• Nenhum resultado encontrado

Comput. Appl. Math. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Comput. Appl. Math. vol.31 número1"

Copied!
9
0
0

Texto

(1)

ISSN 0101-8205 / ISSN 1807-0302 (Online) www.scielo.br/cam

Sharpness of Muqattash-Yahdi problem

CHAO-PING CHEN1 and CRISTINEL MORTICI2∗

1School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People’s Republic of China

2Valahia University of Târgovi¸ste, Department of Mathematics, Bd. Unirii 18, 130082 Târgovi¸ste, Romania

E-mail: chenchaoping@sohu.com / cmortici@valahia.ro

Abstract. Let ψ denote the psi (or digamma) function. We determine the values of the parametersp,qandrsuch that

ψ (n)ln(n+p) q n+r

is the best approximations. Also, we present closer bounds for psi function, which sharpens some

known results due to Muqattash and Yahdi, Qi and Guo, and Mortici.

Mathematical subject classification: 33B15, 26D15.

Key words:psi function, polygamma functions, rate of convergence, approximations.

The gamma function is usually defined forx >0 by

Ŵ(x)=

Z ∞

0

tx−1etdt.

The logarithmic derivative of the gamma function:

ψ (x)= d

d x{lnŴ(x)} = Ŵ′(x)

Ŵ(x) or lnŴ(x)=

Z x

1

ψ (t)dt

(2)

is known as the psi (or digamma) function. The successive derivatives of the psi functionψ (x):

ψ(n)(x):= d n

d xn{ψ (x)} (n ∈N)

are called the polygamma functions.

The following asymptotic formula is well known for the psi function:

ψ (x) lnx 1

2x

∞ X

n=1

B2n

2nx2n

= lnx 1

2x

1 12x2 +

1 120x4 −

1

252x6 + ∙ ∙ ∙ (x → ∞) (1)

(see [1, p. 259]), where

B0=1, B1= − 1

2, B2= 1

6, B4= − 1

30, B6= 1 42,

B8= − 1

30, B10 = 5

66, . . . , and B2n+1=0 (n ∈N) are the Bernoulli numbers.

Recently, the approximations of the following form:

ψ (x)ln(x+a) 1

x , a∈ [0,1], x ∈ [2,∞) (2)

were studied by Muqattash and Yahdi [6]. They computed the error

ψ (x)

ln(x+a) 1 x

ln

1+1

x

≤ln

3 2

=0.4054651081. . . ,

and then the approximation (2) was compared with the approximation obtained by considering the first two terms of the series (1), that is

ψ (x)

ln(x+a)1 x

ψ (x)

ln(x) 1

2x

.

Very recently, the family (2) was also discussed by Qi and Guo [7]. One of their main results is the following inequality onx (0,):

ln

x+1

2

− 1x < ψ (x) <ln(x+e−γ) 1

x , (3)

(3)

In the final part of the paper [6], the authors wonder whether there are prof-itable constantsa ∈ [0,1] andb ∈ [1,2] for which better approximations of the form

ψ (x)ln(x +a) 1

bx (4)

can be obtained. Mortici [3] solved this open problem and proved that the best approximations (4) appear for

a = 1

6 , b=6−2

6

and

a = −1

6 , b=6+2

6.

Moreover, the author derived from [3, Theorem 2.1] the following symmetric double inequality: Forx > √1

6 =0.40824829. . ., ln

x1

6

− 1

(6+2√6)x ≤ψ (x)≤ln

x+ 1

6

− 1

(62√6)x . (5)

This double inequality is more accurate than the estimations (3) of Qi and Guo. We define the sequence(vn)n∈Nby

vn =ψ (n)−

ln(n+p) q n+r

. (6)

We are interested in finding the values of the parameters p,q andr such that

(vn)nNis thefastestsequence which would converge to zero. This provides the

best approximations of the form:

ψ (n)ln(n+p) q

n+r . (7)

Our study is based on the following Lemma 1, which provides a method for measuring the speed of convergence.

Lemma 1 (see [4] and [5]). If the sequencen)n∈N converges to zero and if there exists the following limit:

lim

n→∞n

k

(4)

then

lim

n→∞n

k−1

λn= l

k1 (k >1) .

Theorem 1.Let the sequence(vn)n∈Nbe defined by(6). Then for

                

p = −1

2− 1 6

p

9+6√3

q= −1

6 p

9+6√3

r = −1

2− 1 18

3p9+6√3,

(8) or                 

p = −1

2+ 1 6

p

9+6√3

q= 1

6 p

9+6√3

r = −1

2+ 1 18

3p9+6√3,

(9)

we have

lim

n→∞n 5(v

n−vn+1)= 1 180+

3

54 and nlim→∞n 4v n = 1 720+ √ 3 216.

The speed of convergence of the sequence(vn)n∈Nis given by the order estimate O n−4

as n→ ∞.

Proof. First of all, we write the differencevn−vn+1as the following power series inn−1:

vn−vn+1

= 2q−2p−1

2n2 +

−3q6qr+3p+3p2

+1 3n3

+ 4q+12qr+12qr

2

−14p6p24p3

4n4

+ −5q−20qr −30qr

2

−20qr3

+1+5p+10p2

+10p3

+5p4 5n5

+ O

1

n6

(n → ∞) .

(5)

According to Lemma 1, the three parameters p, q andr, which produce the fastest convergence of the sequence(vn)n∈Nare given by (10)

    

   

2q2p1=0

−3q6qr+3p+3p2+1=0 4q +12qr +12qr2

−14p6p2

−4p3

=0,

that is, by (8) and (9). We thus find that

vn−vn+1= 1 180+

3 54

! 1

n5 +O

1

n6

(n → ∞).

Finally, by using Lemma 1, we obtain the assertion (1) of Theorem 1.

Solutions (8) and (9) provide the best approximations of type (7):

ψ (n)ln

n1

2 − 1 6

q

9+6√3

+ 3

p

9+6√3

18n9√3p9+6√3

(11)

and

ψ (n)ln

n1

2+ 1 6

q

9+6√3

− 3

p

9+6√3

18n9+√3p9+6√3

. (12)

Theorem 2 below presents closer bounds for psi function.

Theorem 2.For x > 1

2 + 1 6

p

9+6√3=1.23394491. . ., then

ln

x1

2 − 1 6

q

9+6√3

+ 3

p

9+6√3

18x9√3p9+6√3

+ 7201 + √

3 216

! 1

x4 < ψ (x) <ln

x1

2 + 1 6

q

9+6√3

(13)

− 3

p

9+6√3

18x9+√3p9+6√3+ 1 720+

3 216

! 1

(6)

Proof. The lower bound of (13) is obtained by considering the function F

defined by

F(x) = ψ (x)ln

x 1

2− 1 6

q

9+6√3

− 3

p

9+6√3

18x 9√3p9+6√3

7201 + √

3 216

! 1

x4 , x > 1 2+

1 6

q

9+6√3.

We conclude from the asymptotic formula (1) that

lim

x→∞F(x)=0. It follows form [2, Theorem 9] that

1

x +

1 2x2 +

1 6x3 −

1 30x5 < ψ

(x) < 1

x +

1 2x2 +

1 6x3

301x5 + 1

42x7 , x >0.

(14)

Differentiating F(x) with respect to x and applying the second inequality

in (14) yields, forx > 1

2 + 1 6

p

9+6√3,

F′(x)=ψ′(x) 6

6x3p9+6√3+

54p9+6√3

18x9√3p9+6√32

+10 √

3+3 540x5 <

1

x +

1 2x2 +

1 6x3 −

1 30x5 +

1 42x7

− 6

6x 3p9+6√3 +

54p9+6√3

18x 9√3p9+6√32 +

10√3+3 540x5

= − P(x)

7x7 6x3p9+63

18x9√3p9+6√32

,

where

P(x) = 312+96 q

9+6√3√3+426√3+151 q

9+6√3

+

593

q

9+6√3+1902√3+1113+372 q

9+6√3√3

(7)

+

540

q

9+6√3√3+880 q

9+6√3+1425+3192√3

(x1)2

+567 q

9+6√3+336 q

9+6√3√3+705+2310√3(x 1)3

+630√3+84 q

9+6√3√3+189+147 q

9+6√3(x1)4 > 0 for x > 1

2+ 1 6

q

9+6√3.

Therefore,F(x) <0 forx > 1 2 +

1 6

p

9+6√3. This leads to

F(x) > lim

x→∞F(x)=0.

This means that the first inequality in (13) holds forx > 1

2+ 1 6

p

9+6√3.

The upper bound of (13) is obtained by considering the functionGdefined by

G(x)=ψ (x)ln

x1

2 + 1 6

q

9+6√3

+ 3

p

9+6√3

18x9+√3p9+6√3

7201 + √

3 216

! 1

x4 , x >0. We conclude from the asymptotic formula (1) that

lim

x→∞G(x)=0.

DifferentiatingG(x)with respect tox and applying the first inequality in (14) yields, forx >0,

G′(x) = ψ′(x) 6

6x3+p9+6√3 −

54p9+6√3

18x9+√3p9+6√32

+10 √

3+3 540x5 >

1

x +

1 2x2 +

1 6x3 −

1 30x5 −

6

6x 3+p9+6√3

− 54

p

9+6√3

18x9+√3p9+6√32 +

10√3+3 540x5

= Q(x)

x5 6x3+p9+63

18x9+√3p9+6√32

(8)

where

Q(x) =

−90√3+21 q

9+6√327+12√3 q

9+6√3

x2

+30√3393 q

9+6√3x +

q

9+6√36√3+6

=

−90√3+21 q

9+6√327+12√3 q

9+6√3

×(xx1)(x−x2) with

x1 =

1310√3+p9+6√3

q

−350190√3+78p9+6√3+44√3p9+6√3

230√3+7p9+6√39+4√3p9+6√3

= 0.0638967475. . . ,

x2 =

1310√3+p9+6√3

+

q

−350190√3+78p9+6√3+44√3p9+6√3

2

−30√3+7p9+6√39+4√3p9+6√3

= 0.158650823. . . .

Therefore,Q(x) >0 andG(x) >0 forx >x2. This leads to

G(x) < lim

x→∞G(x)=0 x >x2.

This means that the second inequality in (13) holds forx >0.158650823....

Some computer experiments indicate that for x > 2.30488055, the lower bound in (13) is sharper than one in (5). For x > 0.5690291018, the upper bound in (13) is sharper than one in (5).

The inequality (13) provides the best approximations:

ψ (x)ln

x1

2 − 1 6

q

9+6√3

+ 3

p

9+6√3

18x9√3p9+6√3

(9)

and

ψ (x)ln

x 1

2 + 1 6

q

9+6√3

− 3

p

9+6√3

18x 9+√3p9+6√3

. (16)

Acknowledgements. The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

REFERENCES

[1] M. Abramowitz and I.A. Stegun (Editors), Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables. Applied Mathematics Series,

55, Ninth printing, National Bureau of Standards, Washington, D.C. (1972).

[2] H. Alzer, On some inequalities for the gamma and psi functions. Math. Comp.,

66(1997), 373–389.

[3] C. Mortici,The proof of Muqattash-Yahdi conjecture. Math. Comput. Modelling,

51(2010), 1154–1159.

[4] C. Mortici, New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett.,23(2010), 97–100.

[5] C. Mortici, Product approximations via asymptotic integration. Amer. Math. Monthly,117(2010), 434–441.

[6] I. Muqattash and M. Yahdi, Infinite family of approximations of the digamma function. Math. Comput. Modelling,43(2006), 1329–1336.

Referências

Documentos relacionados

(a) Impregnated watercress leave at 51 kPa; (b) Impregnated watercress leave at 58 kPa. Effect of vacuum impregnation on watercress colour Lab. parameters, in the vacuum pressure

Neste grupo pretendíamos saber quais as actividades de escrita privilegiadas pelos inquiridos; se costumam promover actividades inovadoras e motivadoras no ensino da escrita; se

Reconhecidas as diferenças essenciais de infecção entre as três condições clínicas citadas anteriormente, recomen- da-se: a) sessão única para dentes com polpa viva; b) duas

Índice de placa de sete crianças, de ambos os sexos, na faixa etária de 3 a 6 anos, do Hospital Aldenora Belo, São Luís - MA..

The smells used were algae, eucalyptus buds with lavender, a very large cinnamon stick, rose flower petals with lemon tree flower petals, gasoline, and matches.. The algae were

Os resultados obtidos permitem afirmar que não existe uma variação estatisticamente significativa entre o diâmetro dos túbulos dentinários medidos para um dente completo triturado e

bancos, os produtos biológicos possam ser analisados, categorizados e utilizados em pesquisa, a existência de repositórios destinados exclusivamente ao armazenamento de

1 Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood IL, U.S.A.; 2 Department of Neurological Surgery, Loyola University Chicago, Stritch School