• Nenhum resultado encontrado

Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets

N/A
N/A
Protected

Academic year: 2017

Share "Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets"

Copied!
16
0
0

Texto

(1)

Study of Vector Boson Scattering and Search for New Physics in Events

with Two Same-Sign Leptons and Two Jets

V. Khachatryan et al.* (CMS Collaboration)

(Received 23 October 2014; revised manuscript received 11 December 2014; published 2 February 2015) A study of vector boson scattering inppcollisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4fb−1 collected with the CMS detector.

Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-signW-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for WW and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

DOI:10.1103/PhysRevLett.114.051801 PACS numbers: 14.70.Fm, 12.60.Cn, 13.38.-b, 13.85.Qk

Vector boson scattering (VBS) and quartic boson cou-plings are features of the standard model (SM) that remain largely unexplored by the LHC experiments. The obser-vation of a Higgs boson [1–3], in accordance with a key prediction of the SM, motivates further study of the mechanism of electroweak symmetry breaking through measurements of VBS processes. In the absence of the SM Higgs boson, the amplitudes for these processes would increase as a function of center-of-mass energy and ultimately violate unitarity[4,5]. The Higgs boson actually observed by the LHC experiments may restore the unitarity, although some scenarios of physics beyond the SM predict enhancements for VBS through modifications to the Higgs sector or the presence of additional resonances[6,7].

This Letter presents a study of VBS inppcollisions at

ffiffiffi

s

p

¼8TeV. The data sample corresponds to an integrated luminosity of 19.40.5 fb−1 collected with the CMS

detector [8]at the LHC in 2012. The aim of the analysis is to find evidence for the electroweak production of same-sign W-boson pair events. The strong production

cross section is reduced by the same-sign requirement, making the experimental signature of same-sign dilepton events with two jets an ideal topology for VBS studies. Candidate events have exactly two identified leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The final states considered are μþμþνμνμjj, eþeþνeνejj,

eþμþνeνμjj, and their charge conjugates and τ-lepton

decays to electrons and muons. Figure1shows represen-tative Feynman diagrams for the electroweak and QCD induced production.

The study of VBS presented here leads to measurements of the production cross sections forWW andWZ in a fiducial region. Evidence for electroweak production has been reported by the ATLAS Collaboration [9]. Various extensions of the SM alter the couplings of vector bosons. An excess of events could signal the presence of anomalous quartic gauge couplings (AQGCs) [10]. Doubly charged Higgs bosons are predicted in Higgs sectors beyond the SM where weak isotriplet scalars are included[11,12]; they can be produced via weak vector-boson fusion (VBF) and decay to pairs of same-signW bosons[13].

FIG. 1. Representative Feynman diagrams for the electroweak and QCD induced same-signW-boson pair production. * Full author list given at the end of the article.

(2)

The central feature of the CMS apparatus is a super-conducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter, and a brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events within 3μs, using information from the calorimeters and muon detectors. The high level trigger processor farm further reduces the event rate to a few hundred hertz before data storage. Details of the CMS detector and its perfor-mance can be found elsewhere [8].

Several Monte Carlo (MC) event generators are used to simulate the signal and background processes. The leading-order event generator MADGRAPH 5.2 [14] is used to produce event samples of diboson production via diagrams with two or fewer powers ofαs and up to six electroweak vertices. This includes two categories of diagrams: those with exactly two powers ofαswhich we refer to as quantum chromodynamic (QCD) production and those with no powers of αs, which we refer to as electroweak (EW) production. The EW category includes diagrams with

WWWW quartic interactions and diagrams where two same-sign W bosons scatter through the exchange of a

Higgs boson, a Z boson, or a photon. Double-parton

scattering, triboson production, and doubly charged Higgs boson production samples are also generated using MADGRAPH5.2. Top-quark background processes are gen-erated with the next-to-leading-order event generator POWHEG1.0[15–18]. The set of parton distribution functions (PDFs) used is CTEQ6L [19] for MADGRAPH and CT10 [20] for POWHEG. All event generators are interfaced to PYTHIA 6.4 [21] for the showering of the partons and subsequent hadronization. The PYTHIA parameters for the underlying event were set according to theZ2 tune [22]. The detector response is simulated by the GEANT4 package [23]using a detailed description of the CMS detector. The average number of simultaneous proton-proton interactions per bunch crossing in the 8 TeV data is approximately 21; additional pp interactions overlapping with the event of

interest are included in the simulated samples. Collision events are selected by the trigger system requiring the presence of one or two high transverse momentum (pT) muons or electrons. The trigger efficiency is greater than 99% for events that pass all other selection criteria explained below. A particle-flow algorithm [24,25]is used to recon-struct all observable particles in the event. It combines all the subdetector information to reconstruct individual particles and identify them as charged hadrons, neutral hadrons, photons, and leptons. The missing transverse energy EmissT

is defined as the magnitude of the negative vector sum of the transverse momenta of all reconstructed particles (charged and neutral) in the event.

The selection of events aims to single out same-sign dilepton events with the VBS topology while reducing the top quark, Drell-Yan, andWZ background processes. All

objects are selected following the methods described in Ref.[26]. To avoid bias, the number of events passing the selection was not evaluated until the analysis was complete. Two same-sign lepton candidates, muons or electrons, with

pT >20GeV andjηj<2.4ð2.5Þfor muons (electrons) are required to be isolated from other reconstructed particles in a cone ofΔR¼0.3, where ΔR¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiΔη2

þΔϕ2

p

. Jets are reconstructed using the anti-kT clustering algorithm [27] with a distance parameterR¼0.5, as implemented in the FASTJET package [28,29]. Events are required to have at least two selected jets with ET >30GeV and jηj<4.7. The VBS topology is targeted by requiring that the two jets with leadingpThave large dijet mass,mjj >500GeV, and large pseudorapidity separation,jΔηjjj>2.5.

To suppress top-quark backgrounds (t¯t andtW), a top-quark veto technique is used; it is based on the presence of a soft muon in the event from the semileptonic decay of the bottom quark and on bottom-quark jet tagging criteria based on the impact parameters of the constituent tracks [30]. A minimum dilepton mass, mll>50GeV, is

required to reduce theWþjets and top-quark background processes. To reduce the background fromWZproduction,

events with a third, loosely identified lepton with pT >

10GeV are rejected. Drell-Yan events can be selected if the charge of one lepton is measured incorrectly. To reduce this background, jmll−mZj>15GeV is required for ee events. The charge confusion in dimuon events is negli-gible. The Drell-Yan background is further reduced by requiringEmissT >40GeV.

The nonprompt lepton background originating from leptonic decays of heavy quarks, hadrons misidentified as leptons, and electrons from photon conversions, is suppressed by the identification and isolation requirements imposed on muons and electrons. The remaining contri-bution from the nonprompt lepton background is estimated directly from data. The efficiency for a predefined loose leptonlike object to pass the full lepton selection, typically called the tight-to-loose ratio (RTL), is estimated in a control sample with one additional lepton candidate that passes the standard lepton selection criteria. To account for the dependence on kinematic observables, this ratio is parameterized as a function of pT and η. Systematic uncertainties are obtained by the application of RTL to other control samples, accounting for the sample depend-ence in the estimation ofRTL. The WZ→3lν process is

(3)

0.1% and 0.3% for electrons, while it is negligible for muons.

After the full selection, about 15% of the background is due to theWZ3lνprocess and about 75% to nonprompt

leptons. Backgrounds from opposite-sign lepton pairs misreconstructed as same-sign (wrong-sign background),

WW production via double parton scattering (DPS), and

triboson production (VVV), which includes top-pair plus boson processes, contribute less than 10%.

The expected signal and background yields are shown in Table I for positive and negative pairs separately and for their sum. The signal corresponds to WW production,

including EW and QCD contributions, and their interfer-ence, which amounts to approximately 10%. The EW processes constitute 85%–90% of the total signal contri-bution. Themjjand leading-leptonpT distributions for the signal and background processes are shown in Fig. 2. In order to quantify the significance of the observation of the production via VBS, a statistical analysis of the event yields is performed in eight bins: four bins inmjjwith two bins in the lepton charge.

The signal efficiencies are estimated using simulated samples. In the statistical analysis, shape and normalization uncertainties are considered. The shape uncertainties are estimated by remaking the distribution of a given observ-able after considering the systematic variations for each source of uncertainty. The lepton trigger, reconstruction, and selection efficiencies are measured using Z=γ

lþl− events that provide an unbiased sample with high

purity. The estimated uncertainty is 2% per lepton. The uncertainties due to the momentum scale for electrons and muons are also taken into account and contribute 2%. The jet energy scale and resolution uncertainties give rise to an uncertainty in the yields of about 5%. The uncertainty in the event selection efficiency for events with neutrinos yielding genuineEmissT in the final state is assessed and leads to an uncertainty of 2%. The uncertainty in the estimated event yields, which is related to the top-quark veto, is evaluated by using a Z=γ→lþl− sample with at least two

reconstructed jets and is found to be about 2%. The statistical uncertainty in the yield of each bin and for each process is also taken into account. The uncertainty of 2.6% in the integrated luminosity [31] is considered for all simulated processes. The normalization of the processes with misidentified leptons has a 36% systematic uncer-tainty[26], which has two sources: the dependence on the

sample composition and the method used to estimate it. The

WZ normalization uncertainty is 35%, dominated by the small number of events in the trilepton control region. Theoretical uncertainties are estimated by varying the TABLE I. Signal and background yields after the full selection. Only statistical uncertainties are reported. The signal,WWjj, includes EW and QCD processes and their interference.

Nonprompt WZ VVV Wrong sign WW DPS Total bkg. WWjj Data

WþWþ 2.10.6 0.60.1 0.20.1 0.10.1 0.10.1 3.10.6 7.10.1 10

W−W− 2.10.5 0.40.1 0.10.1 2.60.5 1.80.1 2

WW 4.20.8 1.00.1 0.30.1 0.10.1 0.10.1 5.70.8 8.90.1 12

(GeV)

jj

m

500 1000 1500 2000

Events / bin

0 5 10

Data jj

±

W

±

W

Other Bkgs. Nonprompt WZ

CMS 19.4 fb-1 (8 TeV)

(GeV)

l max T

p

0 100 200 300 400 500

Events / bin

0 5 10 15

Data jj

±

W

±

W

Other Bkgs. Nonprompt WZ

CMS 19.4 fb-1 (8 TeV)

FIG. 2 (color online). The distributions ofmjj(top) and leading

leptonpT,p l;max

T , in the signal region (bottom). The hatched bars

include statistical and systematic uncertainties. TheWþWþand W−W− candidates are combined in these distributions. The

(4)

renormalization and factorization scales up and down by a factor of two from their nominal value in the event, and found to be 5% for the signal normalization and 50% for the triboson background normalization. A PDF uncertainty of 6%–8% in the normalization of the signal and WZ processes is included. The systematic uncertainties of the background normalizations are taken into account using log-normal distributions.

The cross section is extracted for a fiducial signal region. The fiducial region is defined by requiring two same-sign leptons withpT

l

>10GeV and jηlj<2.5, two jets with

pTj>20GeV and jηjj<5.0, mjj>300GeV, and

jΔηjjj>2.5 and is less stringent than the event selection for our signal region. The measured cross section is corrected for the acceptance in this region using the MADGRAPH MC generator, which is also used to estimate the theoretical cross section. The acceptance ratio between the selected signal region and the fiducial region is 36% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 7.9%.

The MADGRAPH prediction of the same-sign W-boson pair cross section is corrected by a next-to-leading order to leading-order cross section ratio estimated using VBFNLO[3234]. The fiducial cross section is found to be σfidðWWjjÞ ¼4.0þ22..04ðstatÞþ

1.1

−1.0ðsystÞfb with an

expect-ation of5.81.2fb.

In addition to the dilepton same-sign signal region, a

WZ→3lν control region is studied by requiring an

additional lepton withpT larger than 10 GeV. This control region allows the measurement of a fiducial cross section of theWZjjprocess and is σfidðWZjjÞ ¼10.84.0ðstatÞ 1.3ðsystÞfb with an expectation of 14.44.0fb. The fiducial region is defined in the same way as for the

WW analysis, but requiring one more lepton with pT

l

>

10GeV andjηlj<2.5. The acceptance ratio between the selected signal region and the fiducial region is 20% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 3.6%.

To compute the limits and significances, the CLs[35–37] construction is used. The observed (expected) significance for the WWjj process is 2.0σ (3.1σ). Considering the QCD component of the WWjj events as background

and the EW component together with the EW-QCD interference as signal, the observed (expected) signal significance reduces to 1.9σ (2.9σ).

Various extensions to the SM alter the couplings between vector bosons. Reference [10] proposes nine independent

C- andP-conserving dimension-eight effective operators to

modify the quartic couplings between the weak gauge bosons. The variablemllis more sensitive to AQGCs than

plT;max,mlljj, andmjj. Figure3(top) shows the expected

mlldistribution for three values ofFT;0=Λ4;Λis the scale of new physics andFT;0is the coefficient of one of the nine effective operators. The observed and expected upper and lower limits at 95% confidence level (C.L.). on the nine

coefficients are shown in TableII, where all the results are obtained by varying the effective operators one by one. The effect of possible AQGCs on theWZprocess in the signal region is negligible. Some operators for anomalous quartic gauge boson couplings may lead to tree-level unitarity violation. We also report the values of the operator coefficient for which unitarity is restored at the scale of 8 TeV, the unitarity limit. In addition to the limits on individual operator coefficients, the expected and observed two-dimensional 95% C.L. on FS;0=Λ

4 and

FS;1=Λ

4 are

presented in Fig.3(bottom): a linear combination of those operators leads to a scaling of the SM cross section.

Doubly charged Higgs bosons are predicted in models that contain a Higgs triplet field. Some of these scenarios

(GeV)

ll

m

100 200 300 400 500

Events / bin

0 5 10

CMS 19.4 fb-1 (8 TeV)

Data

-4

= 0.0 TeV

4 Λ / T,0 SM F -4

= -5.0 TeV

4 Λ / T,0 AQGC F -4

= +5.0 TeV

4 Λ / T,0 AQGC F S,0 F

-200 -100 0 100 200

S,1 F -1000 -500 0 500 1000

Expected 95% CL Observed 95% CL SM

CMS 19.4 fb-1 (8 TeV)

FIG. 3 (color online). The mll distributions (top) after full

selection with all SM backgrounds andFT;0=Λ 4

¼−5.0, 0 (SM),

and 5.0TeV−4; the last bin includes overflow events.

Ob-served and expected two-dimensional 95% C.L. (bottom) for FS0=Λ

4 and F

(5)

predict same-sign dilepton events fromWWdecays with a VBF topology. The cross section for VBF production of

H and decay to WW is directly proportional to the

vacuum expectation value of the triplet. The remaining five parameters in the model of the Higgs potential are adjusted to get the givenmHhypothesis while requiring one of the scalar singlets to have a mass of 125 GeV. The Georgi-Machacek model of Higgs triplets [38] is considered. For mH ¼200ð800Þ GeV the following parameters are used: λ1¼1, λ2¼1, λ3¼1, λ4¼2.37ð4Þ, and λ5¼

0.432ð7.26Þ. By using the mjj distribution, 95% C.L. upper limits on σHBðHWWÞ are derived as shown in Fig.4. The experimental results are overlaid with theoretical cross sections for three values of the vacuum expectation value.

In summary, a study of vector boson scattering in pp

collisions at pffiffiffis

¼8TeV has been presented based on a

data sample corresponding to an integrated luminosity of 19.4fb−1. Candidate events are selected with exactly two

leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The

observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for

WW and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

We congratulate our colleagues in the CERN accel-erator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our analy-ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] ATLAS Collaboration,Phys. Lett. B716, 1 (2012).

[2] CMS Collaboration,Phys. Lett. B716, 30 (2012).

[3] CMS Collaboration,J. High Energy Phys. 06 (2013) 081.

[4] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. Lett.38,

883 (1977). (GeV)

± ± H

m

200 300 400 500 600 700 800

) (fb) ± W ± W → ± ± (H Β X σ 100 200 CMS ± W ± W → ± ± VBF H (8 TeV) -1 19.4 fb Observed Median expected σ 1 ± Expected σ 2 ± Expected

vev = 35 GeV vev = 25 GeV vev = 16 GeV

FIG. 4 (color online). Expected and observed 95% C.L. upper limits on the cross section times branching fraction, σHBðH→WWÞ. Theoretical cross sections for three values of the vacuum expectation value (vev) are overlaid. TABLE II. Observed and expected upper and lower limits at 95% C.L. on the nine dimension-eight operators that affect quartic couplings between the weak gauge bosons. Limits from unitarity are reported. The units are TeV−4.

Operator coefficient Exp. lower Exp. upper Obs. lower Obs. upper Unitarity limit

FS;0=Λ4 −42 43 −38 40 0.016

FS;1=Λ 4

−129 131 −118 120 0.050

FM;0=Λ4 −35 35 −33 32 80

FM;1=Λ 4

−49 51 −44 47 205

FM;6=Λ4 −70 69 −65 63 160

FM;7=Λ 4

−76 73 −70 66 105

FT;0=Λ4 −4.6 4.9 −4.2 4.6 0.027

FT;1=Λ 4

−2.1 2.4 −1.9 2.2 0.022

(6)

[5] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. D16,

1519 (1977).

[6] D. Espriu and B. Yencho,Phys. Rev. D87, 055017 (2013).

[7] J. Chang, K. Cheung, C.-T. Lu, and T.-C. Yuan,Phys. Rev. D87, 093005 (2013).

[8] CMS Collaboration,JINST3, S08004 (2008).

[9] ATLAS Collaboration,Phys. Rev. Lett.113, 141803 (2014).

[10] O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi,

Phys. Rev. D74, 073005 (2006).

[11] Ch. Englert, E. Re, and M. Spannowsky,Phys. Rev. D87,

095014 (2013).

[12] Ch. Englert, E. Re, and M. Spannowsky,Phys. Rev. D88,

035024 (2013).

[13] Ch.-W. Chiang, T. Nomura, and K. Tsumura,Phys. Rev. D

85, 095023 (2012).

[14] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro,

J. High Energy Phys. 07 (2014) 079.

[15] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 07 (2008) 060.

[16] P. Nason,J. High Energy Phys. 11 (2004) 040.

[17] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[18] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.

[19] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan,Phys. Rev. D82, 054021 (2010).

[20] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D82, 074024 (2010).

[21] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[22] CMS Collaboration,J. High Energy Phys. 09 (2011) 109.

[23] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A506, 250 (2003).

[24] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009, http://cdsweb .cern.ch/record/1194487.

[25] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010.

[26] CMS Collaboration,J. High Energy Phys. 01 (2014) 096.

[27] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[28] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C72,

1896 (2012).

[29] M. Cacciari and G. P. Salam,Phys. Lett. B641, 57 (2006).

[30] CMS Collaboration,JINST8, P04013 (2012).

[31] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-13-001 2013, http://cdsweb .cern.ch/record/1598864.

[32] J. Baglio, J. Bellm, F. Campanario, B. Feigl, J. Frank, T. Figy, M. Kerner, L. D. Ninh, S. Palmer, M. Rauch, F. Schissler, O. Schlimpert, and D. Zeppenfeld, arXiv: 1404.3940.

[33] J. Baglioet al.,arXiv:1107.4038.

[34] K. Arnold et al., Comput. Phys. Commun. 180, 1661

(2009).

[35] A. L. Read,J. Phys. G28, 2693 (2002).

[36] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A434,

435 (1999).

[37] ATLAS and CMS Collaborations, Tech. Rep No. ATL-PHYS-PUB 2011-11, CMS-NOTE 2011-005 2011,http:// cdsweb.cern.ch/record/1379837.

[38] H. Georgi and M. Machacek, Nucl. Phys. B 262, 463

(1985).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2 R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4J. Lauwers,4S. Luyckx,4

S. Ochesanu,4 R. Rougny,4 M. Van De Klundert,4H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5

A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5 C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6L. Perniè,6,cT. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6F. Zenoni,6V. Adler,7

K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 S. Dildick,7A. Fagot,7G. Garcia,7 J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7E. Yazgan,7 N. Zaganidis,7S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8C. Delaere,8

T. du Pree,8D. Favart,8 L. Forthomme,8 A. Giammanco,8,e J. Hollar,8A. Jafari,8 P. Jez,8 M. Komm,8 V. Lemaitre,8

C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 W. L. Aldá Júnior,10 G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10C. Mora Herrera,10M. E. Pol,10W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11

(7)

T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12a A. Aleksandrov,13V. Genchev,13,c P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13 A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 M. Chen,15T. Cheng,15R. Du,15C. H. Jiang,15R. Plestina,15,hF. Romeo,15J. Tao,15Z. Wang,15C. Asawatangtrakuldee,16 Y. Ban,16Q. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16W. Zou,16C. Avila,17A. Cabrera,17L. F. Chaparro Sierra,17 C. Florez,17 J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18

Z. Antunovic,19 M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Bodlak,22M. Finger,22M. Finger Jr.,22,i Y. Assran,23,jA. Ellithi Kamel,23,kM. A. Mahmoud,23,lA. Radi,23,m,nM. Kadastik,24M. Murumaa,24M. Raidal,24A. Tiko,24 P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26 K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26

E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28D. Denegri,28 B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28

P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29 C. Charlot,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29N. Filipovic,29A. Florent,29R. Granier de Cassagnac,29

L. Mastrolorenzo,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29S. Regnard,29 R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30A. Aubin,30

D. Bloch,30J.-M. Brom,30E. C. Chabert,30 C. Collard,30E. Conte,30,o J.-C. Fontaine,30,o D. Gelé,30U. Goerlach,30 C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32G. Boudoul,32,c E. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32D. Contardo,32,c P. Depasse,32 H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32 H. Xiao,32Z. Tsamalaidze,33,iC. Autermann,34S. Beranek,34M. Bontenackels,34M. Edelhoff,34L. Feld,34A. Heister,34 O. Hindrichs,34K. Klein,34A. Ostapchuk,34F. Raupach,34J. Sammet,34S. Schael,34H. Weber,34B. Wittmer,34V. Zhukov,34,f M. Ata,35M. Brodski,35 E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35T. Hebbeker,35 C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35P. Millet,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36L. Perchalla,36

O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37U. Behrens,37A. J. Bell,37A. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37G. Dolinska,37

S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37J. Garay Garcia,37A. Geiser,37 P. Gunnellini,37J. Hauk,37M. Hempel,37,pH. Jung,37A. Kalogeropoulos,37M. Kasemann,37P. Katsas,37J. Kieseler,37 C. Kleinwort,37I. Korol,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37A. Lobanov,37W. Lohmann,37,pB. Lutz,37

R. Mankel,37I. Marfin,37,pI.-A. Melzer-Pellmann,37A. B. Meyer,37G. Mittag,37J. Mnich,37 A. Mussgiller,37 S. Naumann-Emme,37A. Nayak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37A. Raspereza,37

P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37M. Ö. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37T. Schoerner-Sadenius,37 M. Schröder,37C. Seitz,37S. Spannagel,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38

V. Blobel,38M. Centis Vignali,38 A. R. Draeger,38J. Erfle,38 E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38 M. Hoffmann,38 R. S. Höing,38A. Junkes,38H. Kirschenmann,38 R. Klanner,38R. Kogler,38J. Lange,38T. Lapsien,38 T. Lenz,38I. Marchesini,38J. Ott,38T. Peiffer,38A. Perieanu,38N. Pietsch,38J. Poehlsen,38T. Poehlsen,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38 A. Vanhoefer,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39E. Butz,39

T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39F. Frensch,39M. Giffels,39A. Gilbert,39 F. Hartmann,39,c T. Hauth,39,c U. Husemann,39I. Katkov,39,fA. Kornmayer,39,cE. Kuznetsova,39P. Lobelle Pardo,39

M. U. Mozer,39T. Müller,39Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39S. Röcker,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40G. Daskalakis,40

(8)

I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42 N. Manthos,42I. Papadopoulos,42E. Paradas,42J. Strologas,42 G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,q F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,r A. J. Zsigmond,43 N. Beni,44S. Czellar,44J. Karancsi,44,sJ. Molnar,44J. Palinkas,44Z. Szillasi,44A. Makovec,45P. Raics,45Z. L. Trocsanyi,45 B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47 M. Mittal,47N. Nishu,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49

S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49S. Sarkar,49 M. Sharan,49A. Abdulsalam,50D. Dutta,50 S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50 A. Topkar,50T. Aziz,51S. Banerjee,51S. Bhowmik,51,tR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51 S. Ganguly,51

S. Ghosh,51M. Guchait,51A. Gurtu,51,u G. Kole,51S. Kumar,51M. Maity,51,tG. Majumder,51K. Mazumdar,51 G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,vH. Bakhshiansohi,52H. Behnamian,52S. M. Etesami,52,w

A. Fahim,52,xR. Goldouzian,52M. Khakzad,52M. Mohammadi Najafabadi,52M. Naseri,52S. Paktinat Mehdiabadi,52 F. Rezaei Hosseinabadi,52B. Safarzadeh,52,y M. Zeinali,52M. Felcini,53 M. Grunewald,53M. Abbrescia,54a,54b

C. Calabria,54a,54bS. S. Chhibra,54a,54bA. Colaleo,54aD. Creanza,54a,54cN. De Filippis,54a,54cM. De Palma,54a,54bL. Fiore,54a G. Iaselli,54a,54c G. Maggi,54a,54cM. Maggi,54a S. My,54a,54c S. Nuzzo,54a,54bA. Pompili,54a,54bG. Pugliese,54a,54c

R. Radogna,54a,54b,cG. Selvaggi,54a,54bA. Sharma,54aL. Silvestris,54a,cR. Venditti,54a,54bG. Abbiendi,55aA. C. Benvenuti,55a D. Bonacorsi,55a,55bS. Braibant-Giacomelli,55a,55bL. Brigliadori,55a,55b R. Campanini,55a,55bP. Capiluppi,55a,55b

A. Castro,55a,55bF. R. Cavallo,55aG. Codispoti,55a,55bM. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55b D. Fasanella,55a,55b P. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55bS. Marcellini,55aG. Masetti,55a A. Montanari,55a F. L. Navarria,55a,55bA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55bT. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55b R. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56aM. Chiorboli,56a,56bS. Costa,56a,56bF. Giordano,56a,cR. Potenza,56a,56b A. Tricomi,56a,56b C. Tuve,56a,56bG. Barbagli,57a V. Ciulli,57a,57b C. Civinini,57a R. D’Alessandro,57a,57b E. Focardi,57a,57b

E. Gallo,57aS. Gonzi,57a,57bV. Gori,57a,57b,cP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57aA. Tropiano,57a,57b L. Benussi,58 S. Bianco,58F. Fabbri,58D. Piccolo,58R. Ferretti,59a,59b F. Ferro,59a M. Lo Vetere,59a,59bE. Robutti,59a S. Tosi,59a,59bM. E. Dinardo,60a,60b S. Fiorendi,60a,60b S. Gennai,60a,c R. Gerosa,60a,60b,c A. Ghezzi,60a,60b P. Govoni,60a,60b

M. T. Lucchini,60a,60b,c S. Malvezzi,60a R. A. Manzoni,60a,60bA. Martelli,60a,60bB. Marzocchi,60a,60b,c D. Menasce,60a L. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61a

N. Cavallo,61a,61cS. Di Guida,61a,61d,c F. Fabozzi,61a,61c A. O. M. Iorio,61a,61b L. Lista,61a S. Meola,61a,61d,c M. Merola,61a P. Paolucci,61a,c P. Azzi,62aN. Bacchetta,62a M. Bellato,62a D. Bisello,62a,62bR. Carlin,62a,62bP. Checchia,62a M. Dall’Osso,62a,62bT. Dorigo,62a M. Galanti,62a,62bF. Gasparini,62a,62bU. Gasparini,62a,62b P. Giubilato,62a,62b

A. Gozzelino,62a K. Kanishchev,62a,62c S. Lacaprara,62aM. Margoni,62a,62b A. T. Meneguzzo,62a,62b J. Pazzini,62a,62b M. Pegoraro,62a N. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62a M. Tosi,62a,62bP. Zotto,62a,62b

A. Zucchetta,62a,62bG. Zumerle,62a,62b M. Gabusi,63a,63bS. P. Ratti,63a,63bV. Re,63a C. Riccardi,63a,63b P. Salvini,63a P. Vitulo,63a,63bM. Biasini,64a,64bG. M. Bilei,64aD. Ciangottini,64a,64b,cL. Fanò,64a,64bP. Lariccia,64a,64bG. Mantovani,64a,64b

M. Menichelli,64a A. Saha,64a A. Santocchia,64a,64b A. Spiezia,64a,64b,c K. Androsov,65a,z P. Azzurri,65a G. Bagliesi,65a J. Bernardini,65aT. Boccali,65aG. Broccolo,65a,65c R. Castaldi,65a M. A. Ciocci,65a,z R. Dell

’Orso,65a S. Donato,65a,65c,c

F. Fiori,65a,65c L. Foà,65a,65cA. Giassi,65a M. T. Grippo,65a,z F. Ligabue,65a,65cT. Lomtadze,65a L. Martini,65a,65b A. Messineo,65a,65b C. S. Moon,65a,aa F. Palla,65a,cA. Rizzi,65a,65bA. Savoy-Navarro,65a,bb A. T. Serban,65a P. Spagnolo,65a

P. Squillacioti,65a,zR. Tenchini,65aG. Tonelli,65a,65bA. Venturi,65a P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66b F. Cavallari,66a G. Dimperio,66a,66b D. Del Re,66a,66bM. Diemoz,66a C. Jorda,66a E. Longo,66a,66bF. Margaroli,66a,66b P. Meridiani,66aF. Micheli,66a,66b,cS. Nourbakhsh,66a,66bG. Organtini,66a,66bR. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66a

F. Santanastasio,66a,66bL. Soffi,66a,66b,cP. Traczyk,66a,66b,c N. Amapane,67a,67b R. Arcidiacono,67a,67cS. Argiro,67a,67b M. Arneodo,67a,67c R. Bellan,67a,67b C. Biino,67a N. Cartiglia,67a S. Casasso,67a,67b,c M. Costa,67a,67bA. Degano,67a,67b

N. Demaria,67a L. Finco,67a,67b,c C. Mariotti,67aS. Maselli,67a E. Migliore,67a,67bV. Monaco,67a,67b M. Musich,67a M. M. Obertino,67a,67c,c G. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67a M. Pelliccioni,67aG. L. Pinna Angioni,67a,67b

(9)

S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73B. Lee,73K. S. Lee,73S. K. Park,73Y. Roh,73 M. Choi,74J. H. Kim,74I. C. Park,74G. Ryu,74M. S. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75D. Kim,75E. Kwon,75J. Lee,75 H. Seo,75 I. Yu,75A. Juodagalvis,76J. R. Komaragiri,77M. A. B. Md Ali,77E. Casimiro Linares,78H. Castilla-Valdez,78

E. De La Cruz-Burelo,78 I. Heredia-de La Cruz,78,cc A. Hernandez-Almada,78R. Lopez-Fernandez,78 A. Sanchez-Hernandez,78S. Carrillo Moreno,79F. Vazquez Valencia,79I. Pedraza,80H. A. Salazar Ibarguen,80 A. Morelos Pineda,81D. Krofcheck,82P. H. Butler,83S. Reucroft,83A. Ahmad,84M. Ahmad,84Q. Hassan,84H. R. Hoorani,84

W. A. Khan,84 T. Khurshid,84 M. Shoaib,84H. Bialkowska,85 M. Bluj,85B. Boimska,85T. Frueboes,85M. Górski,85 M. Kazana,85K. Nawrocki,85K. Romanowska-Rybinska,85M. Szleper,85P. Zalewski,85G. Brona,86K. Bunkowski,86 M. Cwiok,86W. Dominik,86K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86M. Olszewski,86

W. Wolszczak,86P. Bargassa,87C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87 L. Lloret Iglesias,87F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87J. Varela,87P. Vischia,87S. Afanasiev,88P. Bunin,88

M. Gavrilenko,88I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88 V. Konoplyanikov,88A. Lanev,88 A. Malakhov,88V. Matveev,88,ddP. Moisenz,88V. Palichik,88V. Perelygin,88S. Shmatov,88N. Skatchkov,88V. Smirnov,88

A. Zarubin,88V. Golovtsov,89Y. Ivanov,89 V. Kim,89,eeP. Levchenko,89V. Murzin,89V. Oreshkin,89I. Smirnov,89 V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89An. Vorobyev,89Yu. Andreev,90A. Dermenev,90S. Gninenko,90

N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90 D. Tlisov,90A. Toropin,90V. Epshteyn,91V. Gavrilov,91 N. Lychkovskaya,91V. Popov,91I. Pozdnyakov,91G. Safronov,91S. Semenov,91A. Spiridonov,91V. Stolin,91E. Vlasov,91

A. Zhokin,91V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92 A. Vinogradov,92 A. Belyaev,93E. Boos,93V. Bunichev,93M. Dubinin,93,ff L. Dudko,93A. Ershov,93 A. Gribushin,93

V. Klyukhin,93O. Kodolova,93I. Lokhtin,93S. Obraztsov,93V. Savrin,93A. Snigirev,93 I. Azhgirey,94I. Bayshev,94 S. Bitioukov,94V. Kachanov,94A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94 A. Sobol,94 L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,ggM. Ekmedzic,95J. Milosevic,95

V. Rekovic,95J. Alcaraz Maestre,96C. Battilana,96E. Calvo,96M. Cerrada,96M. Chamizo Llatas,96N. Colino,96 B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96A. Escalante Del Valle,96C. Fernandez Bedoya,96

J. P. Fernández Ramos,96J. Flix,96M. C. Fouz,96P. Garcia-Abia,96 O. Gonzalez Lopez,96 S. Goy Lopez,96 J. M. Hernandez,96M. I. Josa,96 E. Navarro De Martino,96A. Pérez-Calero Yzquierdo,96J. Puerta Pelayo,96 A. Quintario Olmeda,96I. Redondo,96L. Romero,96M. S. Soares,96C. Albajar,97J. F. de Trocóniz,97M. Missiroli,97

D. Moran,97H. Brun,98J. Cuevas,98J. Fernandez Menendez,98 S. Folgueras,98I. Gonzalez Caballero,98 J. A. Brochero Cifuentes,99I. J. Cabrillo,99A. Calderon,99J. Duarte Campderros,99M. Fernandez,99 G. Gomez,99 A. Graziano,99 A. Lopez Virto,99J. Marco,99R. Marco,99 C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99

J. Piedra Gomez,99T. Rodrigo,99A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99 R. Vilar Cortabitarte,99D. Abbaneo,100 E. Auffray,100 G. Auzinger,100M. Bachtis,100 P. Baillon,100 A. H. Ball,100 D. Barney,100 A. Benaglia,100J. Bendavid,100L. Benhabib,100J. F. Benitez,100C. Bernet,100,h P. Bloch,100A. Bocci,100

A. Bonato,100 O. Bondu,100 C. Botta,100H. Breuker,100 T. Camporesi,100G. Cerminara,100S. Colafranceschi,100,hh

M. D’Alfonso,100D. d’Enterria,100A. Dabrowski,100A. David,100F. De Guio,100 A. De Roeck,100 S. De Visscher,100

E. Di Marco,100M. Dobson,100M. Dordevic,100N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100

W. Funk,100D. Gigi,100K. Gill,100D. Giordano,100M. Girone,100F. Glege,100R. Guida,100S. Gundacker,100M. Guthoff,100 J. Hammer,100M. Hansen,100 P. Harris,100J. Hegeman,100 V. Innocente,100 P. Janot,100K. Kousouris,100K. Krajczar,100 P. Lecoq,100C. Lourenço,100N. Magini,100L. Malgeri,100 M. Mannelli,100 J. Marrouche,100 L. Masetti,100 F. Meijers,100 S. Mersi,100E. Meschi,100F. Moortgat,100S. Morovic,100M. Mulders,100P. Musella,100L. Orsini,100L. Pape,100E. Perez,100 L. Perrozzi,100A. Petrilli,100G. Petrucciani,100A. Pfeiffer,100M. Pierini,100M. Pimiä,100D. Piparo,100M. Plagge,100

A. Racz,100 G. Rolandi,100,ii M. Rovere,100H. Sakulin,100C. Schäfer,100C. Schwick,100A. Sharma,100 P. Siegrist,100 P. Silva,100 M. Simon,100P. Sphicas,100,jj D. Spiga,100 J. Steggemann,100 B. Stieger,100M. Stoye,100Y. Takahashi,100 D. Treille,100 A. Tsirou,100 G. I. Veres,100,rN. Wardle,100H. K. Wöhri,100H. Wollny,100W. D. Zeuner,100W. Bertl,101

K. Deiters,101 W. Erdmann,101R. Horisberger,101 Q. Ingram,101 H. C. Kaestli,101D. Kotlinski,101U. Langenegger,101 D. Renker,101 T. Rohe,101 F. Bachmair,102L. Bäni,102L. Bianchini,102 M. A. Buchmann,102 B. Casal,102 N. Chanon,102

(10)

M. Rossini,102A. Starodumov,102,ll M. Takahashi,102 K. Theofilatos,102R. Wallny,102H. A. Weber,102C. Amsler,103,mm M. F. Canelli,103 V. Chiochia,103A. De Cosa,103A. Hinzmann,103T. Hreus,103 B. Kilminster,103 C. Lange,103 B. Millan Mejias,103J. Ngadiuba,103D. Pinna,103P. Robmann,103F. J. Ronga,103S. Taroni,103M. Verzetti,103Y. Yang,103

M. Cardaci,104 K. H. Chen,104C. Ferro,104C. M. Kuo,104W. Lin,104Y. J. Lu,104 R. Volpe,104S. S. Yu,104P. Chang,105 Y. H. Chang,105 Y. W. Chang,105Y. Chao,105 K. F. Chen,105P. H. Chen,105 C. Dietz,105 U. Grundler,105W.-S. Hou,105 K. Y. Kao,105Y. F. Liu,105R.-S. Lu,105D. Majumder,105E. Petrakou,105Y. M. Tzeng,105R. Wilken,105B. Asavapibhop,106

G. Singh,106N. Srimanobhas,106 N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107,nnS. Cerci,107,oo C. Dozen,107 I. Dumanoglu,107E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107

G. Onengut,107,pp K. Ozdemir,107S. Ozturk,107,nn A. Polatoz,107 D. Sunar Cerci,107,oo B. Tali,107,oo H. Topakli,107,nn M. Vergili,107I. V. Akin,108B. Bilin,108S. Bilmis,108H. Gamsizkan,108,qqB. Isildak,108,rrG. Karapinar,108,ssK. Ocalan,108,tt S. Sekmen,108U. E. Surat,108M. Yalvac,108M. Zeyrek,108E. A. Albayrak,109,uuE. Gülmez,109M. Kaya,109,vvO. Kaya,109,ww

T. Yetkin,109,xxK. Cankocak,110F. I. Vardarlı,110L. Levchuk,111P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112 H. Flacher,112J. Goldstein,112 M. Grimes,112G. P. Heath,112 H. F. Heath,112J. Jacob,112 L. Kreczko,112C. Lucas,112

Z. Meng,112D. M. Newbold,112,yyS. Paramesvaran,112A. Poll,112T. Sakuma,112S. Senkin,112V. J. Smith,112T. Williams,112 K. W. Bell,113 A. Belyaev,113,zz C. Brew,113 R. M. Brown,113D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113

S. Harper,113E. Olaiya,113D. Petyt,113C. H. Shepherd-Themistocleous,113A. Thea,113I. R. Tomalin,113W. J. Womersley,113 S. D. Worm,113M. Baber,114R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114P. Dauncey,114

G. Davies,114M. Della Negra,114P. Dunne,114W. Ferguson,114J. Fulcher,114D. Futyan,114G. Hall,114G. Iles,114M. Jarvis,114 G. Karapostoli,114M. Kenzie,114 R. Lane,114R. Lucas,114,yy L. Lyons,114 A.-M. Magnan,114 S. Malik,114 B. Mathias,114 J. Nash,114A. Nikitenko,114,ll J. Pela,114 M. Pesaresi,114K. Petridis,114 D. M. Raymond,114 S. Rogerson,114A. Rose,114 C. Seez,114P. Sharp,114,aA. Tapper,114M. Vazquez Acosta,114T. Virdee,114S. C. Zenz,114J. E. Cole,115 P. R. Hobson,115

A. Khan,115P. Kyberd,115 D. Leggat,115 D. Leslie,115 I. D. Reid,115P. Symonds,115 L. Teodorescu,115 M. Turner,115 J. Dittmann,116K. Hatakeyama,116A. Kasmi,116 H. Liu,116 T. Scarborough,116O. Charaf,117 S. I. Cooper,117 C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118P. Lawson,118C. Richardson,118J. Rohlf,118 J. St. John,118L. Sulak,118J. Alimena,119E. Berry,119S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 N. Dhingra,119A. Ferapontov,119A. Garabedian,119U. Heintz,119G. Kukartsev,119E. Laird,119G. Landsberg,119M. Luk,119

M. Narain,119M. Segala,119T. Sinthuprasith,119T. Speer,119J. Swanson,119 R. Breedon,120 G. Breto,120 M. Calderon De La Barca Sanchez,120 S. Chauhan,120M. Chertok,120J. Conway,120R. Conway,120 P. T. Cox,120

R. Erbacher,120M. Gardner,120 W. Ko,120R. Lander,120T. Miceli,120 M. Mulhearn,120D. Pellett,120 J. Pilot,120 F. Ricci-Tam,120 M. Searle,120S. Shalhout,120J. Smith,120M. Squires,120 D. Stolp,120 M. Tripathi,120 S. Wilbur,120 R. Yohay,120 R. Cousins,121 P. Everaerts,121 C. Farrell,121J. Hauser,121 M. Ignatenko,121 G. Rakness,121 E. Takasugi,121

V. Valuev,121 M. Weber,121K. Burt,122R. Clare,122J. Ellison,122J. W. Gary,122 G. Hanson,122J. Heilman,122 M. Ivova Rikova,122 P. Jandir,122E. Kennedy,122 F. Lacroix,122O. R. Long,122A. Luthra,122 M. Malberti,122 M. Olmedo Negrete,122 A. Shrinivas,122 S. Sumowidagdo,122S. Wimpenny,122 J. G. Branson,123G. B. Cerati,123

S. Cittolin,123R. T. D’Agnolo,123A. Holzner,123R. Kelley,123D. Klein,123D. Kovalskyi,123J. Letts,123I. Macneill,123

D. Olivito,123 S. Padhi,123 C. Palmer,123M. Pieri,123M. Sani,123 V. Sharma,123S. Simon,123E. Sudano,123 Y. Tu,123

A. Vartak,123C. Welke,123F. Würthwein,123 A. Yagil,123 D. Barge,124 J. Bradmiller-Feld,124 C. Campagnari,124 T. Danielson,124A. Dishaw,124 V. Dutta,124 K. Flowers,124 M. Franco Sevilla,124 P. Geffert,124 C. George,124 F. Golf,124 L. Gouskos,124J. Incandela,124 C. Justus,124N. Mccoll,124J. Richman,124 D. Stuart,124 W. To,124C. West,124J. Yoo,124

A. Apresyan,125 A. Bornheim,125J. Bunn,125Y. Chen,125 J. Duarte,125 A. Mott,125H. B. Newman,125 C. Pena,125 C. Rogan,125M. Spiropulu,125V. Timciuc,125 J. R. Vlimant,125R. Wilkinson,125S. Xie,125R. Y. Zhu,125 V. Azzolini,126

A. Calamba,126 B. Carlson,126T. Ferguson,126Y. Iiyama,126 M. Paulini,126J. Russ,126 H. Vogel,126I. Vorobiev,126 J. P. Cumalat,127W. T. Ford,127A. Gaz,127M. Krohn,127E. Luiggi Lopez,127U. Nauenberg,127J. G. Smith,127K. Stenson,127

K. A. Ulmer,127 S. R. Wagner,127J. Alexander,128A. Chatterjee,128J. Chaves,128 J. Chu,128 S. Dittmer,128N. Eggert,128 N. Mirman,128G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128E. Salvati,128L. Skinnari,128W. Sun,128W. D. Teo,128

J. Thom,128J. Thompson,128J. Tucker,128 Y. Weng,128L. Winstrom,128P. Wittich,128D. Winn,129 S. Abdullin,130 M. Albrow,130 J. Anderson,130G. Apollinari,130L. A. T. Bauerdick,130A. Beretvas,130J. Berryhill,130P. C. Bhat,130 G. Bolla,130 K. Burkett,130J. N. Butler,130H. W. K. Cheung,130 F. Chlebana,130 S. Cihangir,130V. D. Elvira,130I. Fisk,130

(11)

D. Hare,130R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130 B. Klima,130B. Kreis,130S. Kwan,130,aJ. Linacre,130D. Lincoln,130R. Lipton,130T. Liu,130R. Lopes De Sá,130J. Lykken,130

K. Maeshima,130 J. M. Marraffino,130V. I. Martinez Outschoorn,130 S. Maruyama,130 D. Mason,130P. McBride,130 P. Merkel,130K. Mishra,130 S. Mrenna,130Y. Musienko,130,dd S. Nahn,130 C. Newman-Holmes,130 V. ODell,130 O. Prokofyev,130 E. Sexton-Kennedy,130S. Sharma,130A. Soha,130 W. J. Spalding,130 L. Spiegel,130 L. Taylor,130 S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130F. Yang,130

D. Acosta,131P. Avery,131P. Bortignon,131D. Bourilkov,131 M. Carver,131D. Curry,131S. Das,131M. De Gruttola,131 G. P. Di Giovanni,131R. D. Field,131M. Fisher,131I. K. Furic,131J. Hugon,131J. Konigsberg,131A. Korytov,131T. Kypreos,131

J. F. Low,131K. Matchev,131H. Mei,131 P. Milenovic,131,aaaG. Mitselmakher,131 L. Muniz,131A. Rinkevicius,131 L. Shchutska,131M. Snowball,131D. Sperka,131J. Yelton,131M. Zakaria,131S. Hewamanage,132S. Linn,132P. Markowitz,132 G. Martinez,132J. L. Rodriguez,132T. Adams,133A. Askew,133J. Bochenek,133B. Diamond,133J. Haas,133S. Hagopian,133

V. Hagopian,133K. F. Johnson,133H. Prosper,133V. Veeraraghavan,133 M. Weinberg,133M. M. Baarmand,134 M. Hohlmann,134H. Kalakhety,134 F. Yumiceva,134 M. R. Adams,135L. Apanasevich,135 D. Berry,135R. R. Betts,135

I. Bucinskaite,135R. Cavanaugh,135 O. Evdokimov,135 L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135 P. Kurt,135 D. H. Moon,135C. O

’Brien,135 I. D. Sandoval Gonzalez,135 C. Silkworth,135P. Turner,135N. Varelas,135B. Bilki,136,bbb

W. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,cccA. Mestvirishvili,136 A. Moeller,136J. Nachtman,136 H. Ogul,136Y. Onel,136 F. Ozok,136,uuA. Penzo,136 R. Rahmat,136S. Sen,136P. Tan,136

E. Tiras,136 J. Wetzel,136K. Yi,136B. A. Barnett,137 B. Blumenfeld,137S. Bolognesi,137D. Fehling,137A. V. Gritsan,137 P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138 C. Bruner,138R. P. Kenny III,138

M. Malek,138M. Murray,138 D. Noonan,138 S. Sanders,138J. Sekaric,138 R. Stringer,138 Q. Wang,138 J. S. Wood,138 I. Chakaberia,139A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139N. Skhirtladze,139

I. Svintradze,139 J. Gronberg,140D. Lange,140F. Rebassoo,140D. Wright,140 A. Baden,141 A. Belloni,141 B. Calvert,141 S. C. Eno,141 J. A. Gomez,141N. J. Hadley,141R. G. Kellogg,141 T. Kolberg,141Y. Lu,141 M. Marionneau,141 A. C. Mignerey,141K. Pedro,141A. Skuja,141 M. B. Tonjes,141 S. C. Tonwar,141A. Apyan,142R. Barbieri,142G. Bauer,142 W. Busza,142I. A. Cali,142M. Chan,142L. Di Matteo,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142M. Klute,142 Y. S. Lai,142 Y.-J. Lee,142A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142D. Ralph,142C. Roland,142 G. Roland,142 G. S. F. Stephans,142F. Stöckli,142K. Sumorok,142D. Velicanu,142J. Veverka,142B. Wyslouch,142M. Yang,142M. Zanetti,142

V. Zhukova,142B. Dahmes,143 A. Gude,143 S. C. Kao,143 K. Klapoetke,143Y. Kubota,143J. Mans,143 N. Pastika,143 R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144S. Oliveros,144E. Avdeeva,145K. Bloom,145

S. Bose,145D. R. Claes,145A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145 D. Knowlton,145I. Kravchenko,145 J. Lazo-Flores,145S. Malik,145F. Meier,145 F. Ratnikov,145 G. R. Snow,145 M. Zvada,145J. Dolen,146A. Godshalk,146 I. Iashvili,146A. Kharchilava,146 A. Kumar,146 S. Rappoccio,146G. Alverson,147E. Barberis,147 D. Baumgartel,147 M. Chasco,147J. Haley,147A. Massironi,147 D. M. Morse,147D. Nash,147 T. Orimoto,147 D. Trocino,147R.-J. Wang,147

D. Wood,147 J. Zhang,147 K. A. Hahn,148A. Kubik,148N. Mucia,148N. Odell,148 B. Pollack,148 A. Pozdnyakov,148

M. Schmitt,148S. Stoynev,148K. Sung,148M. Velasco,148S. Won,148A. Brinkerhoff,149K. M. Chan,149A. Drozdetskiy,149 M. Hildreth,149C. Jessop,149D. J. Karmgard,149N. Kellams,149K. Lannon,149S. Lynch,149N. Marinelli,149T. Pearson,149

M. Planer,149 R. Ruchti,149 N. Valls,149 M. Wayne,149 M. Wolf,149A. Woodard,149L. Antonelli,150J. Brinson,150 B. Bylsma,150L. S. Durkin,150S. Flowers,150A. Hart,150C. Hill,150R. Hughes,150K. Kotov,150T. Y. Ling,150W. Luo,150

D. Puigh,150 M. Rodenburg,150 G. Smith,150B. L. Winer,150 H. Wolfe,150 H. W. Wulsin,150 O. Driga,151P. Elmer,151 J. Hardenbrook,151 P. Hebda,151A. Hunt,151 S. A. Koay,151 P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151

J. Olsen,151 P. Piroué,151X. Quan,151H. Saka,151 D. Stickland,151,c C. Tully,151J. S. Werner,151 A. Zuranski,151 E. Brownson,152H. Mendez,152J. E. Ramirez Vargas,152V. E. Barnes,153D. Benedetti,153D. Bortoletto,153M. De Mattia,153

L. Gutay,153Z. Hu,153 M. K. Jha,153 M. Jones,153K. Jung,153 M. Kress,153N. Leonardo,153 D. Lopes Pegna,153 V. Maroussov,153 D. H. Miller,153N. Neumeister,153B. C. Radburn-Smith,153X. Shi,153I. Shipsey,153D. Silvers,153 A. Svyatkovskiy,153F. Wang,153W. Xie,153L. Xu,153H. D. Yoo,153J. Zablocki,153Y. Zheng,153N. Parashar,154J. Stupak,154

A. Adair,155 B. Akgun,155 K. M. Ecklund,155 F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155 R. Redjimi,155 J. Roberts,155J. Zabel,155B. Betchart,156A. Bodek,156R. Covarelli,156 P. de Barbaro,156R. Demina,156 Y. Eshaq,156 T. Ferbel,156A. Garcia-Bellido,156 P. Goldenzweig,156 J. Han,156 A. Harel,156A. Khukhunaishvili,156S. Korjenevski,156

(12)

S. Arora,158A. Barker,158J. P. Chou,158C. Contreras-Campana,158E. Contreras-Campana,158D. Duggan,158D. Ferencek,158 Y. Gershtein,158R. Gray,158E. Halkiadakis,158D. Hidas,158S. Kaplan,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158 S. Salur,158 S. Schnetzer,158 S. Somalwar,158 R. Stone,158 S. Thomas,158 P. Thomassen,158M. Walker,158K. Rose,159 S. Spanier,159A. York,159 O. Bouhali,160,dddA. Castaneda Hernandez,160R. Eusebi,160 W. Flanagan,160J. Gilmore,160 T. Kamon,160,eeeV. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160A. Perloff,160J. Roe,160

A. Rose,160 A. Safonov,160 I. Suarez,160 A. Tatarinov,160N. Akchurin,161C. Cowden,161J. Damgov,161C. Dragoiu,161 P. R. Dudero,161J. Faulkner,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162

A. G. Delannoy,162S. Greene,162 A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162 P. Sheldon,162 B. Snook,162S. Tuo,162J. Velkovska,162M. W. Arenton,163S. Boutle,163B. Cox,163B. Francis,163 J. Goodell,163 R. Hirosky,163A. Ledovskoy,163 H. Li,163 C. Lin,163 C. Neu,163J. Wood,163C. Clarke,164 R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164 P. Lamichhane,164J. Sturdy,164D. A. Belknap,165 D. Carlsmith,165

M. Cepeda,165S. Dasu,165L. Dodd,165S. Duric,165E. Friis,165R. Hall-Wilton,165M. Herndon,165A. Hervé,165P. Klabbers,165 A. Lanaro,165 C. Lazaridis,165 A. Levine,165 R. Loveless,165A. Mohapatra,165 I. Ojalvo,165 T. Perry,165 G. A. Pierro,165

G. Polese,165 I. Ross,165T. Sarangi,165 A. Savin,165W. H. Smith,165D. Taylor,165P. Verwilligen,165 C. Vuosalo,165and N. Woods165

(CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria 3

National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium 5

Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium 7

Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9

Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12a

Universidade Estadual Paulista, São Paulo, Brazil 12b

Universidade Federal do ABC, São Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19

University of Split, Faculty of Science, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21

University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35

(13)

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37

Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece 42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India 48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53

University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Bari, Italy

54b

Università di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55a

INFN Sezione di Bologna, Bologna, Italy 55bUniversità di Bologna, Bologna, Italy 56a

INFN Sezione di Catania, Catania, Italy 56bUniversità di Catania, Catania, Italy

56c

CSFNSM, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57b

Università di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59a

INFN Sezione di Genova, Genova, Italy 59bUniversità di Genova, Genova, Italy 60a

INFN Sezione di Milano-Bicocca, Milano, Italy 60bUniversità di Milano-Bicocca, Milano, Italy

61a

INFN Sezione di Napoli, Napoli, Italy 61bUniversità di Napoli

’Federico II’, Napoli, Italy 61c

Università della Basilicata (Potenza), Napoli, Italy 61dUniversità Guglielmo Marconi (Roma), Napoli, Italy

62a

INFN Sezione di Padova, Padova, Italy 62bUniversità di Padova, Padova, Italy 62c

Università di Trento (Trento), Padova, Italy 63aINFN Sezione di Pavia, Pavia, Italy

63b

Università di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64b

Università di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65b

Università di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66a

INFN Sezione di Roma, Roma, Italy 66bUniversità di Roma, Roma, Italy 67a

INFN Sezione di Torino, Torino, Italy 67bUniversità di Torino, Torino, Italy 67c

Università del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68b

Università di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70

Kyungpook National University, Daegu, Korea 71Chonbuk National University, Jeonju, Korea 72

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

74

(14)

75Sungkyunkwan University, Suwon, Korea 76

Vilnius University, Vilnius, Lithuania

77National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 78

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 79Universidad Iberoamericana, Mexico City, Mexico

80

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82

University of Auckland, Auckland, New Zealand 83University of Canterbury, Christchurch, New Zealand 84

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85National Centre for Nuclear Research, Swierk, Poland

86

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88

Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90

Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92

P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97Universidad Autónoma de Madrid, Madrid, Spain

98

Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100

CERN, European Organization for Nuclear Research, Geneva, Switzerland 101Paul Scherrer Institut, Villigen, Switzerland

102

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103Universität Zürich, Zurich, Switzerland

104

National Central University, Chung-Li, Taiwan 105National Taiwan University (NTU), Taipei, Taiwan 106

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 107Cukurova University, Adana, Turkey

108

Middle East Technical University, Physics Department, Ankara, Turkey 109Bogazici University, Istanbul, Turkey

110

Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112

University of Bristol, Bristol, United Kingdom 113Rutherford Appleton Laboratory, Didcot, United Kingdom

114

Imperial College, London, United Kingdom 115Brunel University, Uxbridge, United Kingdom

116

Baylor University, Waco, USA 117The University of Alabama, Tuscaloosa, USA

118

Boston University, Boston, USA 119Brown University, Providence, USA 120

University of California, Davis, Davis, USA 121University of California, Los Angeles, USA 122

University of California, Riverside, Riverside, USA 123University of California, San Diego, La Jolla, USA 124

University of California, Santa Barbara, Santa Barbara, USA 125California Institute of Technology, Pasadena, USA

126

Carnegie Mellon University, Pittsburgh, USA 127University of Colorado at Boulder, Boulder, USA

128

Cornell University, Ithaca, USA 129Fairfield University, Fairfield, USA 130

Fermi National Accelerator Laboratory, Batavia, USA 131University of Florida, Gainesville, USA 132

Florida International University, Miami, USA 133Florida State University, Tallahassee, USA 134

(15)

135University of Illinois at Chicago (UIC), Chicago, USA 136

The University of Iowa, Iowa City, USA 137Johns Hopkins University, Baltimore, USA 138

The University of Kansas, Lawrence, USA 139Kansas State University, Manhattan, USA 140

Lawrence Livermore National Laboratory, Livermore, USA 141University of Maryland, College Park, USA 142

Massachusetts Institute of Technology, Cambridge, USA 143University of Minnesota, Minneapolis, USA

144

University of Mississippi, Oxford, USA 145University of Nebraska-Lincoln, Lincoln, USA 146

State University of New York at Buffalo, Buffalo, USA 147Northeastern University, Boston, USA 148

Northwestern University, Evanston, USA 149University of Notre Dame, Notre Dame, USA

150

The Ohio State University, Columbus, USA 151Princeton University, Princeton, USA 152

University of Puerto Rico, Mayaguez, USA 153Purdue University, West Lafayette, USA 154

Purdue University Calumet, Hammond, USA 155Rice University, Houston, USA 156

University of Rochester, Rochester, USA 157The Rockefeller University, New York, USA 158

Rutgers, The State University of New Jersey, Piscataway, USA 159University of Tennessee, Knoxville, USA

160

Texas A&M University, College Station, USA 161Texas Tech University, Lubbock, USA 162

Vanderbilt University, Nashville, USA 163University of Virginia, Charlottesville, USA

164

Wayne State University, Detroit, USA 165University of Wisconsin, Madison, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France.

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. gAlso at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. iAlso at Joint Institute for Nuclear Research, Dubna, Russia.

jAlso at Suez University, Suez, Egypt. kAlso at Cairo University, Cairo, Egypt.

lAlso at Fayoum University, El-Fayoum, Egypt. mAlso at British University in Egypt, Cairo, Egypt.

nAlso at Sultan Qaboos University, Muscat, Oman. oAlso at Université de Haute Alsace, Mulhouse, France.

pAlso at Brandenburg University of Technology, Cottbus, Germany. qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

rAlso at Eötvös Loránd University, Budapest, Hungary. sAlso at University of Debrecen, Debrecen, Hungary. tAlso at University of Visva-Bharati, Santiniketan, India. uAlso at King Abdulaziz University, Jeddah, Saudi Arabia. vAlso at University of Ruhuna, Matara, Sri Lanka. wAlso at Isfahan University of Technology, Isfahan, Iran.

xAlso at University of Tehran, Department of Engineering Science, Tehran, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. zAlso at Università degli Studi di Siena, Siena, Italy.

(16)

bbAlso at Purdue University, West Lafayette, USA.

ccAlso at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico. ddAlso at Institute for Nuclear Research, Moscow, Russia.

eeAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia. ffAlso at California Institute of Technology, Pasadena, USA.

ggAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. hhAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy.

iiAlso at Scuola Normale e Sezione dell

’INFN, Pisa, Italy.

jjAlso at University of Athens, Athens, Greece. kkAlso at Paul Scherrer Institut, Villigen, Switzerland.

llAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. mmAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

nnAlso at Gaziosmanpasa University, Tokat, Turkey. ooAlso at Adiyaman University, Adiyaman, Turkey. ppAlso at Cag University, Mersin, Turkey.

qqAlso at Anadolu University, Eskisehir, Turkey. rrAlso at Ozyegin University, Istanbul, Turkey. ssAlso at Izmir Institute of Technology, Izmir, Turkey.

ttAlso at Necmettin Erbakan University, Konya, Turkey. uuAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. vvAlso at Marmara University, Istanbul, Turkey.

wwAlso at Kafkas University, Kars, Turkey.

xxAlso at Yildiz Technical University, Istanbul, Turkey.

yyAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. bbbAlso at Argonne National Laboratory, Argonne, USA.

Imagem

FIG. 1. Representative Feynman diagrams for the electroweak and QCD induced same-sign W-boson pair production.
FIG. 2 (color online). The distributions of m jj (top) and leading lepton p T , p l T ;max , in the signal region (bottom)
FIG. 3 (color online). The m ll distributions (top) after full selection with all SM backgrounds and F T;0 =Λ 4 ¼ −5.0, 0 (SM), and 5.0 TeV − 4 ; the last bin includes overflow events
TABLE II. Observed and expected upper and lower limits at 95% C.L. on the nine dimension-eight operators that affect quartic couplings between the weak gauge bosons

Referências

Documentos relacionados

Alina suspeitava pelos modos do barão e por algumas palavras ambíguas da baroneza, que uma novidade estava iminente, e essa novidade não era outra sinão o casamento de Alice

Gentile (2003) e Roeper (2007) demonstraram, no estudo da língua inglesa, que crianças com idade entre três e quatro anos compreendem estruturas recursivas envolvendo possessivos,

A Educação Física como práxis educativa deve levar em consideração o desenvolvimento pessoal e a questão social, possuindo como objetivo a formação da personalidade do

Art. 26 - É isento de pena o agente que, por doença mental ou desenvolvimento mental incompleto ou retardado, era, ao tempo da ação ou da omissão, inteiramente incapaz

Figure 5.1 shows the electric motor rotational speed measurements where two cycles of lifting and lowering the crane without reaching the final position of the actuator were

O presente trabalho apresenta diferentes padrões de ocorrência do fungo Bd na Mata Atlântica e Amazônia brasileiras, e abre portas para o desenvolvimento de diversos

Os objetivos espec´ıficos deste trabalho s˜ao: Desenvolver um monitor em hardware para avaliar o desempenho da aplica¸ca˜o em execu¸c˜ao de acordo com a configura¸c˜ao de

7KLV SDSHU LV VWUXFWXUHG LQWR ILYH VHFWLRQV LQWURGXFWLRQ OLWHUDWXUH UHYLHZ PHWKRGRORJ\ UHVXOWV DQG GLVFXVVLRQ DQG ILQDO UHPDUNV 7KH SUHVHQW VHFWLRQ