• Nenhum resultado encontrado

An Integral Univalent Operator

N/A
N/A
Protected

Academic year: 2017

Share "An Integral Univalent Operator"

Copied!
6
0
0

Texto

(1)

AN INTEGRAL UNIVALENT OPERATOR

D. BREAZ and N. BREAZ

Abstract. In this paper we consider the class of univalent functions defined by the condition˛˛

˛

z2f′(z)

f2(z) −1 ˛ ˛

˛<1, z∈U,wheref(z) =z+a2z

2+. . . ,is an analytic

function in the unit discU ={z∈C:|z|<1}.We present univalence conditions for the operator

Gα,n(z) =

0

@(n(α−1) + 1)

z

Z

0

g1α−1(t). . . gnα−1(t) dt

1

A 1

n(α−1)+1 .

1. Introduction

Let U be the unit disc, U = {z∈C:|z|<1}. Denote by H(U) the class of

holomorphic functions onU and consider the set of analytic functions

An =f ∈H(U) :f(z) =z+an+1zn+1+. . .

(1)

Ifn = 1 then A1 =A. Let Hu(U) be the class of univalent functions on the

unit discU andSthe class of regular and univalent functionsf(z) =z+a2z2+. . . inU,which satisfy the conditionf(0) =f′(0)1 = 0.

In their paper [3], Ozaki and Nunokawa proved the following results:

Theorem 1. If we assumethat g∈Asatisfies the condition

z2f′(z) f2(z) −1

<1, z∈U (2)

thenf is univalent inU.

Lemma 1 (The Schwartz Lemma). Let the analytic function g be regular in the unit discU andg(0) = 0. If|g(z)| ≤1,∀z∈U, then

|g(z)| ≤ |z|, ∀z∈U (3)

and equality holds only if g(z) =εz, where |ε|= 1.

Received October 18, 2004.

2000Mathematics Subject Classification. Primary 30C45.

(2)

Theorem 2. Let α be a complex number with Reα > 0, and let f = z + a2z2+ . . . be a regular function onU. If

1− |z|2Reα Reα

zf′′(z)

f′(z)

≤1, ∀z∈U (4)

then for any complex numberβ withReβ≥Reαthe function

Fβ(z) = 

β z Z

0

tβ−1f′(t) dt

 1

β

=z+. . . (5)

is regular and univalent inU.

Theorem 3. Assume thatg∈Asatisfies condition (2), and let αbe a complex number with

|α−1| ≤ Reα 3 . (6)

If

|g(z)| ≤1, ∀z∈U (7)

then the function

Gα(z) = 

α z Z

0

g(α−1)(t) dt

 1

α

(8)

is of classS.

2. Main results

Theorem 4. Let gi ∈A,∀i= 1, . . . , n,n∈N∗, satisfy the properties

z2g′i(z)

g2

i (z)

−1

<1, ∀z∈U, ∀i= 1, . . . , n (9)

andα∈C, with

|α−1| ≤ Reα 3n . (10)

If|gi(z)| ≤1,∀z∈U,∀i= 1, . . . , n, then the function

Gα,n(z) = 

(n(α−1) + 1) z Z

0

gα1−1(t). . . gnα−1(t) dt 

 1

n(α−1)+1 (11)

(3)

Proof. From (11) we have:

Gα,n(z) = ( (n(α−1) + 1) z Z

0

tn(α−1)

g1(t) t

α−1

·. . .

·

gn(t)

t

α−1

dt

!n(α−1)+11 (12)

We consider the function

f(z) =

z Z

0

g1(t) t

α−1

. . .

gn(t)

t

α−1

dt. (13)

The functionf is regular inU, and from (13) we obtain

f′(z) =

g1(z) z

α−1

. . .

gn(z)

z

α−1

(14)

and

f′′(z) = (α−1)

g1(z) z

α−2

zg1′(z)−g1(z) z2

g2(z) z

α−1

. . .

gn(z)

z

α−1

+. . .

+

g1(z) z

α−1

. . .

gn−1(z) z

α−1

(α−1)

gn(z)

z

α−2

zgn′ (z)−gn(z)

z2 .

(15)

Next we calculate the expresion zf′′

f′ .

zf′′(z)

f′(z) =

z

(α−1)g1(z)

z

α−2zg

1(z)−g1(z)

z2 g

2(z)

z α−1

. . .gn(z)

z

α−1

g 1(z)

z α−1

. . .gn(z)

z

α−1 +. . .

+ z

g

1(z)

z α−1

. . .gn−1(z)

z

α−1

(α−1)gn(z)

z

α−2zg

n(z)−gn(z)

z2

g 1(z)

z α−1

. . .gn(z)

z α−1

(16)

= (α−1)zg

1(z)−1

g1(z) +· · ·+ (α−1)

zg′n(z)−1

gn(z)

.

The modulus

zf′′

f′

(4)

can then be evaluated as

zf′′(z) f′(z)

=

(α−1)zg

1(z)−1

g1(z) +· · ·+ (α−1)

zg′n(z)−1

gn(z) ≤

(α−1)zg

1(z)−1 g1(z) +· · ·+

(α−1)zg

n(z)−1

gn(z)

=|α−1|

zg′

1(z)−1 g1(z)

+· · ·+|α−1|

zg′

n(z)−1

gn(z) . (18)

By multiplying the first and the last terms of (18) with 1−|Rez|2Reα α >0,we obtain

1− |z|2Reα Reα

zf′′(z)

f′(z)

≤ 1− |z| 2Reα

Reα |α−1|

zg′ 1(z) g1(z) + 1 +. . .

+1− |z| 2Reα

Reα |α−1|

zg′ n(z)

gn(z) + 1

≤ |α−1|1− |z| 2Reα Reα

z2g

1(z) g2 1(z) |g1(z)| |z| + 1

+. . .

+|α−1|1− |z| 2Reα Reα

z2g′ n(z) g2 n(z)

|gn(z)|

|z| + 1

. (19)

By applying the Schwartz Lemma and using (19), we obtain

1− |z|2Reα Reα

zf′′(z) f′(z)

≤ |α−1|1− |z| 2Reα Reα

z2g1′ (z) g2 1(z) −1 + 2 +. . .

+|α−1|1− |z| 2Reα Reα

z2gn′ (z)

g2 n(z) −1 + 2 . (20)

Sincegi satisfies the condition (2)∀i= 1, . . . , n, then from (20) we obtain:

1− |z|2Reα Reα

zf′′(z) f′(z)

≤3|α−1|1− |z| 2Reα

Reα +· · ·+ 3|α−1|

1− |z|2Reα Reα

≤ 3|α−1|

Reα +· · ·+

3|α−1|

Reα =

3n|α−1|

Reα .

(21)

But|α−1| ≤ Reα

3n so from (7) we obtain that

1− |z|2Reα Reα

zf′′(z)

f′(z) ≤1,

(22)

for all z ∈ U and the Theorem 2 implies that the function Gα,n is in the class

S.

Corollary 1. Let g∈Asatisfy (2) andαa complex number such that

|α−1| ≤ Reα

3k , k∈N

(5)

If|g(z)| ≤1,∀z∈U, then the function

Gkα(z) = 

(k(α−1) + 1) z Z

0

gk(α−1)(t) dt

 1

k(α−1)+1 (24)

is univalent.

Proof. We consider the functions

Gk α(z) =

(k(α−1) + 1) z Z

0

tk(α−1)

g(t) t

k(α−1)

dt

 1

k(α−1)+1 (25)

and

f(z) =

z Z

0

g(t) t

k(α−1)

dt. (26)

The functionf is regular inU.From (26) we obtain

f′(z) =

g(z) z

k(α−1)

and

f′′(z) =k(α−1)

g(z) z

k(α−1)−1

zg′(z)g(z)

z2 .

Next we have 1− |z|2Reα

Reα

zf′′(z)

f′(z)

≤1− |z| 2Reα

Reα k|α−1|

zg′(z)

g(z)

+ 1

,

∀z∈U. (27)

Applying the Schwartz Lemma and using (27) we obtain

1− |z|2Reα Reα

zf′′(z) f′(z)

≤ |α−1|1− |z| 2Reα

Reα

z2g′(z) g2(z) −1

+ 2

. (28)

Sincegsatisfies conditions (2) then from (28) and (23) we obtain

1− |z|2Reα Reα

zf′′(z) f′(z)

≤ 3k|α−1| Reα

1− |z|2Reα≤ 3k|α−1| Reα ≤1. (29)

Now Theorem 2 and (29) imply thatGk

α∈S.

Corollary 2. Let f, g ∈ A, satisfy (1) and α the complex number with the property

(6)

If|f(z)| ≤1,∀z∈U and|g(z)| ≤1,∀z∈U, then the function

Gα(z) = 

(2α−1) z Z

0

f(α−1)(t)g(α−1)(t) dt

 1 2α−1 (31)

is univalent.

Proof. In Theorem 1 we setn= 2, g1=f,g2=g.

Remark 1. Theorem 1 is a generalization of Theorem 3.

Remark 2. From Corollary 1, fork= 1, we obtain Theorem 3.

References

1. Nehari Z.,Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ.

Inc. 1975).

2. Nunokava M.,On the theory of multivalent functions, Tsukuba J. Math.11(2) (1987), 273–

286.

3. Ozaki S. and Nunokawa M.,The Schwartzian derivative and univalent functions, Proc. Amer.

Math. Soc.33(2) (1972), 392–394.

4. Pascu N. N.,On univalent criterion II, Itinerant seminar on functional equations

approxima-tion and convexity, Cluj-Napoca, Preprint nr.6, (1985), 153–154.

5. Pascu N. N.,An improvement of Beker’s univelence criterion, Proceedings of the

Commem-orative Session Cimion Stoilow, Brasov (1987), 43–48.

6. Pescar V., New criteria for univalence of certain integral operators, Demonstratio

Mathe-matica,XXXIII(2000), 51–54.

D. Breaz, Department of Mathematics, “1 Decembrie 1918” University, Alba Iulia, Romania, e-mail:dbreaz@uab.ro

Referências

Documentos relacionados

Department of Urology King George Medical University Lucknow, Uttar Pradesh, India E-mail: drdalela@satyam.net.in.

Corresponding Author: Youness, E.A., Department of Mathematics Faculty of Science, Tanta University, Tanta, Egypt Quadratic Interpolation Algorithm for Minimizing Tabulated

Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China. E-mail:

Carol Davila University of Medicine and Pharmacy Bucharest, General Surgery Department, Emergency Hospital of Bucharest, Romania.. No 8 Floreasca Street, Sector 1, 014461,

Falticeanu is with the Machining Manufacturing Department, “Dunarea de Jos” University of Galati, Romania (e-mail: luiza.tomulescu@ugal.ro). determine losing the order because

1 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People’s Republic of China.. 2 Valahia University of Târgovi¸ste,

Department of Engineering Mathematics, Faculty of Engineering Cairo University, Orman, Giza 12221, Egypt..

Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt. e-mail: