• Nenhum resultado encontrado

Time-optimal guaranteed search of mobile object in the plane

N/A
N/A
Protected

Academic year: 2016

Share "Time-optimal guaranteed search of mobile object in the plane"

Copied!
15
0
0

Texto

(1)

Ի Ի ՈՒԹ ՈՒ Ի Ի Ի Ի Ղ Ի Ц

68, №1, 2015

62-50

. ., . .

. , ղ

ч : ,

Keywords: guaranteed search, optimal control

. ., . .

ղ

ղ ղ

, ,

: Ո ղ

ղ ղ : ՝

,

ղ : ղ ,

:

Avetisyan V.V., Stepanyan V.S.

Time-optimi guaranteed search of mobile object in the plane

A problem of time-optimal guaranteed search of moving object with controllable speed in plane is observed, where in the initial moment only the circular of the sought object is known. The sought object is a object with

controllable speed. The discovery, i.e. the identification of the precise coordinates of the object, is implemented through the moving information basis of the cone, the apex of which is connected to the current coordinates of the sough object. It is required to locate the object as quickly as possible. A control algorithm is proposed, in which r a guaranteed search of the sought object in minimal time is completed.

, ,

, .

, ё . –

a ,

. ,

a .

. , ,

, ё

, , ,

« »

.

[1,2].

,

, , ,

ё .

, –

(2)

, ,

ё .

, ё

, ,

. [1,2],

,

,

,

ё

, . Э

, .

. [3-11] , [3-9] ё

ё , [10,11]

ё , [10]

, [8] – .

1. ч .

X

Y

,

X

– ,

Y

– . ,

,

:

X

,

Y

– , ,

:

0 3

:

,

(0)

,

( )

,

0;

,

X

x

u

x

x

u t

U

t

x u

R

, (1.1)

0 2

:

v,

(0)

, v( )

,

0;

, v

Y

y

y

y

t

V

t

y

R

. (1.2)

(1.1) (1.2)

x

,

y

– ;

u

,

v

- , -

t

,

t

0

;

V

U

,

X

,

Y

.

,

t

0

X

Y

.

Y

X

,

t

0

Y

ё

0 2 0

0

{

:

c 0

}

y

D

y

R

y

y

r

(1.3)

y

c0

(

y

c01

,

y

c02

)

R

2

r

0,

X

.

Y

2

3

1 2

1 2 3 0

( )

( )

( )

( ),

tg

( ( ), )

,

0,

( )

(

( )

( )),

0

/ 2

( (0), )

( (0),

(0),

(0), )

( (0), (0))

,

c

c c c

c

ξ

R :

ξ

t

x t

l t

Cx t

C

G x t C

t

x t

x

t , x

t

G x

C

G x

x

x

C

G x

l

G

 

   

(3)

(

x

c

(

x , x

c1 c2

)

)

,

X

.

,

G x t C

( ( ), )

C

.

(1.4)

(

x

1

,

x

2

)

t

0

1 2

(

)

c c c

x

x , x

u u

1

,

2

(1.4)

x

3

X

(

x

1

,x

2

)

3

u

, . . ё

l

C

x

3

Cu

3:

l

Cu

3

,

l

0

l

(0).

u

3

0

G

(1.4) ,

0

3

u

.

0 0

1

,

2

,

0

c c

y

y

r

0 0 0

1

,

2

,

3

,

c c

x

x

x C

(

x

c01

,

x

c02

,

l

0)

ё ,

t

0

0 0

.

D

G

 

(1.5)

(1.5), ё .

,

Y

0

t

, , . .

( )

( ( ))

y t

G x t

 , . .

y t

( )

x t

c

( )

l

,

x

c

(

x

c1

,

x

c2

)

. (1.6)

)

,

(

x

1

x

2 (1.2)

t

0

, ё

(1.3)

D t

( )

,

D t

( )

D

0

y

c0

r

0

Vt

. ,

(1.6) ,

T

( )

u t

,

0

 

t

T

,

( )

( ( ))

D

Т

G x

Т

. (1.7)

X

,

(1.7)

T

.

1 – .

Задача 1.

x

0

(

x

10

,

x

02

,x

30

)

R

3

0

G

ё

D

0,

(1.5),

T

0

u

(

t

)

(4)

Y

ё

D

0(1.3)

)

v(

t

0,

T

(1.7), . .

(1.6)

t

0

,

T

:

T

t

.

}

,

,

{

x

0

G

0

D

0 (1.5)

u

(

t

)

1 – ё ,

T

.

0

0 0

{ ,

x G D U V

,

, , }

(1.1) - (1.5), 1 .

ё ,

, , . . 2.

Задача 2.

x

0

(

x

10

,

x

02

,x

30

)

R

3

ё

D

0

u

(

t

)

,

a

T

.

2. , щ х

ч . 1, , ,

0 0 0 2

1 2

(

,

)

c c c

y

y

y

R

ё 2

0

R

D

Y

Ox

1

x

2,

X

t

0

, (1.5),

)

,

,

(

30

0 2 0 1 0

x

x

x

x

, 0

1 0 3 0

2 0 0

1

R

,

x

0

,

x

C

l

x

 ,

R

0

0

, . .

0

c

x

(

R

0

,

0

)

Ox

1( . 1). ,

0 0 0

R

 

l

r

,

l

0

r

0, (2.1) (1.5)

D

0

G

0.

. 1

Y

B qA AX

Y

A BX

V V

B q

3

Cu

1

u

0

R

0

G

G D

O

0

D r0 l0

1

x

2

(5)

(

)

X Y

A

A

B

X

(

B

Y

)

– ,

0

G

( ё

D

0)

Ox

1( .1).

(1.7),

[12],

X

u

( ,

u u u

1 2

,

3

)

,

X

A

B

X

Ox

1( . .

u

2

0

). ,

X

A

B

X

Ox

1 , ,

1 3

A

q

 

u

Cu

q

B

 

u

1

Cu

3. , ё

Т

0

1

,

3

u u

(1.1), :

0 0 0 1 3

0 0 0 1 3

,

,

,

,

A A

B B

q

Т

R

l

V

Т

r

q

u

Cu

q

Т

R

l

V

Т

r

q

u

Cu

  

 

 

 

(2.2)

(2.2) :

0 0 0

(

1 3

)

R

    

l

r

u

Cu

V

Т

, (2.3)

0 0 0

(

1 3

)

R

    

l

r

u

Cu

V

Т

. (2.4)

(2.3), (2.4) ,

R

0

,

r

0

,

l

0(2.1)

C

V

U

,

,

u u

1

,

3

1 3

0

u

Cu

V

 

 

,

 

u

1

Cu

3

 

V

0

,

2 2 2

1 3

u

u

U

, (2.5)

( (2.3), (2.4)) e

[

,

)

T

T



, (2.3)

0 0 0

1 3

0

R

l

r

T

u

Cu

V

 

 

(2.6)

– ,

A

X

A

Y.

o

R

0

,

r

0

,

l

0(2.1)

U

,

V

,

C

u u

1

,

3

1 3

0

u

Cu

V

 

 

,

 

u

1

Cu

3

 

V

0

,

u

12

u

32

U

2

,

(2.7)

(2.4)

0 0 0

1 3

0

R

l

r

T

u

Cu

V

 

 

,

Y

B

ё

B

X.

E

R

0

,

r

0

,

l

0(2.1)

U

,

V

,

C

(2.7)

T

T

,

0

(

3

)

(

0

0

)

1

(6)

(2.3), (2.4), , (1.7)

[

,

]

T

T T

  .

((2.5) (2.7)-(2.8))

T

(2.6)

, . . ..

(2.5) (2.7)-(2.8),

R

0

,

r

0

,

l

0(2.1)

U

,

V

,

C

3 1 i i

H

H

, (2.9)

1 3

2 2 2 2

1 1 3 1 3

1 3

0,

( ,

)

:

0,

u

Cu

V

H

u u

R

u

u

U

u

Cu

V

 

 

 

 

, (2.10)

1 3 0 3 0 0 1

2

2 1 3 2 2 2

1 3 3 1 3

0,

(

)

(

)

( ,

)

:

0,

0,

 

 

 

 

 

u

Cu

V

R Cu

V

l

r u

H

u u

R

u

Cu

V

Cu

V

u

u

U

, (2.11)

1 3 0 3 0 0 1

2

3 1 3 2 2 2

1 3 3 1 3

0,

(

)

(

)

( ,

)

:

0,

0,

 

 

 

 

 

u

Cu

V

R Cu

V

l

r u

H

u u

R

u

Cu

V

Cu

V

u

u

U

. (2.12)

,

1, 2, 3

i

H i

( .2) – ,

, ,

1 3

(

,

)

P P P

u

u

u

,

u

K

(

u

1K

,

u

3K

)

;

u

N

(

u

1N

,

u

3N

)

,

u

P

(

u

1P

,

u

3P

)

;

u

M

(

u

1M

,

u

3M

)

,

u

N

(

u

1N

,

u

3N

)

P K

u u

;

u u

N P;

u u

M N, ,

u

Q

(

u

1Q

,

u

3Q

)

.

.2 a

H

1, –

2

H

H

3,

u

P,

u

Q

,

K

u

,

u

N,

u

M

:

2 2 2

1 2

(1

)

0

1

P

V

C

C U

V

u

C

,

 

1/ 2 2 2

3 1

0

P P

u

U

u

(2.13)

1

0

Q

u

,

u

3Q

V

0

C

, (2.14)

 

2 1/ 2 2

1 3

0

N N

u

U

u

, 3

0

N

V

u

C

, (2.15)

2 2 2

1 2

(1

)

0

1

K

V

C

C U

V

u

C

,

 

1/ 2 2 2

3 1

0

K K

u

U

u

(2.16)

2 2 2 2

0 0 0 0 0 0

1 0 2 2

0 0 0

[(

) /

]

{[(

) /

]

}

(

)

0

[(

) /

]

М

l

r

R V

C

l

r

R

C U

V

u

R

l

r

R

C

(7)

2 2 2 2

0 0 0 0 0 0

3 0 2 2

0 0 0

[(

) /

] {[(

) /

]

}

(

)

[(

) /

]

М

CV

l

r

R

l

r

R

C U

V

u

R

l

r

R

C

.

. 2

(2.12) – (2.17) .2,

u

S

 

(

U

, 0)

u

L

(0, )

U

,

0

R

 

u

M

(

R u

0

)

Q

u

Q

N Q

u u

(

u

1М

(

R

0

)(

u

3М

(

R

0

))

u

1N

(

u

3N

)

.

0 0 0

R

 

l

r

u

M

(

R u

0

)

Q

u

Q

J Q

u u

(

1

(

0

)(

3

(

0

))

1

(

3

)

М М J J

u

R

u

R

u u

,

u

J

u

M

(

R u

0

)

Q

u

12

u

32

U

2

R

0

 

l

0

r

0

:

2 2 2 2

0 0 0 0 0 0 0 0

1 2 2

0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

3 2 2

0 0 0 0

[(

) / (

)]

{[(

) / (

)]

}

0,

[(

) / (

)]

[(

) / (

)] {[(

) / (

)]

}

.

[(

) / (

)]

J

J

l

r

l

r

V

C

l

r

l

r

C U

V

u

l

r

l

r

C

CV

l

r

l

r

l

r

l

r

C U

V

u

l

r

l

r

C

(2.18) 2

H

J

u

S

u

M

u

N

u

P

u

u

L K

u

Q

u

0

u

1

3

u

1

H

3

H

0 0

3 1

0

l

r

V

u

u

R C

C

3

V

u

C

1 3

u

V

u

C

C

 

1 3

u

V

u

C

C

(8)

.

. 3

,

u

3J(2.18)

:

0 0

3

0 0

0 0

3

0 0

0,

( )

0,

( )

J

J

l

r

u

V

U

a

l

r

l

r

u

U

V

b

l

r

(2.19)

(2.19)(а) .2, a (2.19)(b) – .3.

(2.10)-(2.12), ё (2.13)-(2.19), ,

H

1

H

2

0

R

,

H

3 . ,

H

0

R

:

0 1 2

(

)

H R

H

H

R

0

 

, (2.20)

0 3 2 1

(

)

J

H R

H

H

H

R

0

 

l

0

r

0,

2 2 2 2

3

( ,

1 3

)

:

1 1 1

,

3 1 3 3

,

1 1

J J Q J N Q

H

u u

R

u

u

u

u

u

u

u

u

u

U

.

1 3

( , 0,

)

u

u

u

,

( ,

u u

1 3

)

H

(2.9),

X

2

H

J

u

S

u

M

u

N

u

P

u

u

L

u

K

Q

u

0

u

1

3

u

1

H

3

H

0 0

3 1

0

l

r

V

u

u

R C

C

1 3

u

V

u

C

C

 

1 3

u

V

u

C

C

3

V

u

C

(9)

Y

T

( ,

u u

1 3

)

(2.6). ё ,

1 3 1

( ,

u u

)

H

,

0

T

T

 

, a

( ,

u u

1 3

)

H

2,

0

T

T

 

 

.

H

(2.9) ё ,

u

( , 0,

u

1

u

3

)

, ,

1 3

( ,

)

T

u u

(2.6) – .

(2.10)-(2.12) ,

H

i

  

,

i

1, 2, 3

,

CU

V

. (2.21)

,

CU

V

,

r

0

l

0

,

[1,2].

3. х х щ х . ё

2 – (2.9) ,

(2.6):

1 3 1 3

min 0 0 0

1 3

( , ) ( , )

1 3

min

( ,

)

min

u u H u u H

R

l

r

T

T u u

u

Cu

V

 

 

 

. (3.1)

(3.1)

1 3 1 3

( ,

u u

)

u

Cu

max

  

,

( ,

u u

1 3

)

H

. (3.2)

(3.2)

grad ( ,

u u

1 3

)

 

( 1, )

C

,

C

0

, (3.2), ,

(3.1)

u

M

(

R u

0

)

L

M K

u u

H

:

2 2 2

0 1 3 1 0 1 3 0 3 1 3

(

)

( ,

) :

(

)

0,

(

)

,

M L M M

u

R u

u u

u

R

u

u

R

u

U u

u

U

(3.3)

0

(

)

M N

u

R u

,

u u

N P ,

u u

P L:

   

0 0

(

)

(

)

M L M N N P P L

u

R u

u

R u

u u

u u

, (3.4)

2 2 2

0 1 3 1 0 1 1 3 0 3 3 1 3

(

)

( ,

) :

(

)

;

(

)

;

M N M N M N

u

R u

u u

u

R

u

u

u

R

u

u

u

u

U

(3.5)

2 2 2

1 3 1 1 1 3 3 3 1 3

( ,

) : ,

,

N P N P N P

u u

u u

u

u

u

u

u

u

u

u

U

(3.6)

2 2 2

1 3 1 1 3 3 1 3

( ,

) : 0,

,

P L P P

u u

u u

u

u

u

u

U

u

u

U

(3.7)

1 3 1 3

(

,

),

0,

L L L L L

u

u u

u

u

U

, , (3.1)

1 3 1 3

( ,

u u

)

u

Cu

(10)

1 3 1 3

( ,

u u

)

u

Cu

max

  

,

( ,

u u

1 3

)

u

M

(

R u

0

)

L . (3.8)

0

(

)

M L

u

R u

R

0, (2.20), :

0

(

)

M L N L

u

R u

u u

R

0

 

;

(

0

)

M L J L

u

R u

u u

R

0

 

l

0

r

0 ,

, :

  

0

(

)

J L M L N L

u u

u

R u

u u

,

l

0

 

r

0

R

0

 

,

(3.9)

2 2 2

1 3 1 1 3 3 1 3

( ,

) : 0,

,

J L J J

u u

u u

u

u

u

u

U

u

u

U

. (3.10)

, , (2.19)(а),

 

J L S L

u u

u u

, (3.11)(a)

, (2.19)(b), , ,

J L

S L

u u

u u

, (3.11)(b)

2 2 2

1 3 1 3 1 3

( ,

) : 0,

0

,

S L

u u

u u

 

U

u

u

U

u

u

U

. (3.12)

1 3 1 3

( ,

u u

)

u

Cu

  

2 2 2

1 3

u

u

U

1 3

(

,

)

u

u u

  , (3.13)

1 2

1

U

u

C

 

, 3 2

1

CU

u

C

,

C

0

,

, ё ,

u u

S L(3.12).

, ё (3.8)-(3.11),

  

0 0

(

)

(

)

S L S M M L

u u

u u

R

u

R u

, (3.14)

2 2 2

0 1 3 1 1 3 3 1 3

(

)

( ,

) :

, 0

,

S M M M

u u

R

u u

 

U

u

u

u

u

u

u

U

,

a

u

M

(

R u

0

)

L (3.3), (3.4),

0

, , ,

R U V C

(3.13)

u

M

(

R u

0

)

L (3.3),

0

(

)

M L

u

u

R u

, (3.15)

(11)

  

0 0

(

)

\

(

)

S M S L M L

u

u u

R

u u

u

R u

. (3.16) (3.15) (3.13) (3.1):

u

min

u

,

(3.16) M

(

0

)

u

R

u u

S M

(

R

0

)

:

min

0

(

),

M

u

u

R

(3.17) . .

2 2 2 2

0 0 0 0 0 0

min

1 1 0 2 2

0 0 0

[(

) /

]

{[(

) /

]

}

(

)

[(

) /

]

М

l

r

R V

C

l

r

R

C U

V

u

u

R

l

r

R

C

2 2 2 2

0 0 0 0 0 0

min

3 3 0 2 2

0 0 0

[(

) /

] {[(

) /

]

}

(

)

[(

) /

]

М

CV

l

r

R

l

r

R

C U

V

u

u

R

l

r

R

C

ё ,

(3.15) (3.16).

ё (2.13) – (2.20)

(3.4)-(3.7), (3.14),

C

1

C

1

:

1.

u

u u

P L, (3.18)

2

2

1

1

C

U

V

C

,

C

1

(3.19)

0

(

0 0

,

)

R

l

r

,

2.

u

u u

N P , (3.20)

2 2

2 2

1

1

1

C

C

U

V

U

C

C

 

,

C

1

(3.21)

2

2

0

1

C

U

V

C

 

,

0

 

C

1

(3.22)

0

(

0 0

,

)

R

l

r

,

3.

u

u u

S M

(

R u

0

)

N, (3.23)

2

2

1

C

CU

V

U

C

 

(12)

R

0

(

l

0

r

0

,

)

.

(3.23), (3.24).

) (2.19)(а), (3.11)(a). ,

  

0 0

(

)

(

)

S M N S J J M N

u u

R u

u u

u u

R u

, (3.23) ,

S J

u

u u

(1)

u

u u

J M

(

R u

0

)

N (2). (3.25)

(3.25) (1), (3.1)

u

M

(

R

0

)

0

(

0 0

,

)

R

l

r

. (3.25) (2),

0

(

0 0

,

),

R

l

r

0

(

)

M

u

R

(2.18)

u

 (3.13):

u

M

(

R

0

)

u

.

S L

u u

(3.11),

(2.17) (3.13)

u

M

(

R

0

)

u

,

,

1

(

0

)

1

М

u

R

u

(3.26)

2 2 2 2

0 0 0 0 0 0

2 2 2

0 0 0

[(

) /

]

{[(

) /

]

}

[(

) /

]

1

l

r

R V

C

l

r

R

C U

V

U

l

r

R

C

C

 

0

R

.

0

(

0 0

,

)

R

r

l

2 2 4 2 2 2 2 2

0 0 0 0 0 0

[

V

(1

C

)

C U

]

R

2

UV

1

C

(

l

r R

)

(

l

r

)

U

0

. (3.27)

(3.24) (3.27)

, ,

0

(

)

M

u

R

u

0 0

0 2 2

(

)

1

U l

r

R

V

C

C U

,

r

0

l

0

R

0

 

 

. (3.28)

,

0

(

)

J M

u

u u

R

,

R

0

R

0

 

M

(

0

)

N

u

u

R u

,

l

0

 

r

0

R

0

R

0.

(3.29)

B) (2.19)(b), (3.11)(b). )

(3.25)(2)

0

(

)

S M

u

u u

R

,

R

0

R

0

 

M

(

0

)

N

(13)

0

R

 (3.28).

(3.18) – (3.30), ,

1–3, ,

min min min

1 3

(

,

)

T

T

u

u

(3.1)

min min

1

,

3

u

u

:

2 min

1,3 1,3 0 0 0

,

0,

2

,

1

C

u

u

l

r

R

V

U

C

 

 

(3.31)

1,3 0 0 0 0

2 0 0 2 0 0 min 1,3

1,3 0 0 0

2

0 0

2

0 0

,

,

0,

,

1

(

)

,

,

0,

,

1

M

u

l

r

R

R

l

r

C

V

U CU

U

l

r

C

u

u

R

R

R

l

r

C

V

U CU

U

l

r

C

  

 

 



 

 

 

(3.32)

1,3 0 0 0 0 3 3

min 2

1,3 0 0

2 0 0

(

)

,

,

,

,

1

M J

u

R

l

r

R

u

и

u

C

l

r

V

U CU

U

l

r

C

 

 

 

(3.33)

1,3 0 0 0 0 3 3

2 0 0 2 0 0 min 1,3

1,3 0 0 0 3 3

2 0 0 2 0 0

,

,

,

,

1

(

)

,

,

,

,

1

J M J

u

l

r

R

R

и

u

l

r

C

V

U CU

U

l

r

C

u

u

R

R

R

и

u

l

r

C

V

U CU

U

l

r

C

    

 

 



 

 

 

(3.34)

1

(

0

),

3

(

0

)

M M

u

R

u

R

,

u

3,

R

03J

u

(2.17), (3.13), (3.28), (2.18) .

ё (3.31)-(3.34)

.

(14)

2.

2

2

0 ,

1

C

V

U

C



,

(3.31),

X

, (3.10),

min

1 3

(

,

)

T

T

u u

  (2.6)

R

0

(

r

0

l

0

,

)

ё

D

0

G

0.

3.

Y

2

0 0

2

0 0

0 ,

0,

1

l

r

C

V

U

U

l

r

C

 

,

(3.32),

0

R

, (2.28), ,

0

(

0 0

,

0

]

R

r

l

R

(3.13):

u

1min

u

1,

u

3min

u

3.

R

0

(

R

0

, )

(3.17). ё ,

R

0

min

1 1

(

0

)

u

u R

,

u

3min

U

2

( (

u R

1 0

))

2

, , .

4.

Y

2

0 0

2

0 0

,

,

1

l

r

C

V

U CU

U

l

r

C

 

, (3.33), (3.34),

J

u

(2.18)

u

(3.13)

u u

S N . ,

и

3J

u

3,

min

0

(

)

M

u

u

R

R

0

(

r

0

l

0

,

)

– (3.33), 3 3

J

и

u

, (3.34) , (3.32).

ч .

, .

(3.31)-(3.34) (3.1)

ё . ,

(15)

1. . .

// . . . 2007. .60. № 1. .3-9.

2. . .

// . . . 2013. .66. № 2. .68-78.

3. . . // . 1980. .1.

.3-12.

4. . ., . . .

// . 1995. . 4.

№ 1. .827-862.

5. . ., . .

// . . .

1999. № 1. .58-66.

6. . ., . .

// . . .

1999. № 2. .31-39.

7. . . O

// . .

. 2002. № 1. .62-69.

8. . . // .

. . 2006. № 6. .160-168.

9. . ., . .

// . . . 2009. № 5. .151-164.

10. . ., . . . .:

1987. 76 .

11. . .

// . 1990. .54. . 1. .3-11.

12. . ., . . a . .: ,

1978. 270 .

х:

ч . .- . .,

,

.: (+374 94) 44 95 60; –mail: vanavet@yahoo.com

ч – ,

.: (+374 98) 900846; -mail: nop144d@gmail.com

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The main goal of our study was to identify the preoperative risk factors and to develop and validate risk- prediction models which could be used as instruments to provide information

Such a museum, ( in the physical sense ), which in ultimate analysis is always a support to the object, a particularly evident situation when Daniel Buren exhibits as an

Testemunha-se assim como os produtores televisivos recorrem à utilização de cores, texturas, música, de modo a legitimar a descodificação das imagens transmitidas dentro de

CONCLUSÕES: Disfunção diurna, duração, latência, assim como eficiência habitual do sono são os componentes que mais influenciam na qualidade do mesmo; também verificamos que o

Additionally, we argue that: (a) from its origins with Samuelson onwards, the neoclassical synthesis had no fixed content and we bring out four main meanings; (b) its most cogent

What analysts at Warburg and Berenberg and probably many other investment banks do is just using higher risk-free rates than currently observed by markets and using very high

É de referir ainda que a presença dos vários tipos de intrusões avaliadas por este instrumento, aplicado numa amostra não-clinica, reforça os resultados obtidos em