• Nenhum resultado encontrado

Backward Stochastic Differential Equation with Monotone and Continuous Coefficient

N/A
N/A
Protected

Academic year: 2017

Share "Backward Stochastic Differential Equation with Monotone and Continuous Coefficient"

Copied!
5
0
0

Texto

(1)

Backward Stochastic Differential Equation with

Monotone and Continuous Coefficient

Xiaoqin Huang

1

,Xiaojie Liu

2 ∗

Abstract—In this paper, we consider a backward stochastic differential equation(BSDE) with mono-tone and continuous coefficient and obtain the exis-tence and uniqueness of solution.

Keywords: backward stochastic differential equation; Yosida approximations; monotone and continuous co-efficients

1

Introduction

In 1973, Bismut first introduced the adapted solution for a linear BSDE which is the adjoint process for a stochastic control problem. Later Pardoux and Peng [6] obtained the existence and uniqueness of solution for the following nonlinear BSDE with Lipschitz coefficientf

yt=ξ+ Z T

t

f(s, ys, zs)ds− Z T

t

zsdWs (1)

where (Ws)0≤s≤T is a standard d-dimensional Brownian motion defined on a complete probability space (Ω,F, P), Ftis the natural filtration. Ftcontains all P-null sets of

F. ξis a givenFT measurable random vector. Since then, many researchers have devoted to obtaining its existence and uniqueness of solution under weaker assumptions on f. For example, Lepeltier [4] obtained the existence for one-dimensional BSDE under the continuous assumption, and Mao [5] obtained the existence and uniqueness under the non-Lipschitz assumption. In this paper, using the Yosida approximations (see for example Da Prato and Zabczyk [1,2] or Hu [3]), we also obtain the existence and uniqueness of solution for BSDE (1).

Manuscript received May 6, 2009. This work is supported by the science foundation of Hebei University of Science and Technology (XL200824),Dr. fund research of Hebei Univer-sity of Science and Technology(QD200950) and Hebei province science and technology projects (No.09213508d; No.09213558). Xiaoqin Huang is with the College of Sciences, Hebei Univer-sity of Science and Technology, Shijiazhuang, Hebei 050018, China(e-mail:sjzhxq@163.com). Xiaojie Liu is with the Institute of Mathematics, Shijiazhuang No.2 middle school, Shijiazhuang 050000,China(e-mail: hxq1977526@sina.com).

2

Preliminary

Let M2(0, T;Rn) denote the set of all Rn-valued F t -progressively measurable processesv(·) satisfyingER0T |

v(s)|2ds <+.

In this paper, (·) denotes the usual inner product inRn; We use the usual Euclidean norm inRn. Forz∈Rn×d, its Euclidean norm is defined by | z |= tr(zzT)12 and its inner product is ((z1, z2)) = tr(z1(z2)T). For

u1 = (y1, z1) Rn

×Rn×d,

u2 = (y2, z2) Rn

×Rn×d, we denote [u1, u2] = (y1, y2) + ((z1, z2)) and |u1 |2=| y1 |2

+|z1|2.

Definition 2.1The solution of Eq.(1) is a couple (y, z) which belongs to M2(0, T; Rn

×Rn×d) and satisfies Eq.(1).

Theorem 2.2[6] Iff′: Ω×[0, T]×Rn×Rn×dRn is a progressively measurable function and satisfies

(i)f′(t,0,0)

t∈[0,T] belongs toM2(0, T;Rn);

(ii) There exists a constant K ≥ 0 s.t.P-a.s., for all y1,

y2 ∈ Rn, z1, z2 ∈ Rn×d, |f′(t, y1, z1)−f′(t, y2, z2)| ≤

K(|y1−y2|+|z1−z2|).

Thenyt=ξ+ RT

t f

(s, y

s, zs)ds− RT

t zsdWshas a unique adapted solution (y(.), z(.))∈M2(0, T;Rn×Rn×d).

Theorem 2.3 [6] Iff′ : Ω×[0, T]×Rn×Rn×d Rn andg′ : Ω×[0, T]×Rn

×Rn×d

→Rn×dare progressively measurable functions, and there exist constants λ > 0 andα >0 such that

|f′(t, y1, z1)−f′(t, y2, z2)|+|g′(t, y1, z1)−g′(t, y2, z2)|

≤λ(|y1−y2|+|z1−z2|)

|g′(t, y, z1)−g′(t, y, z2)|≥α|z1−z2|

for all y1, y2 ∈ Rn, z1, z2 ∈ Rn×d. Then the following

equation

yt=ξ+ Z T

t

f′(s, ys, zs)ds− Z T

t

g′(s, ys, zs)dws

has a unique adapted solution (y(.), z(.))∈M2(0, T;Rn

×

(2)

In this paper, we consider the following BSDE

yt=ξ+ Z T

t

f(s, ys, zs)ds− Z T

t

zsdWs

Assumption 2.4f is continuous in (y, z) for almost all (t, ω). f(., y, z)∈M2(0, T;Rn). For allu= (y, z)Rn× Rn×d, there exist constants 3

4 ≤C ≤1 andC1 >0 such

that P-a.s.,a.e.

(H1) |f(t, u)|≤|f(t,0)|+C1|u|

(H2) (f(t, y1, z1)−f(t, y2, z2), y1−y2)

≤(1−C)|z1−z2|2−C|y1−y2|2

We denote g(t, y, z)≡z. Then the equation (1) is equal to

yt=ξ+ Z T

t

f(s, ys, zs)ds− Z T

t

g(s, ys, zs)dWs (1′)

Let F(t, u) = F(t, y, z) = (f(t, y, z),−g(t, y, z)) = (f(t, u),−g(t, u)). Then by the Assumption 2.4, F(t, .) is also continuous, and (H2) is equal to

(H2′) [F(t, u1)

−F(t, u2), u1−u2]≤ −C|u1−u2|2

Lemma2.5[3]. Let Φ : Rn −→ Rn be a continuous function, and there exists a constant c > 0 such that (Φ(x1)Φ(x2), x1x2)≤ −c|x1x2|2, x1, x2Rn. Then for the Yosida approximations Φαof Φ,

α >0, we have

(i) (Φα(x1)Φα(x2), x1x2)≤ −c|x1x2|2

|Φα(x1)Φα(x2)|≤(2

α+c)|x

1x2|

|Φα(x)

|≤|Φ(x)|+2c|x| (ii) For anyα, β >0, we have

(Φα(x1)Φβ(x2), x1x2)(α+β)(|Φ(x1)|+|Φ(x2)|

+c|x1|+c|x2|)2c|x1x2|2

(iii) For any {xα}

α>0⊂Rn, x∈Rn, if limα→0xα=x,

then

limα→0Φα(xα) = Φ(x)

3

Main results

Theorem 3.1Let Assumption 2.4 hold, then there exists a unique adapted solution (y(.), z(.)) ∈ M2(0, T;Rn ×

Rn×d) for Eq.(1).

Proof. First, we prove the existence. We divide the proof into four steps.

Step 1. There exists a unique adapted solution for the approximating BSDE.

For arbitrary α > 0, we consider the approximating BSDE of (1’)

yαt =ξ+ Z T

t

fα(s, yα s, z

α s)ds−

Z T

t

gα(s, yα s, z

α s)dws(2)

where Fα(t, yα

t, ztα) = (fα(t, ytα, ztα),−gα(t, ytα, ztα)) is the Yosida approximation ofF(t, yα

t, ztα).

Letv1= (y1, z1) and v2 = (y2, z2), then by Lemma 2.5,

we have

|Fα(t, v1)−Fα(t, v2)|2≤(2 α+C)

2

|v1v2|2

hence

2|fα(t, v1)−fα(t, v2)|2+2|gα(t, v1)−gα(t, v2)|2 ≤ 2(2

α+C)

2(

|y1y2|2+|z1z2|2)

(|fα(t, v1)−fα(t, v2)|+|gα(t, v1)−gα(t, v2)|)2

≤ 2(2 α+C)

2(

|y1−y2|2+|z1−z2|2)

therefore

|fα(t, y1, z1)fα(t, y2, z2)|+|gα(t, y1, z1)gα(t, y2, z2)|

≤ √2(2

α+C)(|y

1

−y2|2+|z1z2|2)12

≤ √2(2

α+C)(|y

1

−y2|+|z1z2|).(3)

Let w1 = (y, z1) andw2 = (y, z2), then by Lemma 2.5,

we have

(Fα(t, w1)−Fα(t, w2), w1−w2)≤ −C|w1w2|2 so (fα(t, y, z1) fα(t, y, z2), y y) + (gα(t, y, z2)

(t, y, z1), z1z2)≤ −C|z1z2|2

thus

|gα(t, y, z1)−gα(t, y, z2)| · |z1z2|≥C|z1z2|2

|gα(t, y, z1)−gα(t, y, z2)|≥C|z1−z2|(4) By the above inequalities (3) and (4), fα and gα sat-isfy the assumptions in Theorem 2.3. Hence, there exists a unique adapted solution uα = (yα, zα) for Eq.(2) in M2(0, T;Rn

(3)

Step 2. There exists a constant L, such thatER0T |uα|2

dt≤L.

Applying the Itˆoformula to|yα

t |2 and taking the expec-tation, we get

Eξ2=E|y0α|2E Z T

0

2(yαt, f α

(t, ytα, z α t))dt

+E Z T

0 |

gα(t, yαt, z α t)|2dt so

E Z T

0

2(yαt, f α

(t, ytα, z α t)−f

α

(t,0,0))dt

−E Z T

0

2((zα t, g

α(t, yα t, z

α t)−g

α(t,0,0)))dt+ Eξ2

=−E Z T

0

2(yα t, f

α(t,0,0))dt+ E

Z T

0 |

gα(t, yα t, z

α t)|

2

dt

+E |y0α|2−E

Z T

0

2((zα t, g

α(t, yα t, z

α t)−g

α(t,0,0)))dt

hence

Eξ2−E Z T

0

2C|uα|2dt

≥ E|y0α|2+E Z T

0 |

gα(t, ytα, z α t)|2dt

−E Z T

0

2(yα

t, fα(t,0,0))dt

−E Z T

0

2((zα t, g

α(t, yα t, z

α t)−g

α(t,0,0)))dt

then

E|y0α|2+E Z T

0

2C|uα|2dt

≤ E Z T

0

2(yα t, f

α(t,0,0))dt

+E Z T

0

2((zα t, g

α(t, yα t, z

α t)−g

α(t,0,0)))dt

+Eξ2−E Z T

0 |

gα(t, yαt, z α t)|2dt

≤ Eξ2+E Z T

0 |

ytα|

2

dt

+E Z T

0 |

fα(t,0,0)|2dtE Z T

0 |

gα(t, ytα, z α t)|2dt +E

Z T

0

2((zα t, g

α(t, yα t, z

α

t)))dt−E Z T

0 |

zαt |

2 dt −E Z T 0 2((zα t, g

α(t,0,0)))dt+ E

Z T

0 |

ztα|2dt

≤ E Z T

0 |

fα(t,0,0)|2dtE Z T

0

2((ztα, g α

(t,0,0)))dt

+E Z T

0 |

ztα|

2

dt+Eξ2+E Z T

0 |

yαt |

2

dt

= E

Z T

0 |

fα(t,0,0)|2dtE

Z T

0

2((zα t, g

α(t,0,0)))dt

−2E Z T

0 |

gα(t,0,0)|2dt1 2E

Z T

0 |

ztα|2dt

+2E Z T

0 |

gα(t,0,0)|2dt+1 2E

Z T

0 |

ztα|

2

dt

+E Z T

0 |

ztα|2dt+Eξ2+E Z T

0 |

yαt |2dt

By | Fα(x) |≤|F(x) | +2C | x |, we have | Fα(0) |2≤|

F(0) |2. Thus | fα(t,0,0)

|2 + | gα(t,0,0)

|2≤|

f(t,0,0) |2 +| g(t,0,0) |2=| f(t,0,0) |2. Therefore we

get

E|yα0 |2+E

Z T

0

2C|uα|2dt

≤ Eξ2+E Z T

0 |

ytα|2dt+ 2E Z T

0 |

f(t,0,0)|2dt

+3 2E

Z T

0 |

zαt |2dt

≤ Eξ2+3 2E

Z T

0 |

uα|2dt+ 2E Z T

0 |

f(t,0,0)|2dt so

E|y0α|2+E

Z T

0

(2C−32)|uα|2dt

≤ Eξ2+ 2E Z T

0 |

f(t,0,0)|2dt=M

Because 3

4 ≤C ≤1, then letL= 2M

4C−3, we have E

RT

0 |

|2dtL.

Step 3. uα= (yα, zα) converges inM2(0, T;Rn×Rn×d). Let α > 0 and β > 0, applying the Itˆo formula to |

yα t −y

β

t |2 and taking the expectation, we get 0 =E

Z T

0

2(yα t −y

β t, fβ(t, y

β t, z

β

t)−fα(t, yαt, ztα))dt

+E Z T

0 |

gα(t, yα

t, ztα)−gβ(t, y β t, z

β t)|2dt +E|y0α−y

β 0 | 2 hence E Z T 0 |

gα(t, yα t, z

α t)−g

β(t, yβ t, z

(4)

−E Z T

0

2((zαt −z β t, g

α (t, yαt, z

α t)−g

β (t, yβt, z

β t)))dt

+E|y0α0 |2

= E

Z T

0

2(yα t −y

β t, f

α(t, yα t, z

α t)−f

β(t, yβ t, z

β t))dt

−E Z T

0

2((zαt −z β t, g

α (t, yαt, z

α t)−g

β (t, yβt, z

β t)))dt

= E

Z T

0

2[Fα(t, uα)

−Fβ(t, uβ), uα

−uβ]dt

≤ −2CE Z T

0 |

|2dt+

2(α+β)ER0T(| F(t, uα)

| + | F(t, uβ)

| +C(| uα

| + |

uβ|))2dt

therefore

E |y0α0 |2+2CE Z T

0 |

|2dt

≤2(α+β)ER0T(|F(t, uα)

|+|F(t, uβ)

|+C|uα

|+C|

uβ|)2dt

+E Z T

0

2((zα t −z

β t, g

α(t, yα t, z

α t)−g

β(t, yβ t, z

β t)))dt

−E Z T

0 |

ztα−z β

t |2dt+E Z T

0 |

ztα−z β t |2dt

−E Z T

0 |

gα(t, yα t, z

α t)−g

β(t, yβ t, z

β t)|

2

dt

≤8(α+β)E Z T

0

(|F(t, uα)

|2+|F(t, uβ)

|2

+C2|uα|2+C2|uβ|2)dt

+E Z T

0 |

zαt −z β

t |2dt+E Z T

0 |

yαt −y β t |2dt then

E|y0α−yβ0 |2+(2C1)E

Z T

0 |

uα−uβ|2dt

≤ 8(α+β)E Z T

0

(|F(t, uα)

|2+|F(t, uβ)

|2

+C2|uα|2+C2|uβ |2)dt

Because | F(t, u) |2=| f(t, u) |2 + | z |2, | f(t, u) |≤|

f(t,0)|+C1|u|andE

RT

0 |u|

2dtL, we deduce that

there exists a constantk >0, such that

E|yα0 −y0β|2+(2C1)E

Z T

0 |

uα−uβ |2dtk(α+β)

Because 34 ≤ C 1, then {uα, α > 0

} is a Cauchy se-quence in M2(0, T;Rn

×Rn×d). We denote its limit by u= (y, z)∈M2(0, T;Rn

×Rn×d).

Step 4. Taking weak limits in the approximating equa-tions (2).

From Lemma 2.5 and Assumption (H1), there exist con-stantsl andmsuch that

|Fα(t, uα)

|2 ≤ (|F(t, uα)

|+2C|uα|)2

≤ l|f(t,0)|2+m|uα

|2

So, there exists a constant C2 > 0 such that ER

T

0 |

(t, uα)

|2 dt C

2. Therefore there exists a

subse-quences of {Fα(., uα), α > 0

} converge weakly to limits G= (H,−B) in the spaceM2(0, T;Rn

×Rn×d). Taking weak limits in the approximating equations (2) yields

yt = ξ+ Z T

t

H(s)ds−

Z T

t

B(s)dws

Similar to the proof of Hu[3], we can prove that G = (H,−B) =F(t, yt, zt) = (f(t, yt, zt),−g(t, yt, zt)). Therefore

yt=ξ+ Z T

t

f(s, ys, zs)ds− Z T

t

zsdWs

We deduce that (y, z) is an adapted solution of Eq.(1). The existence is proved.

Next, we prove the uniqueness of solution of Eq.(1).

Let u1 = (y1

t, zt1) and u2 = (y2t, zt2) be two solutions of Eq.(1). ˆyt=yt1−y2t and ˆzt=zt1−zt2, then we have

dˆyt= (f(t, y2t, z2t)−f(t, yt1, zt1))dt+ (zt1−z2t)dwt

Applying the Itˆoformula to|yˆt|2and taking the expec-tation, we get

0 =E|yˆ0|2+E

Z T

0

2(ˆyt, f(t, yt2, zt2)−f(t, y1t, zt1))dt

+E Z T

0 |

zt1−zt2|2dt Hence by Assumption 2.4, we get

E|yˆ0|2−E

Z T

0 |

zt1−z

2

t |

2

dt

= E

Z T

0

2(ˆyt, f(t, y1t, z1t)−f(t, yt2, zt2))dt

−2E Z T

0 |

zt1−z

2

t |

2

dt

≤ −2CE Z T

0

(5)

Then 2CER0T(| zˆt |2 + | yˆt |2)dt−E RT

0 | zˆt |

2 dt 0.

Because 43 ≤C1, then we haveER0T |yˆt|2dt= 0 and ER0T |zˆt|2dt= 0. Sou1=u2.

Thus there exists a unique adapted solution (y(.), z(.)) for Eq.(1) inM2(0, T; Rn

×Rn×d). The proof is completed.

References

[1] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.

[2] G. Da Prato and J. Zabczyk,Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge, 1996.

[3] Hu,Y., “On the solution of forward-backward SDEs with monotone and continuous coeffi-cients,”Nonlinear analysis, v42,pp.1-12,2000

[4] Lepeltier,J.P., and Martin,J.S. , “Backward stochas-tic differential equations with continuous coef-ficient,”Statistics Probability Letters,v32, pp.425-430,1997

[5] Mao,X. ,“ Adapted solutions of backward stochas-tic differential equations with non-Lipschitz coeffi-cient,”Stochastic Processes and their Applications, v58, pp.281-292,1995

Referências

Documentos relacionados

39 Tabela 11: Correlação das varáveis climáticas – Temperatura (média anual , amplitude térmica diurna mensal , Isotermalidade, sazonal, máxima no mês mais quente , mínima no

Assim, em relação ao menor impacto que usinas hidrelétricas a fio d’água possam vir a causar pela redução da área alagada (preservando parte da floresta), pelas

A Varroa destructor Anderson &amp; Trueman é um parasita da abelha Apis mellifera L., originário da Ásia, relativamente recente na Europa e noutros

Em 2008 e 2009 as duas Instituições de Microfinanças com maior carteira, a Organização das Mulheres de Cabo Verde (OMCV) e a Associação de Apoio à Autopromoção da Mu- lher

Neste campo das imaterialidades - para o qual poderíamos ir buscar novamente algumas pesquisas das quais já falámos anteriormente como o caso da Inês Mestre e da sua

In this section, we discuss brie‡y how our results extend to a simpler form of collusion in which, given a state of nature, principals either abstain from hiring each other’s star

Loss of material is a very general expression that refers to any loss of original surface, which can be due to a variety of rea- sons such as granular disintegration, scaling etc..

Paint models of easel paintings were prepared by mixing proteins extracted from hen’s egg (yolk and white), bovine milk, and rabbit skin glue used as binders, and different