• Nenhum resultado encontrado

Characterization of generalized Bessel polynomials in terms of polynomial inequalities

N/A
N/A
Protected

Academic year: 2017

Share "Characterization of generalized Bessel polynomials in terms of polynomial inequalities"

Copied!
6
0
0

Texto

(1)

Characterization of Generalized Bessel Polynomials in

Terms of Polynomial Inequalities*

Eliana X. L. de Andrade, Dimitar K. Dimitrov,†and A. Sri R anga

Departamento de Ciencias de Computacˆ ¸ao e Estatıstica, IBILCE, Uni˜ ´ ¨ersidade Estadual Paulista, Sao Jose do Rio Preto, 15054-000 SP, Brazil˜ ´

Submitted by Robert A. Gustafson

R eceived July 12, 1996

Ž .

Generalized Bessel polynomials GBPs are characterized as the extremal poly-nomials in certain inequalities in L2 norm of Markov type. Q1998 A ca dem ic P re ss

1. INTR ODU CTION AND STATEMENT OF R ESU LTS

Ž .

Generalized Bessel polynomials y xn ;a,b are defined by

k

n

Ž

yxrb

.

yn

Ž

x;a,b

.

[

Ý

Ž

yn

. Ž

k nqay1

.

k k!

ks0

s2F0

Ž

yn,nqay1;y;yxrb

.

,

Ž .

1

Ž . Ž . Ž . Ž .

where a k denotes the Pochhammer symbol, a0[1, ak[a aq1

Ž .

??? aqky1 , kG1. For asbs2 they reduce to the simple Bessel

Ž . Ž . w x

polynomials y xn [y xn ; 2, 2 . A recent review of Srivastava 5 contains comprehensive historical information and new results about GBPs. H ere

w x

we mention only the following orthogonality relation given in 5 :

`

ay2 ybrx

x e y x

Ž

;a,b

.

y

Ž

x;a,b

.

dx

H

j m

0

j! ay1

sb G

Ž

2yayj

.

djm, 1yay2j

2

Ž .

4

R e

Ž .

a -1ymyj, R e

Ž

b

.

)0, m,jgN0[Nj 0 .

* R esearch supported by the Brazilian foundations FAPESP and CNPq and the Bulgarian Science Foundation under Grant MM-414.

On leave from the U niversity of R ousse, Bulgaria. E-mail: dimitrov@nimitz.dcce. ibilce.unesp.br.

538

0022-247Xr98 $25.00

CopyrightQ1998 by A ca de m ic P re ss

(2)

Even though the parameter b does not have essential influence in our investigation, we keep it in order to maintain the common notation

Ž .

y xn ;a,b .

Observe that, for a,bgR, b)0, ngN0, and 2n-1ya,

1r2 `

ay2 ybrx 2

5 5p a,PPns

ž

H

x e p

Ž .

x dx

/

Ž .

3

0

is a well-defined norm in the space PP of real algebraic polynomials of n

degree not exceeding n. Then under the same restrictions on a,b, and n, 5p95aq2,PPny1 is well defined because the inequalities 2n-1ya and

Ž . Ž .

2 ny1 -1y aq2 are equivalent.

Ž .

First we prove an inequality of Markov type for the norm 3 for which GBPs are the extremal polynomials:

TH EOR EM1. Leta,bgR,b)0, ngN0,and2n-1ya. For e¨ery

pgPPn and any positi¨e integer k, kFn,

1r2 k

n!

Žk.

5p 5aq2k,PPnykF

ž

Ł

Ž

4yayny3j

.

/

5 5p a,PPn.

Ž .

4

nyk !

Ž

.

js1

Moreo¨er, for each k, ks1, . . . ,n, equality is attained if and only if p is a

Ž .

constant multiple of y xn ;a,b .

Ž . k Ž .

It is clear that the expression n!r nykjs14yayny3j , which appears in the best constant

1r2 k

n!

Mn

Ž

k,a

.

s

ž

Ł

Ž

4yayny3j

.

/

nyk !

Ž

.

js1

Ž .

in 4 , is positive because 2n-1ya. Ž .

Inequalities similar to 4 which characterize the classical Jacobi and

w x

general Laguerre polynomials are obtained by the second author in 1 and

w x w x

independently by Guessab and Milovanovic 2 and Min 4 . Chapter 6 of

´

w x

Milovanovic, Mitrinovic, and R assias’s book 3 provides complete informa-

´

´

tion about various inequalities for polynomials.

Next we shall prove an inequality of Markov type for a special type of ‘‘quasi-polynomials.’’ Let a,bgR, b)0, ngN0, and 2n-y1ya.

Ž .

The set of ‘‘quasi-polynomials QQn a is defined by

Q

Q a [ q x sxaeybrxp x : p gPP .

Ž .

Ž .

Ž .

4

n n

Ž .

Then QQn a can be equipped with the norm

1r2 `

ya brx 2

5 5q a,QQnŽa.s

ž

H

x e q

Ž .

x dx

/

.

Ž .

5

(3)

Ž . Ž .

Since for any qgQQ a its derivative belongs to QQ ay2 and the

n nq1

Ž . Ž .

restriction 2n-y1ya is equivalent to 2 nq1 -y1y ay2 , then 5q95a,QQnq1Žay2. is well defined.

TH EOR EM 2. Let a,bgR, b)0, ngN0, and 2n-y1ya. Then

the inequality

1r2

5q95ay2 ,QQnq1Žay2.F

Ž

Ž

nq1

. Ž

yayn

.

.

5 5q a,QQnŽa.

Ž .

6 Ž .

holds for e¨ery qgQQn a . Moreo¨er, equality is attained if and only if q is a

a ybrx X Ž .

constant multiple of x e ynq1 x;a,b .

Ž .Ž .

Note that the expression nq1 yayn which appears on the right-Ž .

hand side of 6 is positive because 2n-y1ya.

2. PR OOFS

It is well known that the generalized Bessel polynomial of degree n

satisfies the second-order differential equation

x2y0 q

Ž

axqb

.

y9yn n

Ž

qay1

.

ys0.

Ž .

7

Obviously, this can be rewritten in the self-adjoint form:

xaeybrxy9 9

sn n

Ž

qay1

.

xay2eybrxy.

Ž .

8

Ž

.

Ž . It follows immediately from 1 that

n n

Ž

qay1

.

X

yn

Ž

x;a,b

.

s yny1

Ž

x;aq2,b

.

.

Ž .

9

b

Ž .

Proof Theorem1. First we prove 4 for ks1. Let p be an arbitrary polynomial of degree n. U nder the restrictions on a, b, and n, the

Ž . Ž .

polynomials y x0 ; a,b , . . . ,y xn ;a,b are orthogonal polynomials. H ence they form a basis in PP and p can be uniquely represented in the

n

Ž . n Ž .

form p xjs0a y xj

˜

j ;a,b , where

1r2

1yay2j

y x

Ž

;a,b

.

[ y x

Ž

;a,b

.

, js0, . . . ,n,

˜

j

ž

bay1j!

/

j

G

Ž

2yayj

.

are the orthonormalized GBPs. Therefore

n

2 2

5 5p a,PPns

Ý

aj.

(4)

Ž . n XŽ . Ž .

Since p9 xjs1a y xj

˜

j ;a,b then 9 yields

1r2

n 1yay2j

p9

Ž .

x s

Ý

aj

ž

bay1j!G 2

/

yayj

Ž

.

js1

j j

Ž

qay1

.

= yjy1

Ž

x;aq2,b

.

.

b

Ž . Ž .

Note that the polynomials y x0 ;aq2,b , . . . ,yny1 x;aq2,b are

or-Ž . a ybrx

thogonal on 0,` with respect to the weight function x e . The Ž .

requirement a-1y2n is equivalent to aq2-1y2 ny1 . There-Ž .

fore we can apply 2 for asaq2 and m,jFny1. Thus

2 2

n 1yay2j j

Ž

jqay1

.

2 aq1

5p95aq2 ,PPny1s

Ý

ay1 2 b b j!G

Ž

2yayj

.

b

js1

jy1 !

Ž

.

2

= G

Ž

1yayj a

.

j

1yay2j

n

2

s

Ý

j

Ž

1yayj a

.

j.

js1

The statement of the theorem for ks1 will be proved if we show that the solution of the extremal problem

n n n

2 2 2

max

½

Ý

j

Ž

1yayj a

.

j

Ý

aj: a0, . . . ,angR,

Ý

aj/0

5

Ž .

10

js0 js0 js0

2Ž .

is Mn 1,a and it is attained for a0s ??? sany1s0. It is well known Ž .

and easy to see that 10 is equivalent to the problem of determining

max j

Ž

1yayj

.

.

1FjFn

Ž . Ž .

Since f j [j1yayj is a concave binomial with zeros at 0 and 1ya, Ž Ž . .

then f is an increasing function of j for jg 0, 1ya r2 . On the other Ž .

hand, the requirement a-1y2nis equivalent to n- 1ya r2. H ence Ž . Ž .

f j -f n for js0, . . . ,ny1. Therefore the solution of the extremal Ž . Ž . 2Ž .

problem 10 is n1yayn sMn 1,a and the maximal value is at-tained only for a0s ??? sany1s0 and an arbitrary nonzero an. This

Ž .

completes the proof for ks1. The inequalities 4 for ks2, . . . ,n follow by repeated application of that for ks1.

Ž .

Proof of Theorem2. Let qgQQn a be arbitrary. Since the polynomials

XŽ . X Ž . Ž .

y x1 ;a,b , . . . ,yn x;a,b form a basis in QQ a , then qcan be uniquely

q1 n

Ž . a ybrx nq1 XŽ .

(5)

mind that under the restrictions on a, b, and n, the polynomials

XŽ . Ž .

y xj ;a,b , js1, . . . ,nq1, are orthogonal on 0,` with respect to the a ybrx Ž . Ž .

weight function x e , and using 9 and 2 for asaq2, we get

2 nq1

`

2 a ybrx X

5 5q a,QQns

H

x e

ž

Ý

a yj j

Ž

x;a,b

.

/

dx

0 js1

nq1

2

X

2

s

Ý

aj yj

Ž

x;a,b

.

aq2 , PPn

y1

js1

nq1

Ž

jy1 !

.

2 2 ay1 2

s

Ý

ajb j

Ž

jqay1

.

G

Ž

1yayj

.

.

Ž .

11 1yay2j

js1

Ž . On the other hand, 8 yields

nq1

ay2 ybrx

q9

Ž .

x sx e

Ý

a j jj

Ž

qay1

. Ž

y xj ;a,b

.

.

js1

Then

2 nq1

`

2 ay2 ybrx

5q95ay2 ,QQnq1s

H

x e

ž

Ý

a j jj

Ž

qay1

. Ž

y xj ;a,b

.

/

dx

0 js1

nq1 j!

2 2 ay1 2

s

Ý

ajb j

Ž

jqay1

.

G

Ž

2yayj

.

. 1yay2j

js1

12

Ž .

Introducing the notation

jy1 !

Ž

.

2

2 2 ay1 2

bj [ajb j

Ž

jqay1

.

G

Ž

1yayj

.

, 1yay2j

Ž . Ž .

we can rewrite 11 and 12 in the form

nq1

2 2

5 5q a,QQns

Ý

bj js1

and

nq1

2 2

5q95ay2 ,QQnq1s

Ý

j

Ž

1yayj b

.

j,

(6)

respectively. Note that the requirements of the theorem are equivalent to Ž .

nq1- 1ya r2. Then the same reasoning as in the proof of Theorem 1 completes the proof.

R EFER ENCES

Ž . Ž .

1. D. K. Dimitrov, Bernstein inequality in L2 norm, Math. Balkanica N.S. 7 1993 , 131]136.

2. A. Guessab and G. V. Milovanovic, Weighted´ L2-analogues of Bernstein’s inequality and

Ž .

classical orthogonal polynomials,J.Math. Anal. Appl.182 1994 , 244]249.

3. G. V. Milovanovic, D. S. Mitrinovic, and Th. M. R assias, ‘‘Topics in Polynomials: Extremal´ ´

Problems, Inequalities, Z eros,’’ World Scientific, Singapore, 1994.

4. G. H . Min, Bernstein]Markov inequalities in L2 spaces and their optimal constants II,

Ž .

J. Math.Res.Exposition14 1994 , 135]138.

5. H . M. Srivastava, Orthogonality relations and generating functions for the generalized

Ž .

Referências

Documentos relacionados

seu âmbito abrange todos os programas oferecidos por uma instituição a partir do primeiro grau até o Ph.D 10. Um forte interface com o mundo dos negócios é,

In order to determine whether this relative decrease in tRNA gene copy number unbalanced tRNA abundance and codon usage, we have calculated the relative synonymous codon usage

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Para que este objetivo geral seja alcançado, são estabelecidos os seguintes objetivos específicos: (1) Efetuar uma breve fundamentação teórica sobre TBC e clusters; (2) Caracterizar

Do mesmo modo, os movimentos se confirmam como forma de objetivar a mudança, a transição ou até mesmo a revolução de uma determinada realidade (TOURAINE, 1989). Porém, vale

Depuis plusieurs décennies existent des catégories d' agriculture dites alternatives. Elles affichent comme objectif d' obtenir des produits de qualité en respectant des principes