• Nenhum resultado encontrado

Padrões de condução de impulsos nervosos, determinados eletronicamente, para análise de comportamento de nervos "in vivo".

N/A
N/A
Protected

Academic year: 2017

Share "Padrões de condução de impulsos nervosos, determinados eletronicamente, para análise de comportamento de nervos "in vivo"."

Copied!
7
0
0

Texto

(1)

NERVE CONDUCTION PATTERNS DETERMINED ELECTRONICALLY

FOR ANALYSING PERIPHERAL NERVES BEHAVIOR IN VIVO

EROS ABRANTES ERHART*; JOSÉ F U R L A N I * * * ; ANTONIO CARLOS BERARDI**; FAUSTO B É R Z I N * * * * ;

WALTER BIAZOTTO****

It has been stated that the nerve impulse is a wave of depolarization

developed in the cell membrane, moving from the CNS to the effectors on

motor nerve fibers, and from the receptors to the CNS on the sensory

fibers. Moreover, it has been experimentally demonstrated that when isolated

nerve cells or fibers are properly stimulated, the depolarization in the

membrane occurs in all directions. Nevertheless, it is accepted that in

normal biological conditions, the peripheral motor and sensory fibers conduct

nerve impulses in one direction only. Or may we consider the antidromic

conduction a normal fact in biology?

The main scope of this paper is not to discuss this problem, but we

have to consider it, since we are trying to establish which are the patterns

of nerve conduction in vivo, based upon electronic data, with the purpose of

subsequent analysis of peripheral nerves behavior in degeneration and

rege-neration processes. We have been working on this matter and on its practical

application in men during the last years (Erhart et at.

3

»

4

>

5

-

6

>

7

>

s

>

9

-

1 0

) . At

the present, our experiments are being supported by a grant which permitted

us to build the necessary system, which is basically composed of a stimulator,

an electromyograph and a cathode-ray oscilloscope.

MATERIAL, A N D METHODS

D o g s a n e s t h e t i z e d w i t h N e m b u t a l ( A b b o t t ) w e r e operated in order to e x p o s e properly a l l or s o m e of t h e n e r v e s c h o s e n for t h e e x p e r i m e n t in e a c h d o g : n. u l n a r i s

( m i x e d ) , n. h y p o g l o s s u s (chiefly m o t o r ) a n d n. c u t a n e u s brachii m e d i a l i s (chiefly s e n s o r y ) . I n t h e s e e x p e r i m e n t s , 42 n e r v e s of 14 dogs w e r e u s e d .

T h e s u r g i c a l p r o c e d u r e for t h e n e r v e e x p o s i t i o n and t h e care t a k e n to m a i n t a i n e a c h nerve, a s m u c h a s possible, undisturbed in its n a t u r a l c o n n e c t i v e t i s s u e bed, to a v o i d n u t r i t i o n a l d e f i c i e n c i e s w h i c h i n t e r f e r e w i t h the n o r m a l n e r v e b i o l o g y a n d r e g e n e r a t i v e processes, a r e described a n d discussed in s o m e of our f o r m e r papers i n t h e s u b j e c t ( E r h a r t & R e z z e5

, \ 8

) . A f t e r t h e e x p e r i m e n t s , t h e d o g s w e r e killed.

(2)

B i p o l a r n i c k e l - c h r o m i u m e l e c t r o d e s w i t h 0 . 5 m m d i a m e t e r , m o u n t e d in p l a s t i c s u p p o r t s a n d circa 1 m m a p a r t one f r o m t h e o t h e r w e r e u s e d . T h e y w e r e c o m m a n d e d by a c h a r r i o t s y s t e m in order t o p e r m i t d e l i c a t e and s m a l l d i s p l a c e m e n t s a n d g o o d c o n t a c t s a l o n g t h e n e r v e t r u n k s . T h e c o n n e c t i o n s b e t w e e n e l e c t r o d e s a n d s t i m u l a t o r or recording s y s t e m w e r e a c h i e v e d by m e a n s of a s e l e c t i v e s w i t c h - b o x s i m i l a r to t h e o n e r e c o m m e n d e d by F o x & K e n m o r e " . A l l the e x p e r i m e n t s w e r e performed in a F a r a d a y c a g e .

I n p r e l i m i n a r y t e s t s for control a n d in order to c a l i b r a t e our e l e c t r o n i c s y s t e m properly, w e h a v e w o r k e d w i t h n e u r o p h y s i o l o g i c a l p r e p a r a t i o n s of i s o l a t e d n e r v e s : frog s c i a t i c and d o g u l n a r and h y p o g l o s s a l n e r v e s . We could observe, a s it w a s e x p e c t e d in s u c h s t a n d a r d n e u r o p h y s i o l o g i c a l p r e p a r a t i o n s , t h a t n e r v e i m p u l s e s f l o w from A to B or f r o m B t o A, Indifferently, d e p e n d i n g o n l y on t h e s t i m u l a t i o n and recording p o i n t s ( F i g . 1 ) . In t h e s e p r e p a r a t i o n s , t h e w h o l e c o m p o u n d t r a c i n g of f a s t and s l o w fibers w a s o b v i o u s l y o b s e r v e d . L o c a l a n e s t h e s i a , x y l o c a i n e 2 % , blocked t h e n e r v e i m p u l s e .

W i t h t h e s e p a t t e r n s e s t a b l i s h e d , t h e proposed e x p e r i m e n t a l s e r i e s w e r e i n i t i a t e d . E a c h n e r v e t r u n k w a s s u r g i c a l l y e x p o s e d ( 4 - 5 c m ) b u t m a i n t a i n e d undisturbed, as m u c h a s possible, on its n a t u r a l c o n n e c t i v e t i s s u e bed. I n all t h e e x p e r i m e n t s e q u i v a l e n t s e g m e n t s of t h e n e r v e t r u n k s w e r e u s e d . W e h a v e c h o s e n s h o r t s e g m e n t s f r o m w h i c h n o b r a n c h e s spread off. E l e c t r o d e s A and B, a p a r t from e a c h other circa 2 c m w e r e c a r e f u l l y positioned a s in F i g . 1 . Then, t h e n e r v e t r u n k w a s s t i m u l a t e d w i t h b o t h p o s i t i v e a n d n e g a t i v e p u l s e s w i t h 50 /tsec of d u r a t i o n , 0 . 8 pyclesi/sec of frequency, w i t h a n a m p l i t u d e from zero to t h r e s h o l d i n t e n s i t y and t h e n up t o s u p r a t h r e s h o l d l e v e l , 6 to 8 Volts, in order t o o b t a i n d e p o l a r i z a t i o n of all t h e fibers w h i c h , in t h e n e r v e s e g m e n t u n d e r study, w e r e c o n d u c t i n g from A t o B and f r o m B t o A . S t i m u l a t i o n w a s i n d i f f e r e n t l y applied e i t h e r in t h e p r o x i m a l ( A ) or d i s t a l ( B ) electrode, and t h e n i n v e r t e d by m e a n s of t h e s e l e c t i v e s w i t c h - b o x of t h e s t i m u l a t o r .

(3)

R E S U L T S

T h e n e r v e s studied under t h e in vivo e x p e r i m e n t a l c o n d i t i o n s previously d e s -cribed s h o w e d t h e f o l l o w i n g :

(4)

b — T h e 16 h y p o g l o s s a l n e r v e s p r e s e n t e d t y p i c a l a c t i o n p o t e n t i a l in t h e pro-x i m a l - d i s t a l c o n d u c t i o n ( F i g . 2 I I I ) . In t h e s e m o t o r n e r v e s , m a i n t a i n e d undisturbed in their c o n n e c t i v e t i s s u e bed, t h e recorded a c t i o n p o t e n t i a l of t h e d i s t a l - p r o x i m a l c o n d u c t i o n w a s a l w a y s s m a l l e r in a m p l i t u d e ( F i g . 2 I V ) , e v e n w h e n s l i g h t s u p r a -threshold a n d h i g h e r f r e q u e n c i e s s t i m u l a t i o n s w e r e used, or w h e n t h e position of t h e e l e c t r o d e s w e r e c h a n g e d a l o n g t h e n e r v e t r u n k . W e m a y suppose t h a t t h e proprioceptive fibers of t h e h y p o g l o s s a l n e r v e a r e responsible for t h i s d i s t a l p r o -x i m a l c o n d u c t i o n .

c — In t h e 7 m e d i a l brachial c u t a n e o u s n e r v e s , chiefly sensory, it w a s o b s e r v e d t h a t its a c t i o n p o t e n t i a l w a s t y p i c a l in t h e d i s t a l - p r o x i m a l c o n d u c t i o n ( F i g . 2 VI) and had s m a l l e r a m p l i t u d e in t h e p r o x i m a l - d i s t a l c o n d u c t i o n ( F i g . 2 V ) . I n t h e s e l a t t e r n e r v e s w e m a y suppose t h a t t h e p o s t - g a n g l i o n i c s y m p a t h e t i c n e r v e fibers a r e responsible for t h e p r o x i m a l - d i s t a l c o n d u c t i o n .

d — All t h e n e r v e s — ulnar, h y p o g l o s s a l and m e d i a l brachial c u t a n e o u s — w h i c h a f t e r b e i n g w o r k e d on in vivo, w e r e i s o l a t e d f r o m t h e i r n a t u r a l c o n n e c t i v e beds, t r a n s s e c t e d and suspended on t h e e l e c t r o d e s , a s is n o r m a l l y done in n e u r o -p h y s i o l o g i c a l -pre-parations, -presented, in a c c o r d a n c e w i t h t h e l i t e r a t u r e , ty-pical a c t i o n p o t e n t i a l s in b o t h d i r e c t i o n s : p r o x i m a l - d i s t a l a n d d i s t a l - p r o x i m a l ( F i g . 2 VII and V I I I ) .

T h e a n o m a l o u s records w h i c h w e r e o b t a i n e d from six n e r v e s ( o n e ulnar, t h r e e h y p o g l o s s a l and t w o m e d i a l brachial c u t a n e o u s ) s e v e r e l y injured by s u r g i c a l m a n i -p u l a t i o n , distension, e x c e s s b l e e d i n g or i s c h e m i a , w e r e o b v i o u s l y not considered in t h e s e d a t a .

D I S C U S S I O N

In general our results, regarding the compound waves, latency, amplitude,

etc., are in accord with the literature; but, as they presented the above

mentioned particularities, they must be further discussed.

When a nerve maintained in its natural connective tissue bed is

sti-mulated, the neighbouring tissues, including muscle fibers, integrate with

the compound waves which appear on the scope screen. For that reason,

our system included an oscilloscope to record fast events, that is, the action

potentials of nerve fibers, and an electromyograph, for slow events recording,

such as action potentials in muscle fibers groups.

As the behavior of nerves in vivo involves biochemical and metabolic

processes, the surgical procedure and the electrodes positioning were such

as to maintain the nerve fibers undisturbed, as much as possible, in their

natural connective tissue bed. Being so, in our preparations we had a

shunt-ing effect which was partially diminished by groundshunt-ing (Fig. 1 ) . We

con-sidered it as a constant when stimulating and recording from A to B and

from B to A because: i — if the shunting effect had really interfered in

our results, we could not obtain, as we did, constancy in the recorded action

potentials of the 13 ulnar, 16 hypoglossal and 7 medial brachial cutaneous

nerve trunks studied, ii — the nerve trunk segment used was always a

short one, circa 2 cm long, distance between electrodes A and B. iii —

from these nerve trunk segments no branches spread off.

(5)

compared to those obtained by the experimental methods generally used in

the stimulation of nerves, which constitute always an attack to nerve cell

and nerve fiber integrity (

1

.

12

>

1 3

»

1 5

>

1 6

) . The anesthesia of the animal, by

itself, will certainly interfere too on different structures, including the

sy-naptic mechanisms. The abnormal, continuous stimulation, in high frequencies,

will probably interfere also with what is considered normal nerve cell or

fiber behavior. For that reason we used in our experiments in vivo, threshold

stimulation, short duration pulses and low frequencies, to allow metabolic

reestablishment of the nerve fibers being studied, as well as reposition of

possible electric disturbances in the nerve trunk environment.

The results we have obtained on dog ulnar, hypoglossal and medial

brachial cutaneous nerves, indicating a specific unidirectional conduction on

peripheral motor and sensory fibers, although being quite different from

what has ever been published on the subject up to now, seem to be supported

by neurophysiological, neuroembriological and neuropathological data. Llinás

and colaborators

1 3

, as far as we know were the first to speak about

"unidi-rectional preference". They stated: "dendritic action potentials in alligator

Purkinje cells tend to have an unidirectional preference" and "probably many

other nerve cells may have to be considered as highly complex units able

to attain a vast number of dynamic states which would lead to the

gene-ration of a large variety of functional patterns". They talk about dendrites

but, if it is accepted that the nerve impulses enter through he dendrites

and leave the cell body through the axon, in these latter there must be too

an unidirectional preference. Our tracings in peripheral nerves, in vivo

con-ditions, showed this fact. Weiss & E d d s

1 8

concluded that sensory nerves

form no functional synapses with muscles; and Robbins

1 7

wrote: "if the

functional potential of a sensory nerve is not the key to the origin of sensory

specificity, other specifying mechanisms must be invoked to explain nerve

growth to a specific location". We do agree with these authors. There

must be something specific in the nerve cell body whose nature we do not

know, that makes motor and sensory nerve fibers in vivo behave differently

one from another. If Mother Nature has build these two systems (motor

and sensory) embriologically, morphologically and functionally different one

from another, Men will state that in vivo motor and sensory peripheral nerve

fibers have no specific conduction! Polio lesions are chiefly related to motor

neurons and those of tabes dorsalis, to sensory neurons. Moreover, nerve

lesions are distinguishable one from another by the condition of motor,

sen-sory and sympathetic functions, as revealed by clinical examination. These

facts permit us to conclude that there must be something biochemical,

metabolic or something else, concerning nerve-fiber structure in relation to

nerve-fiber function to be investigated.

S U M M A R Y

(6)

be in accordance with those described in the literature. However, our

tra-cings showed a new additional fact, i . e . , t h a t motor and sensory peripheral

nerve fibers have a specific unidirectional conduction (centrifugally for motor

and centripetally for sensory), as long as these nerves were maintained

undis-turbed in their natural connective tissue bed. Although these facts

corres-pond to what is considered normal biological behavior of nerve fibers, when

in their natural environment, as far as we know, this has not been

demons-t r a demons-t e d before in neurophysiological experimendemons-ts.

R E S U M O

Padrões de condução de impulsos nervosos, determinados eletronicamente,

para análise de comportamento de nervos "in vivo"

Padrões de condução de impulsos nervosos foram determinados

eletrô-nicamente, in vivo, nos nervos ulnar (13), hipoglosso (16) e cutâneo medial

do braço (7) de cães anestesiados. Os traçados obtidos confirmaram, em

linhas gerais, os descritos na literatura. Todavia, demonstraram um fato

novo, adicional, isto é, que fibras motoras e sensitivas, integrantes de nervos

periféricos, apresentam uma condução específica, unidirecional (centrífuga

nas fibras motoras e centrípeta nas sensitivas), desde que mantidas

pratica-m e n t e intactas epratica-m seus respectivos leitos conectivos naturais. Epratica-mbora este

tipo de condução específica corresponda ao que se admite e aceita como

com-portamento normal, biológico, dessas fibras nervosas, e constitua ainda, base

do exame neurológico, esta evidência nunca foi demonstrada anteriormente

e m experiências e preparações neurofisiológicas.

R E F E R E N C E S

1 . B O W M A N , J . & COMBS, C . M . — D i s c h a r g e p a t t e r n s of l i n g u a l s p i n d l e a f f e r e n t f i b e r s in t h e h y p o g l o s s a l n e r v e of t h e R h e s u s m o n k e y . E x p t l . N e u r o l . 2 1 : 1 0 5 , 1 9 6 8 .

2 . B U R G E S S , P . R . & P E R L , E . R . — M y e l i n a t e d a f f e r e n t f i b e r s r e s p o n d i n g s p e c i f i c a l l y t o n o x i o u s s t i m u l a t i o n of t h e s k i n . J . P h y s i o l . ( L o n d o n ) 1 9 0 : 5 4 1 , 1 9 6 7 .

3 . E R H A R T , E . A . — N o r m a l n e r v e f i b r e s in t h e d i s t a l s e g m e n t of n e r v e s c o m -p l e t e l y s e -p a r a t e d f r o m t h e -p r o x i m a l s t u m -p f o r m o r e t h a n six m o n t h s . A r q . N e u r o - P s i q u i a t . ( S ã o P a u l o ) 2 0 : 2 8 9 , 1 9 6 2 .

4 . E R H A R T , E . A . & E R H A R T , M . B . — N o r m a l a x i s - c y l i n d e r s in t h e d i s t a l s e g m e n t of n e r v e s c o m p l e t e l y s e p a r a t e d f r o m t h e p r o x i m a l s t u m p f o r u p t o 24 y e a r s . A n a t . R e c . 136:189, 1 9 6 0 .

5 . E R H A R T , E . A . & R E Z Z E , C . J . — N e r v e f i b r e s in i s o l a t e d s e g m e n t s of d o g u l n a r n e r v e a f t e r c o m p l e t e b r a c h i a l p l e x o t o m y a n d p e r i a x i l a r a r t e r y s y m p a -t h e c -t o m y . A r q . N e u r o - P s i q u i a -t . ( S ã o P a u l o ) 2 3 : 8 2 , 1 9 6 5 .

(7)

7 . E R H A R T , E . A . & R E Z Z E , C . J . — E x p e r i m e n t a l d a t a a n d p r a c t i c a l r e s u l t s w h i c h m o d i f y t h e p r e s e n t c o n c e p t s of p e r i p h e r a l n e r v e f i b r e s d e g e n e r a t i o n a n d r e g e n e r a t i o n . P r o c . V I n t e r n a t . C o n g r e s s of N e u r o p a t h o l . ( Z u r i c h ) p . 864-867, 1 9 6 5 . P u b l i s h e d by E x c e r p t a M e d i c a .

8 . E R H A R T , E . A . & R E Z Z E , C . J . — E f f e c t of e x p e r i m e n t a l d e v a s c u l a r i z a t i o n o n p e r i p h e r a l n e r v e s . A r q . N e u r o - P s i q u i a t . ( S ã o P a u l o ) 2 4 : 7 , 1 9 6 6 .

9 . E R H A R T , E . A . & R E Z Z E , C . J . — F u r t h e r d i s c u s s i o n o n t h e n e w g r o i n g n e r v e f i b r e s w h i c h r e p o p u l a t e t h e d i s t a l s e g m e n t of n e r v e s c o m p l e t e l y s e p a r a t e d f r o m t h e p r o x i m a l s t u m p f o r m o r e t h a n s i x m o n t h s . A r q . N e u r o - P s i q u i a t .

( S ã o P a u l o ) 2 4 : 9 1 , 1 9 6 6 .

1 0 . E R H A R T , E . A . ; R E Z Z E , C . J . & B I A Z O T T O , W . — T h e e c t o p i c n e w l y - f o r m e d n e r v e f i b r e s w h i c h r e p o p u l a t e t h e l o n g - t i m e d e n e r v a t e d a n d a t r o p h i c c h i c k s k e l e t a l m u s c l e . A r q . N e u r o - P s i q u i a t . ( S ã o P a u l o ) 2 6 : 1 8 7 , 1 9 6 8 .

1 1 . F O X , L . J . & K E N M O R E , P . — T h e e f f e c t of i s c h e m i a o n n e r v e c o n d u c t i o n . E x p t l . N e u r o l . 1 7 : 4 0 3 , 1 9 6 7 .

1 2 . L A N D A U , M . L . ; C L A R E , M . H . & B I S H O P , G . H . — R e c o n s t r u c t i o n of m y e l i n a t e d n e r v e t r a c t a c t i o n p o t e n t i a l s : a n a r i t h m e t i c m e t h o d . E x p t l . N e u r o l . 22:480, 1 9 6 8 .

1 3 . L L I N Á S , R . ; N I C H O L S O N , C . & P R E C H T , W . — P r e f e r r e d c e n t r i p e t a l c o n -d u c t i o n of -d e n -d r i t i c s p i k e s in a l l i g a t o r P u r k i n j e c e l l s . S c i e n c e , 163:184, 1 9 6 9 .

1 4 . MC L E O D , J . G . & W R A Y , S . H . — C o n d u c t i o n v e l o c i t y a n d f i b r e d i a m e t e r of t h e m e d i a n a n d u l n a r n e r v e s of t h e b a b o o n . J . N e u r o l . N e u r o s u r g . P s y c h i a t . 30:240, 1 9 6 7 .

1 5 . M O R I M O T O , T . ; T A K A T A , M . & K A W A M U R A , Y . — E f f e c t of l i n g u a l n e r v e s t i m u l a t i o n o n h y p o g l o s s u s m o t o n e u r o n s . E x p t l . N e u r o l . 2 2 : 1 7 4 , 1 9 6 8 .

1 6 . P A I N T A L , A . S . — A c o m p a r i s o n of t h e n e r v e i m p u l s e of m a m m a l i a n n o n ¬ m e d u l l a t e d n e r v e f i b e r s w i t h t h o s e of t h e s m a l l e s t d i a m e t e r m e d u l l a t e d f i b e r s . J . P h y s i o l . ( L o n d o n ) 1 9 3 : 5 2 3 , 1 9 6 7 .

1 7 . R O B B I N S , N . — P e r i p h e r a l m o d i f i c a t i o n of s e n s o r y n e r v e r e s p o n s e s a f t e r c r o s s -r e g e n e -r a t i o n . J . P h y s i o l . ( L o n d o n ) 1 9 2 : 4 9 3 , 1 9 6 7 .

1 8 . W E I S S , P . & E D D S , M . V . J r . — S e n s o r y - m o t o r n e r v e c r o s s e s in t h e r a t . J. N e u r o p h y s i o l . 8 : 1 7 3 , 1 9 4 5 .

Referências

Documentos relacionados

No que diz respeito ao trabalho futuro seria interessante desenvolver uma página web onde o gestor do sistema de Irrigação pudesse monitorizar o campo de Golfe. Ao nível

Em Java, esses conteineres são denominados panels (Painéis em português), e são representados pela classe JPanel. No exemplo, serão usados dois panels, um para o campo do Visor,

Thus, the present work reports the interaction of CHX with nanoHA surface, in terms of adsorption and release kinetics profile, antibacterial activity, as well as the

^ also reported their studies of a patient with tuberculoid leprosy; they studied motor NCV (MNCV) in the median, ulnar, tibial and peroneal nerves, and sensory NCV (SNCV) in

amplitude and duration, as well as both compound muscle action and sensory nerve action potential, plus nerve..

Distinct electrophysiological abnormal- ities (low compound muscle action potential in the thenar and intrinsic muscles, abnormal sensory nerve conduction in the ulnar

glucose 55 mg/dl and protein 25.7 mg/dl; needle electromyo- graphy and sensory nerve conduction study were normal, but motor nerve conduction study demonstrated absent F-wave in

Nerve conduction studies revealed a conduction block amplitudes in motor (CMAP), lower terminal latency index (TLI) and alterations in sensory (SNAP) responses.. In the irst exam,