J, Baig AA, Smit J,

Busscher HJ. Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamel in vitro and in vivo. Eur J Oral Sci. 2002 110:434-8.

44. van Dijk JW, Borggreven JM, Driessens FC. The effect of some phosphates and a phosphonate on the electrochemical properties of bovine enamel. Arch Oral Biol 1980; 25: 591–595.

45. Vandiver J, Dean D, Patel N, Bonfield W, Ortiz C. Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high resolution force spectroscopy. Biomaterials 2005; 26: 271-283.

46. van Oss CJ. Aspecific and specific intermolecular interactions in aqueous media. J Mol Recognit. 1990; 3:128-36.

47. van Oss CJ, Chaudhury MK, Good RJ. Monopolar surfaces. Adv Colloid Interf Sci 1987; 28:35-64.

48. van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988; 4:884-91.

49. van Oss CJ. Hydrophobicity of biosurfaces – origin, quantitative determination and interaction energies. Colloids and Surfaces B: Biointerfaces 1995;5: 91-110.

50. van Oss CJ. Acid-base interfacial interactions in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1993 78: 1-49.

51. Vogel GL, Chow LC, Brow WL. A microanalitical procedure for the determination of calcium, phosphate and fluoride in enamel biopsy samples Caries Res 1983; 17: 23–31.

52. Vogler EA. Structure and reactivity of water at biomaterial surfaces Advances in Colloid and Interface Science 1998; 74 69-117.

(51)

51

José Guilherme Neves

Table legend

Table 1. Surface free energy and component values in test liquids

Table 2. Means (SD) of the contact angles ( °) of probing liquids and surface

(52)

52

José Guilherme Neves

Figure legends

Figure 1. (A) Surface free-energies and their components (SLW: Lifshitz-van der Waals surface tension component; SAB: Lewis acid-base interaction) with different enamel-surface treatments. (B) Influence of the treatments on the component polar of surface free energy on enamel surface: Lewis-acid (S+) and Lewis-base (S). Values denote mean and standard deviation (n = 12). Distinct letters show significant differences among mean considering % HMP and treatment or not with Ca and Ca and PO4 solution (Student-Newman-Keuls, p <0.05).

Figure 2. Mean (SD) of HMP adsorbed (A) on enamel surface after treatment

(53)

53

José Guilherme Neves

Table 1. Surface free energy and component values in test liquids

Liquid CAS. Manufacturer L LLW LAB L+ L-

Deionized water 72.8 21.8 0.00 25.50 25.50

Diiodomethane 75116 Sigma-Aldrich 50.80 50.42 0.38 0.00 0.00

Ethileneglycol 107211 Sigma-Aldrich 48.0 29.0 18.9 3.0 30.10

(54)

54

José Guilherme Neves

Table 2. Means (SD) of the contact angles ( °) of probing liquids and surface

free energy (S) after treatment of enamel surface with HMP and after treatment with Ca or Ca and PO4 solution on enamel surface pretreated with HMP solutions (n = 12)

Treatments Water (°) Diiodomethane (°) Ethylene glycol(°) (mN/m) S

no-Ca and PO4

0%HMP 67.7(4.1) a 52.4(5.5) a 55.4(4.2) a* 28.8(4.6) a

0.25%HM

P 48.0

b

(4.4) 39.0

b

(5.1) 37.5

b

(5.7) 33.6

b* (3.2)

0.5%HMP 43.1(3.8) c 48.0(6.4) c* 40.8(4.3) b 27.5(3.9) a

1%HMP 40.3(8.6) c 43.6(5.4) d 40.8(5.1) b 25.9(5.2) a*

Ca

0%HMP 73.6(6.3) a 57.6(2.6) a* 62.1(3.7) a 25.3(2.3) a*

0.25%HM

P 68.5

a*

(6.0) 55.8

a*

(3.9) 53.4

b*

(2.9) 31.5

b*

(3.4)

0.5%HMP 63.7(5.6) b 50.7(3.4) b* 49.7(4.3) c 31.7(3.4) b*

1%HMP 69.4(6.2) a* 54.2(3.5) a* 58.5(3.5) d 26.5(2.9) a*

Ca-PO4

0%HMP 58.4(3.1) a 58.3(2.8) a* 54.7(3.2) a* 24.0(4.2) a*

0.25%HM

P 64.8

b*

(2.2) 55.0

a,b*

(2.3) 54.4

a*

(2.5) 27.3

b (3.4)

0.5%HMP 68.8(3.1) b,c 56.7(3.1) a,b 53.8(3.3) a 31.0(3.0) c*

1%HMP 70.4(3.7) c* 53.4(2.4) b* 52.2(3.1) a 33.2(2.3) c

(55)

55

José Guilherme Neves

(56)

56

José Guilherme Neves

Figure 2. Mean (SD) of HMP adsorbed (A) on enamel surface after treatment

(57)

57

José Guilherme Neves

(58)

58

ANEXO A

INSTRUÇÕES AOS AUTORES

Guidelines for Authors

(59)

59

José Guilherme Neves

ANEXO B

(60)

60

José Guilherme Neves

ANEXO C

TRATAMENTO DOS BLOCOS DE ESMALTE COM

SOLUÇÕES EXPERIMENTAIS

30

1 min Mesa Agitadora

(61)

61

José Guilherme Neves

ANEXO D

ANÁLISE DA ENERGIA LIVRE DE

SUPERFICIE DO ESMALTE DENTÁRIO

Goniômetro Automático DAS110S, Kruse,

(62)

62

José Guilherme Neves

ANEXO E

DOSAGEM DE CÁLCIO NAS SOLUÇÕES

EXPERIMENTAIS

5 µL da amostra, 50 µL de Água deionizada,

50 µL de Arsenazo III

Espectrofotômetro de microplaca EON, Biotek,

(63)

63

José Guilherme Neves

ANEXO F

DOSAGEM DE HMP NAS SOLUÇÕES

EXPERIMENTAIS

200 µL da solução HMP +

200 µL de HCl 1 M

Banho Térmico TE- 054 MAG, Tecnal

20 µL da amostra +

50 µL de molibidato

+

20 µL de reativo redutor

(64)

64

José Guilherme Neves

ANEXO G

DOSAGEM DE FÓSFORO NAS SOLUÇÕES

20 µL da amostra +

50 µL de molibidato

+

20 µL de reativo redutor

Espectrofotômetro de microplaca EON,

Referências

Documentos relacionados

Objetivo: Avaliou-se a prevalência de developmental defects of enamel (DDEs, defeitos de desenvolvimento do esmalte dentário) em pacientes pediátricos com asma e sua relação

Table 1 shows that surface microhardness of enamel (SMH) was significantly higher in the enamel blocks treated with fluoride dentifrice (MFP) and acidulated gel (APF) when compared

Conclusions: The sodium bicarbonate jet caused a wear and a reduction in microhardness on the enamel surface; saliva promoted the recovery of initial condition surface microhardness

In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. The influence of surface free energy

Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. I n sit u Effect of chewing

of different properties resulting from a high surface free energy (Glass) and a low surface free energy (PTFE) solids, and how polar and dispersive components of sur- face free

home-use and in-office bleaching agents containing hydrogen peroxide associated with amorphous calcium phosphate on enamel microhardness and surface roughness. Effect of

Influence of protein concentration on moisture content of sodium and calcium caseinate films with 1% glycerol.. Figure 2 Influence of pH on moisture content of sodium and