• Nenhum resultado encontrado

Effects of extreme cooling methods on mechanical properties and shear bond strength of bilayered porcelain/3Y-TZP specimens

N/A
N/A
Protected

Academic year: 2017

Share "Effects of extreme cooling methods on mechanical properties and shear bond strength of bilayered porcelain/3Y-TZP specimens"

Copied!
7
0
0

Texto

(1)

Effects

of

extreme

cooling

methods

on

mechanical

properties

and

shear

bond

strength

of

bilayered

porcelain/3Y-TZP

specimens

Antonio

A.

Almeida-Ju´nior

a

,

Diogo

Longhini

a

,

Nata´lia

B.

Domingues

a

,

Claudinei

Santos

b

,

Gelson

L.

Adabo

a,

*

aUNESPUnivEstadualPaulista,FaculdadedeOdontologiadeAraraquara,R.Humaita´,1680Sala415,Centro.Araraquara,SP14801-903,

Brazil

bUniversidadedoEstadodoRiodeJaneiroFaculdadedeTecnologiadeResende,EtrResende-Riachuelo,S/N,MoradadaColina,Resende,RJ

27523-000,Brazil

1.

Introduction

A mismatch of the thermal expansion coefficient (CTE) between feldspathicporcelain and zirconia, aswell asthe

effect ofthermaldiffusivityandthermalconductivityupon cooling aftersintering, cangeneratetransient and residual stresses and increase the clinical failure rates of zirconia-basedrestorations.1–9Belowtheglasstransitiontemperature

(Tg),theporcelainacquiresasolidstateinwhichstructural

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6November2012 Receivedinrevisedform 9January2013

Accepted11January2013

Keywords:

Dentalceramic Zirconia Bilayerceramic Cooling Residualstress

a

b

s

t

r

a

c

t

Objectives: Thisstudyinvestigatedtheeffectofextremecoolingmethodsontheflexural

strength,reliabilityandshearbondstrengthofveneerporcelainforzirconia.

Methods: VitaVM9porcelainwassinteredonzirconiabarspecimensandcooledbyoneof

thefollowingmethods:insideaswitched-offfurnace(slow),atroomtemperature(normal) or immediately by compressed air(fast). Three-pointflexural strength tests (FS) were performed on specimenswith porcelain undertension (PT,n=30) andzirconia under tension(ZT,n=30).Shearbondstrengthtests(SBS,n=15)wereperformedoncylindrical blocksofporcelain,whichwereappliedonzirconiaplates.Dataweresubmittedtoone-way ANOVAandTukey’sposthoctests(p<0.05).WeibullanalysiswasperformedonthePTand

ZTconfigurations.

Results: One-wayANOVAforthePTconfigurationwassignificant,andTukey’stestrevealed

that fastcooling leads to significantly higher values (p<0.01) than the other cooling

methods.One-wayANOVAfortheZTconfigurationwasnotsignificant(p=0.06).Weibull analysisshowedthatnormalcoolinghadslightlyhigherreliabilityforboththePTandZT configurations.StatisticaltestsshowedthatslowcoolingdecreasedtheSBSvalue(p<0.01)

andshowedlessadhesivefracturemodesthantheothercoolingmethods.

ClinicalSignificance:Slowcoolingseemstoaffecttheveneerresistanceandadhesiontothe

zirconiacore;however,thereliabilityoffastcoolingwasslightlylowerthanthatoftheother methods.

#2013ElsevierLtd.

*Correspondingauthorat:R.Humaita,1680Sala415,Centro.Araraquara,SP14801-903,Brazil.Tel.:+551633016415;fax:+551633016406. E-mailaddresses:adabo@foar.unesp.br,gl.adabo@uol.com.br(G.L.Adabo).

Available

online

at

www.sciencedirect.com

journalhomepage:www.intl.elsevierhealth.com/journals/jden

0300-5712# 2013ElsevierLtd.

http://dx.doi.org/10.1016/j.jdent.2013.01.005

Open access under the Elsevier OA license.

(2)

rearrangements are impossible and residual stress can developwithintheporcelainlayer.Stressintensityisdirectly proportionaltothedifferencesintheCTEofthetwomaterials from Tg to room temperature.10 Furthermore, residual stresses in zirconia/porcelain bilayer specimens may be modifiedbythermaltreatmentat theTginterval,variation incoolingratesorthetemperaturegradientoftheinternaland externallayersoftheveneer.4,5,7,11–13

In contrast to metals in metal–ceramic restorations, zirconia has thermal diffusivity lower than that of dental porcelain,andaslowcoolingofzirconiaretardsthebalance betweentheinternalandexternaltemperatures. Moreover, thethermalconductivityofzirconiaisapproximately15times smallerthan thatofaluminaand approximately 100times smallerthanthatofgoldalloys.5,12Consequently,thecooling

processafterthefiringofporcelaininzirconia-based restora-tionsisveryslow,resultinginhightransitionaltemperature differences throughout the restoration, especially at the thicker and irregular layers and upon fast cooling. The temperaturegradientbetweentheveneerandzirconiacore inthefastcoolingmethodmayreachupto1408C.14During

fast cooling, the temperature of the veneer porcelain in contactwiththe zirconia core mayremain above Tgfor a longerperiodoftime,whilethesurfaceoftheveneercoolsata fasterrate.Thiscoolingintroducesahightransientthermal gradientbetweenthe outerandinnersurface. Thisprocess resultsinahighresidualtensilestresswithintheporcelain layer andhigh tempering/compressive residual stresseson thesurface.5,11,12,14

To address theseconcerns, afterMarch 2009, manufac-turershaverecommendedslowcoolingafterporcelainfiring to reduce thermal gradients and residual stresses in the porcelain sintering5,7,14 and to decrease the risk for early

ceramicchipping.6Theliteratureprovidesnostandardization

inthemanydifferentprotocolsforcooling,3,6,7,11,13–18andthis

widevariabilityamongcoolingmethodsproducesaconfusing nomenclature.Forexample,slowcoolingforoneauthormay besimilartoregularcoolingforotherauthors.

Therefore,theaimofthisstudyistoinvestigatehowthe extremesloworfastcoolingmethodsinfluencetheflexural strengthandshearbondstrengthofdentalfeldspathicveneer porcelainforzirconia.Inaddition,thereliabilityoftheflexural strength was investigated by Weibull analysis. The null hypothesiswasthattherewouldbenosignificantdifferences in the studied properties of the porcelain when different coolingconditionswereused.

2.

Materials

and

methods

2.1. Processingandthree-pointflexuraltesting

ThematerialsusedinthisstudyaredescribedinTable1. Pre-sintered 3Y-TZPblocks werecutwith adiamond disc ina precisioncuttingmachine(Isomet1000,Buehler,LakeBluff, USA)andfinishedusing600-gritsizeSiCpapersinapolishing machine(Metaserv2000,Buehler,BuehlerUKLtd.,Coventry, England).AftersinteringinaMoSi2furnace(FE1800,Maitec,

Sa˜oCarlos,SP,Brazil)at15308Cfor2h,bar-shapedframework specimens had an average final dimension of 22mm in length4.0mminwidth0.7mminthickness.The dimen-sionsofeachspecimenweremeasuredwithadigitalcaliper (Mitutoyo Corporation, Tokyo, Japan) with precision of 0.01mmforthecalculationofflexuralstrength.

Onesideofthezirconiaframeworkbarswasveneeredwith Vita VM9. The powder and liquid (VITA Modeling Liquid, VitavZahnfabrik, BadSa¨ckingen, Germany) were mixed to obtainathinaqueousmixture(washbakelayer),whichwas appliedverythinlyonthecleanedframeworkandsinteredin theceramicoven(Aluminipress,EDG,SaoCarlos,SP,Brazil) followingthemanufacturer’srecommendations.Aslurry of porcelain(dentinelayer)waspreparedbymixingthepowder andliquidinaratioof2.5:1andinsertedintoapolyethermold (ImpregumF,3MESPE,Seefeld,Germany)thatwasadapted around the zirconia bars. Excess liquid was blotted with absorbentpaperbeforethespecimenswereremovedfromthe mold.Thespecimensweresinteredintheovenaccordingto themanufacturer’sinstructions.Attheendoffiring,cooling was performed according to the following experimental protocol:

Slow samples were left inside the closed, turned-off

furnaceuntiltheyreachedroomtemperature(about8h);

Normaltheelevatorofthefurnacewaslowered,andwhen

the temperature inside the furnace reached 5008C, the samples wereremoved and cooled at room temperature (about20min);

Fastsampleswereremovedfromthefurnaceimmediately

aftertheholdingtimeandblastedbycompressedair(less than10s).

Aftercooling,theporcelainsurfaceofthespecimenswas sequentiallygroundedusing120-to1200-gritwetSiCpaper

Table1–Materials.

Material Manufacturer Maincomponents (mass%)

Batch number

Elasticmodulus (GPa)

CTE(1068C1)

ZRHP ProtMatMateriaisAvanc¸ados, Guaratingueta´,Sa˜oPaulo,Brazil

ZrO2(94,8);Y2O3(5.2) S09-011B 210a 10,1a

VitaVM9Dentin VitaZahnfabrik,BadSackingen, Germany

SiO2(60–64);Al2O3(13–15); K2O(7–10);Na2O(4–6); B2O3(3–5)b

30830 65b 9,2b

(3)

discs(NortonAbrasivos,SaoPaulo,SP,Brazil)inapolishing machine (Metaserv 2000, Buehler) until achieving final dimensionsof40.25mminwidth,1.20.2mmin thick-nessand22mminlength.Thedimensionsofthespecimens weremeasuredwithadigitalcaliper.

Three-point flexuralstrength testingwas carried out in distilledwaterat378C(1.08C).Thesampleholderhada 15-mmspanbetweenthetworoundedsteelknife-edgebearersof 0.8-mm radius. Thespecimens were loaded on the center pointbyaroundedsteelknifeedgepiston(1.6mmradius)ina universal testing machine (DL 2000, EMIC, Sa˜o Jose´ dos Pinhais,PR,Brazil)witha5.0-kNloadcellandatacrosshead speedof1.0mm/minuntilfailure.Specimenswererandomly divided into two configurations, according to the cooling method:

1porcelainsideonthesampleholder,i.e.,porcelainunder tensile stressand zirconiaunder compressionstress(PT) (slown=30;normaln=30;fastn=30);

2zirconia side on the sample holder, i.e., zirconia under tensilestressandporcelainundercompressionstress(ZT) (slown=30;normaln=30;fastn=30).

The flexural strength (FS) was calculated according to Eq.(1):

sf¼ 6M

wt2

tK

tc

ttþ

Ettc

Ectc

(1)

whereMandKareobtainedbyEqs.(2)and(3).

M¼PL

4 (2)

K¼4þ6 tc

tt

2

þEc

Et

tc

tt

3

þEttt

Ectc (3)

ReplacingMandKinEq.(1),theEq.(4)isobtained forthe calculationofthebilayerspecimensFS19,20:

sf¼ 3EtLPðEct 2

cþ2EctcttþEtt2cÞ

2wðE2

ct2cþ4EcEtt3cttþ6EcEttc2t2tþ4EcEttct3tþEt2ct4tÞ

(4)

wheresfisthemaximumcentertensilestress(MPa),Pisthe

loadat fracture(N), Listhedistancebetweenthesupports (mm),Etistheelasticmodulusofthematerialundertensile stress(GPa),Ecistheelasticmodulusofthematerialunder compression(GPa),ttisthethicknessofthematerialunder

tensilestress(mm),tcisthethicknessofthematerialunder compression(mm),andwisthespecimen’swidth(mm).

2.2. Weibullanalysis

Toassessthereliabilityofthespecimensineachconfiguration testaccordingtothecoolingconditions,aWeibullregression analysis was performed on the flexural strength data to determine the Weibull modulus (m) and the characteristic strength(s0).Eq.(5)describestheWeibulldistribution:

P¼1exp s

s0

m

(5)

wherePistheprobabilityoffailure,sistheflexuralstrength,s0

is the characteristic strength at the fracture probability of

63.21%,andmistheWeibullmodulus,whichistheslopeof thelineplottedinthe‘‘ln[ln(1/(1P))]vslns’’Cartesianplane.

2.3. Shearbondstrengthtest

Square zirconia specimens, 9mm in length and 2mm in thickness,werecutandsinteredasdescribedabove.Awash bake layerwas applied and sinteredon the surface,and a cylindricalmetalmold,5mmindiameterand3mminheight, wasusedtobuildtheporcelainlayer.Dentineporcelainwas sintered according to the manufacturer’s instructions and cooledaspreviouslydescribed(n=15).

Aftercooling,thezirconiasegmentofthespecimenwas embeddedinapolyvinylchloride(PVC)tubewithPMMAresin, ensuringthatthezirconia/porcelaininterfacewasatthesame levelastheresinsurface.Thediameterofporcelainlayerof thespecimenswasmeasuredwithdigitalcalipertocalculate thebondarea.Thespecimenswereheldinametaldeviceina universal testing machine (DL 2000, EMIC, Sa˜o Jose´ dos Pinhais,PR,Brazil).Theloadwasappliedparalleltothelong axis of the specimen via a knife-edge shearing rodat the zirconia/porcelain interface, with a 5.0kN load cell at a crossheadspeedof1.0mm/min,untilfractureofthesample wasachieved.Themaximumloadatfailurewasrecorded,and theshearbondstrength(sSBS–MPa)wascalculatedaccording

toEq.(6):

sSBS¼ P

pr2 (6)

wherePisthemaximumfailureload(N)andristheratioof porcelaincircumference(mm2).

FailuremodesoftheSBStestwereclassifiedaccordingto: (1) adhesive failure at the veneering porcelain/substrate interface (AD); (2) cohesive failure within the veneering porcelain (CO); and (3) the combination of adhesive and cohesivefailures(AC).2

2.4. Statistics

Statistical analyses for flexural strength and shear bond strength wereperformedbyone-wayANOVA(a<0.05)and

Tukey’sposthoctestformultiplecomparisons.

3.

Results

Themeansofthethree-pointflexuralstrengthmeasures(sf),

thestandarddeviations(SD),andthecoefficientsofvariation (CV) of specimens with porcelain under tension (PT) and zirconiaundertension(ZT)accordingtocoolingmethodare shown in Table 2. One-way ANOVA for the PT specimen configuration was significant (F2,87=10.46, p<0.01), and

Tukey’s post hoc test showed that fast cooling leads to significantlyhighermeansfvaluesthantheslowandnormal

coolingmethods,whichwerenotdifferentfromeachother. On the other hand, one-wayANOVA for the ZT specimen configurationwasnotsignificant(F2,87=2.90,p=0.06).

(4)

specimen configurations.InthePT configuration,slowand fast were equal,but in the ZT configuration, slow cooling specimens exhibited a higher Weibull modulus than fast-coolingspecimens.

The mean shear bond strength of porcelain bonded to zirconia that underwent slow cooling was 15.9 (4.5) MPa; normalcoolingwas19.5(4.6)MPa;andfastcoolingwas20.9 (4.4)MPa.One-wayANOVAshowedasignificantdifferencefor theshearbondstrengthsamongthecoolingmethodstested (F2,42=5.430, p<0.01). Tukey’s post hoc test for multiple

comparisonsshowedthatthemeanSBSoftheslow-cooling methodwaslowerthanthoseofthenormal-andfast-cooling methods,whichweresimilartoeachother.AftertheSBStest, thefollowingfailuremodeswereobservedforslow(AD40%; CO33%;AC27%),normal(AD67%;AC33%),andfastcooling (AD67%;CO13%;AC20%).

4.

Discussion

Thefinaldimensionsoftheutilizedbilayerflexuralstrength specimenswerechosenbasedonthemonolayerspecimen tests(ISO6972:2008)withathicknessratioof1:1.Thisstudy conductedtwoflexuralstrengthtestconfigurations (porce-lainorzirconiaundertension),submergedinwaterat378C. Theresultsindicatedthatthematerialonthebottomsurface determinesthestrengthandfailuremodeofthesystem.19–24 According to the selected mathematic equation, flexural strength depends directly on the elastic modulus of the material under tension21–23 becausethe maximum loadis

concentratedonthebottom surfaceofthe sample. There-fore,ahigherflexuralstrengthwasachievedwhenzirconia was under tension. Nevertheless, there were two distinct failure modes according to the test configurations. When porcelain was under tension (PT), flaws initiated in the bottom surface and propagated throughout the porcelain untiltheyreachedtheinterface.Atthismoment,thetests werestoppedandthezirconialayerwasnotimpaired.When thezirconiawasundertension(ZT),the porcelain delami-natedbeforethefractureofthezirconiaduetolateralflaw

formation and the crushing of the loading area on the porcelain.20,25

Theflexuralstrengthvalues ofZTspecimensarelower compared to the published values for zirconia monolayer specimens12,20,24,26,27 because the compression stress

induces failureof the porcelainbefore the zirconia under tension. Nevertheless, the ZT test configuration was per-formed becauseitisbelievedthatfailures originateatthe internal surfacesof crowns.19,24,27 To decrease the failure rate, studies20,24havesuggested that theareas of

restora-tions or fixed partial dentures that are submitted to a highconcentrationoftensilestresswhere estheticsisnot needed (suchasthe bottomofthe ponticandconnectors) should be free of the veneered layer to increase the mechanical performance. However, zirconia issusceptible to degradation at low temperatures when exposed to a humidenvironment.28

Specialattentionshouldbepaidtothegreatvariabilityof coolingmethodsthataredescribedintheliteraturewithno standardization3,6,7,11,13–18(Table3).Thesedifferencesleadto difficultiesincomparingresultsanddonotallowaconsensual conclusion for which cooling method must be used. For example,somestudiesrefertoaspecificmethodas‘‘slow,’’ butthismethodisactuallysimilartonormalinourandother studies. Furthermore, porcelain manufacturers are unclear abouttheidealcoolingmethod,referringonlyto‘‘slow.’’Inour study, extreme cooling protocols (fast and slow) were performedtoidentifythechangesinthepropertiesofveneer and zirconia bilayer specimens. In the fast method, the specimenswerecooledbyblastingcompressedair immedi-atelyaftertheholdingtimeofsintering,thatis,from9108Cto room temperature in less than 10s. In the slow-cooling method, the specimens were left inside the switched-off furnaceformorethan8h.

The null hypothesis that the flexural strength and reliability would not be influenced by the cooling method waspartiallyrejected.Thehigherflexuralstrengthobserved forPT-FASTmayberelatedtothetemperingoftheporcelain duetoahighcoolingrateandalargedifferenceinthethermal gradient.Thismayinduceanon-uniformsolidificationfrom the surface to the center, leading to residual compressive stress on the veneer surface5,6,29,30 and increasing the strength.4,6Ontheotherhand,inthisstudy,itwasobserved

that the PT-NORMAL showed a slightly higher Weibull modulus (m). The clinical success of ceramic restorations dependsonthestructuralreliabilityofthedentalceramics. Higher Weibull modulus (m) values represent a more homogenous distribution of flaws, a lower dispersion of values,andahigherreliabilityofthematerial.19,24,27Inthis

study,inspiteofthefactthatthePT-FASTgroupexhibiteda higherflexuralstrength,thisgrouppresentedhigher disper-sionvaluesand,consequently,lowerreliability.Thismightbe related to the possible increase inthe incidence of cracks whenfastcoolingisperformed.Guazzatoetal.7observedan

increase in the crack rate in porcelain cooled with a fast cooling rate,which affected adversely its strength, despite their cooling method had notbeen as extremeasthe fast methodemployedinourstudy(Table3).Moreover,Bellietal.31 performedcyclicfatiguetestonpre-molarcrownssubmitted to fastand slow cooling andobserved thatcracks on VM9

Table2–Meansofflexuralstrength(sf,MPa),standard

deviations(SD),coefficientsofvariation(CV,%),Weibull modulus(m),characteristicstrengths(s0,MPa)andR

-valuesofspecimenswithporcelainundertension(PT configuration)andspecimenswithzirconiaunder ten-sion(ZTconfiguration)accordingtocoolingmethod.

Parameters Flexuralstrength Weibullanalysis

sf(SD) CV m s0 R-value PTconfiguration

PT-SLOW 50.4(11.8)B 23.5% 4.7 54.8 0.973 PT-NORMAL 52.3(9.5)B 18.1% 6.2 56.1 0.956 PT-FAST 64.2(15.0)A 23.3% 4.7 69.9 0.987 ZTconfiguration

ZT-SLOW 611.6(127.3)ns 20.8% 5.2 661.3 0.966 ZT-NORMAL 612.8(125.6)ns 20.5% 5.4 663.9 0.974 ZT-FAST 685.2(151.7)ns 22.1% 4.7 747.5 0.989

(5)

specimensgrewlessunderslowregimenanditincreasedthe lifetimeofzirconia–porcelainprostheses.

Despite the statistical similarities among the flexural strengthvaluesoftheZTconfigurationgroupsaccordingto thedifferentmethods,ZT-NORMALexhibitedahighermvalue thanZT-SLOWandZT-FAST.Althoughthestrengthvalueis important,itmaynotbeextrapolatedtopredictthestructural performanceoftheceramic.

Chippinganddelaminatingofporcelaininzirconia-based restorationshasoccurredclinically,andtheseprocessesare consideredto bethemostcommon clinical failures.8,9 The

bondstrengthmaybeexplainedbytheinherentfragilityofthe interfacebetweenthecoreandveneer,oritmaybesimplydue to the weak strength of the porcelain layer and can be influenced bythe materials,3,6 surfacetreatments of

zirco-nia32, cooling rate after sintering3,6,14 or bond strength

tests.3,6,14 In this study, fast and normal cooling methods

ledtosignificantlyhigherSBSvaluesandshowed predomi-nantly adhesive failure mode between VM9 porcelain and zirconia. These results may be attributed to compressive/

tempering stresses in the porcelain layer under faster cooling, which can improvethe resistance of the surface layer6andtodevelophighresidualtensiononthezirconia/

porcelaininterface,5,7,14whichledtothe predominanceof

adhesivefailuremode.Incontrast,theslowcoolingmethod hadlowerSBSvalueandhigherincidenceofcohesiveand combinationfailuremodes.However,adirectcomparisonto other studies is difficult once, tothe authors’ knowledge, thereisanypublishedbondstrengthinvestigationthatused slowcoolingmethodcomparabletothatusedinthisstudy. The cohesive failure mode is more related to porcelain strengththantoitsadhesiontothezirconiacore.1Inslower cooling regimen, the tempering does not occur because tensile stresses are generated in the porcelain due to structural relaxation of the glass above and around the Tg.5,6,13,29 Moreover, as discussed before, PT-SLOW group

in flexural strength test showed lower mean value than PT-FAST.Itispossiblethatporcelaininslowcoolingmethod had resistancebelow thanthat for the adhesionbetween veneerandzirconia.

Table3–Comparisonamongstudiesthatevaluateddifferentcoolingmethodsinporcelain/zirconiaspecimens.

Authors(year) Designofspecimens (v:cthicknessratio)

Coolingmethod Classified Comparedto ourstudy

Taskonaketal.(2008)13 Bilayerdisks(6:10) Immediate Fast Fast

Monolayerdisks Insidethefurnace Slow Slow

Zhangetal.(2009)11 Monolayerdisks

Bilayerplates(6:1)

Insidethefurnace

Inambientairatroomtemperature Temperedbyblastingcompressedair

Slow Normal Fast

Slow Normal Fast Gostemeyeretal.(2010)6 Bilayerrectangular

plate(1:1)

Insidethefurnacefor5min Immediatelyinambientair

Slow Rapid

Normal? ? Guazzatoetal.(2010)7 Bilayerspheres(1:2;1:1) Immediatelymovedtothefurnacebench Fast ?

Accordingtothemanufacturer’s recommendations

Normal ?

Komineetal.(2010)3 Bilayerdisks Outsidethefurnacefor4minuntil

reachingTg

Slow Normal

Immediatelyinambientair Rapid ?

Ruesetal.(2010)15 Centralincisorcrowns Conventionalfiring Protocol1 Normal?

Extracoolingtimeof6minafterglazefiring Protocol2 ? Extracoolingtimeof6minafterallfirings Protocol3 ? Choietal.(2011)16 Bilayerplate(1:1;2:1)

PorcelainMonolayerplate

Forcecooledwithcompressedair Removedwhenthetemperatureoffurnace dropped

Stoppedthedescentofthemuffleandwaited until100C.

Fast Normal Slow

Fast Normal Slow

Mainjotetal.(2011)17 Bilayerdisks(2:1) Openedfurnace Classic Normal

Insidetheswitched-offfurnacefrom 9008Cto6008C

Modified Slow

Atarateof28C/mininspecialfurnace Slow ? Tholeyetal.(2011)14 Crownswithuniformand

anatomicalframeworks

Insidethefurnaceuntil6008C Slow ?

Openedthechamberdirectlyandswitched offthefurnace

Fast Normal?

Tanetal.(2012)18 Beamofzirconiawith

porcelainbutton(3:1)

Removedassoonasthemufflehadfully descended

Fast ?

Leftinthemufflefor7.5minuntilreaching 5008C

Moderate Normal

Leftinthepartially(30%)openmufflefor 15minuntilreachingamuffletemperature of5008C.

Slow ?

Bellietal.31 Premolarcrowns Immediatelyinambientair Fast ?

Leftinthepartially(10%)openmuffleuntil reachingamuffletemperatureof2008C.

(6)

Komine et al.3 observed that depending on porcelain

material, slow cooling increased the SBS between veneer and zirconia, and all specimens showedcohesive fracture, howeverthey used other porcelain brand marks (CZR and e.Max Ceram), the surface of zirconia specimens was air-blastedwithAl2O3andtheslowcoolingusedwassimilarto

ournormalcooling(Table3).DespiteGostemeyeretal.6also

had observed the dependence on porcelain material, they showed that slow cooling method (similar to our normal cooling–Table3)adverselyaffectedthestrainenergyrelease in four-point bending test and prevailed the combination fracturemodeforVM9andTricerambuttherewerenoeffect ofcooling methods onZirox andLava Ceram.Tan etal.,14

using modified four-point flexural technique with VM9 porcelainbuttonunderbeamsofzirconia,observedthatslow cooling(intermediarytoournormalandslowcoolingmethod) increasedthe fractureloadand thevisualfractureanalysis owedathinlayerofporcelainonthezirconia, classifiedas cohesivemode.

Nevertheless,nodirectclinicalcorrelationshouldbemade between failures in shear bond studies with the failure mechanismsofrestorationsbecausethetestingmethodsdo notreproduceclinicalconditions.33Ideally,long-termclinical

trialsshouldbeusedtodeterminethefailuremechanismsfor all-ceramic restorations. Moreover, while a fracture bond strengthvaluehigherthan25MPaisacceptedasadequatefor metal–ceramics,theacceptablebondstrengthforall-ceramic materials has not yet been determined.34 Moreover, the

bonding mechanisms between zirconia and porcelain are unclear.2,12Surfacetreatmentsseemtodamagethestructure

ofzirconia due to its martensitic transformation fromthe tetragonaltomonoclinic phase.26,28 Someporcelainbrands

require a surface liner before porcelain application; the porcelainsamplesusedinthisstudynecessitatedawashbake layer. Thus,theeffects ofchemicalbondingand microme-chanical retention, as well as the improvement of the wettabilityofzirconia,areactiveareasofresearch.

Whileafracturebondstrengthvaluehigherthan25MPais acceptedasadequateformetal–ceramics,theacceptablebond strength for all-ceramic materials has not yet been deter-mined.34Moreover,thebondingmechanismsbetween

zirco-niaandporcelainareunclear.2,12Surfacetreatmentsseemto damage the structure of zirconia due to its martensitic transformationfromthetetragonaltomonoclinicphase.26,28

Someporcelainbrandsrequireasurfacelinerbeforeporcelain application; the porcelain samples used in this study necessitatedawashbakelayer.Thus,theeffectsofchemical bonding and micromechanical retention, as well as the improvementofthewettabilityofzirconia,areactiveareas ofresearch.

Thisstudyhassomelimitationsthatmakeit difficultto directlyrelateitsresultstoclinicalsituations.The tempera-turedistributionofspecimensiscomplexanddependsonthe thermal proprieties of the materials, the cooling rate, the gradientanddistributionoftemperature,thesupportofthe materialsinsidetheoven,andthethickness,preparationand design.5,14,30 In this study, plate specimens were used to

investigate the effect of extreme cooling methods under controlledconditionsforthemechanicaltests.35However,the

geometryofdentalcrownsandFPDsismultifaceted,witha

sphero-cylindrical form,heterogeneous contoursand varia-tions in the thickness of the veneer and core.1,2,5,10,36

Furthermore,themicrostructureofporcelain,thethickness ratio,themanufacturingprocess,theflawpopulation (num-ber,distribution,andsize),theocclusaladjustment,moisture, thermal and load cycling, and individual habits also have influences on the fracture resistance of the veneering porcelain and its clinical reliability.15,24,27,36 Therefore,

in vitro thermal, chemical and mechanical fatigue studies should be conducted usingcomplex specimens as crowns, whicharesubmittedtovariouscoolingmethodswithdifferent zirconiaceramic/veneeringporcelainsystems;thethickness ratioinhumidenvironmentsshouldalsobefurtherstudied. Moreover, morerandomizedclinicaltrials arenecessaryto evaluate the actual performance of this zirconia-based methodofrestoration.9

5.

Conclusion

Thefast-coolingmethodshowedahigherflexuralstrengthbut alowerreliabilityinporcelainundertensiontest configura-tions. The slow-cooling methoddecreased the shear bond strengthandshowedhighercohesiveandcombinationfailure modes. Theseresultssuggestthatthecooling methodmay affectthelongevityofzirconia-basedrestorations.Thus,other investigations are needed to establish the ideal cooling protocol.

r

e

f

e

r

e

n

c

e

s

1. FischerJ,StawarzcykB,TrottmannA,HammerleCH.Impact ofthermalmisfitonshearstrengthofveneeringceramic/ zirconiacomposites.DentalMaterials2009;25:419–23.

2. SaitoA,KomineF,BlatzMB,MatsumuraH.Acomparisonof bondstrengthoflayeredveneeringporcelainstozirconia andmetal.JournalofProstheticDentistry2010;104:247–57.

3. KomineF,SaitoA,KobayashiK,KoizukaM,KoizumiH, MatsumuraH.Effectofcoolingrateonshearbondstrength ofveneeringporcelaintoazirconiaceramicmaterial.Journal ofOralScience2010;52:647–52.

4. TaskonakB,MecholskyJrJJ,AnusaviceKJ.Residualstresses inbilayerdentalceramics.Biomaterials2005;26:3235–41. 5. SwainMV.Unstablecracking(chipping)ofveneering

porcelainonall-ceramicdentalcrownsandfixedpartial dentures.ActaBiomaterialia2009;5:1668–77.

6. GostemeyerG,JendrasM,DittmerMP,BachFW,StieschM, KohorstP.Influenceofcoolingrateonzirconia/veneer interfacialadhesion.ActaBiomaterialia2010;6:4532–8.

7. GuazzatoM,WaltonTR,FranklinW,DavisG,BohlC, KlinebergI.Influenceofthicknessandcoolingrateon developmentofspontaneouscracksinporcelain/zirconia structures.AustralianDentalJournal2010;55:306–10.

8. SailerI,PjeturssonBE,ZwahlenM,HammerleCH.A systematicreviewofthesurvivalandcomplicationratesof all-ceramicandmetal-ceramicreconstructionsafteran observationperiodofatleast3years.PartII:fixeddental prostheses.ClinicalOralImplantsResearch2007;18:86–96. 9. RaigrodskiAJ,HillsteadMB,MengGK,ChungKH.Survival

andcomplicationsofzirconia-basedfixeddental

prostheses:asystematicreview.JournalofProstheticDentistry

(7)

10.FairhurstCW,HashingerDT,TwiggsSW.Glasstransition temperaturesofdentalporcelain.JournalDentalResearch

1981;60:995–8.

11.ZhangZ,LiQ,LiW,SwainM.Transientmodellingof thermalprocessingforceramicprostheses.Journalof AustralianCeramicSociety2009;45:40–8.

12.GuessPC,KulisA,WitkowskiS,WolkewitzM,ZhangY, StrubJR.Shearbondstrengthsbetweendifferentzirconia coresandveneeringceramicsandtheirsusceptibilityto thermocycling.DentalMaterials2008;24:1556–67.

13.TaskonakB,BorgesGA,MecholskyJrJJ,AnusaviceKJ,Moore BK,YanJ.Theeffectsofviscoelasticparametersonresidual stressdevelopmentinazirconia/glassbilayerdental ceramic.DentalMaterials2008;24:1149–55.

14.TholeyMJ,SwainMV,ThielN.Thermalgradientsand residualstressesinveneeredY-TZPframeworks.Dental Materials2011;27:1102–10.

15.RuesS,KrogerE,MullerD,SchmitterM.Effectoffiring protocolsoncohesivefailureofall-ceramiccrowns.Journal ofDentistry2010;38:987–94.

16.ChoiJE,WaddellJN,SwainMV.Pressedceramicsonto zirconiapart2:indentationfractureandinfluenceofcooling rateonresidualstresses.DentalMaterials2011;27:1111–8. 17.MainjotAK,SchajerGS,VanheusdenAJ,SadounMJ.

Influenceofcoolingrateonresidualstressprofilein veneeringceramic:Measurementbyhole-drilling.Dental Materials2011;27:906–14.

18.TanJP,SederstromD,PolanskyJR,McLarenEA,WhiteSN. Theuseofslowheatingandslowcoolingregimensto strengthenporcelainfusedtozirconia.JournalofProsthetic Dentistry2012;107:163–9.

19.DellaBonaA,AnusaviceKJ,DeHoffPH.Weibullanalysisand flexuralstrengthofhot-pressedcoreandveneeredceramic structures.DentalMaterials2003;19:662–9.

20.BorbaM,deAraujoMD,deLimaE,YoshimuraHN,CesarPF, GriggsJA,etal.Flexuralstrengthandfailuremodesof layeredceramicstructures.DentalMaterials2011;27:1259–66. 21.KellyJR,Perspectivesonstrength. DentalMaterials

1995;11:103–10.

22.FlemingGJ,El-LakwahSF,HarrisJJ,MarquisPM.Theeffect ofcore:dentinthicknessratioonthebi-axialflexure strengthandfracturemodeandoriginofbilayereddental ceramiccomposites.DentalMaterials2005;21:164–71.

23.ZengK,OdenA,RowcliffeD.Evaluationofmechanical propertiesofdentalceramiccorematerialsincombination withporcelains.InternationalJournalofProsthodontics

1998;11:183–9.

24.YilmazH,NemliSK,AydinC,BalBT,TirasT.Effectof fatigueonbiaxialflexuralstrengthofbilayeredporcelain/ zirconia(Y-TZP)dentalceramics.DentalMaterials

2011;27:786–95.

25.GuazzatoM,AlbakryM,RingerSP,SwainMV.Strength, fracturetoughnessandmicrostructureofaselectionof all-ceramicmaterialsPartII.Zirconia-baseddentalceramics.

DentalMaterials2004;20:449–56.

26.KosmacT,OblakC,JevnikarP,FundukN,MarionL.The effectofsurfacegrindingandsandblastingonflexural strengthandreliabilityofY-TZPzirconiaceramic.Dental Materials1999;15:426–33.

27.LinWS,ErcoliC,FengC,MortonD.Theeffectofcore material,veneeringporcelain,andfabricationtechniqueon thebiaxialflexuralstrengthandweibullanalysisofselected dentalceramics.JournalofProsthodontics2012.

28.Cattani-LorenteM,ScherrerSS,AmmannP,JobinM, WiskottHW.LowtemperaturedegradationofaY-TZP dentalceramic.ActaBiomaterialia2011;7:858–65. 29.DeHoffPH,AnusaviceKJ,VontivilluSB.Analysisof

temperingstressesinmetal–ceramicdisks.JournalofDental Reseaarch1996;75:743–51.

30.MainjotAK,SchajerGS,VanheusdenAJ,SadounMJ. Influenceofzirconiaframeworkthicknessonresidual stressprofileinveneeringceramic:Measurementby hole-drilling.DentalMaterials2012;28:378–84.

31.BelliR,FrankenbergerR,AppeltA,SchmittJ,BaratieriLN, GreilP,etal.Thermal-inducedresidualstressesaffect thelifetimeofzirconia–veneercrowns.DentalMaterials

2012.

32.AboushelibMN,KleverlaanCJ,FeilzerAJ.Effectofzirconia typeonitsbondstrengthwithdifferentveneerceramics.

JournalofProsthodontics2008;17:401–8.

33.KellyJR.Clinicallyrelevantapproachtofailuretestingof all-ceramicrestorations.JournalofProstheticDentistry

1999;81:652–61.

34.Al-DohanHM,YamanP,DennisonJB,RazzoogME,LangBR. Shearstrengthofcore-veneerinterfaceinbi-layered ceramics.JournalofProstheticDentistry2004;91:349–55. 35.AboushelibMN,deJagerN,KleverlaanCJ,FeilzerAJ.Effect

ofloadingmethodonthefracturemechanicsoftwolayered all-ceramicrestorativesystems.DentalMaterials

2007;23:952–9.

36.DeHoffPH,AnusaviceKJ.Viscoelasticfiniteelementstress analysisofthethermalcompatibilityofdentalbilayer ceramicsystems.InternationalJournalofProsthodontics

Referências

Documentos relacionados

Mudanças nas atitudes, como eficácia na educação, desde o Ensino Fundamental, infraestruturas mais modernas, reformas tributárias, nas leis trabalhistas e políticas, e incentivos

Assessing the effects of three resin removal methods and bracket sandblasting on shear bond strength of metallic orthodontic brackets and enamel surface. Khosravanifard B, Yazdani

The aim of this study was to investigate the effect of the incorporation of a iodonium salt in experimental composites on the shear bond strength of metallic orthodontic

Therefore, the purpose of this study was to evaluate the effects of different light sources, silane and thermocycling on the bond strength of metallic brackets to feldspathic

The aim of this study was to evaluate the influence of water storage (24 h and 6 months) and bonding materials (Transbond XT and Fuji Ortho LC) on the shear bond strength of

The aim of this study was to evaluate the effect of silanes, thermal cycling and acid etching on the shear bond strength (SBS) of metallic brackets to feldspathic ceramic.. Two

The aim of this study was to evaluate the effect of different number of thermal cycles on the shear bond strength (SBS) of metallic orthodontic brackets bonded to feldspathic

In this chapter we have analyzed the dynamics and the phenomenology of a non- thermal dark matter candidate corresponding to an oscillating scalar field that, as all other