• Nenhum resultado encontrado

Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii

N/A
N/A
Protected

Academic year: 2017

Share "Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii"

Copied!
9
0
0

Texto

(1)

Acta

Tropica

j ou rna l h o me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / a c t a t r o p i c a

Tridimensional

ultrastructure

and

glycolipid

pattern

studies

of

Trypanosoma

dionisii

Miriam

Pires

de

Castro

Oliveira

a,∗

,

Thiago

Cesar

Prata

Ramos

a

,

Adriana

Maria

V.N.

Pinheiro

a

,

Silvio

Bertini

b

,

Helio

Kiyoshi

Takahashi

b

,

Anita

Hilda

Straus

b

,

Edna

Freymuller

Haapalainen

c

aDepartamentodeBiologiaEstruturaleFuncional,UniversidadeFederaldeSãoPaulo,RuaBotucatu,740,SãoPaulo,SP,04023-900,Brazil bDepartamentodeBioquímica,UniversidadeFederaldeSãoPaulo,RuaBotucatu,862,1andar,SãoPaulo,SP,04023-900,Brazil

cCentrodeMicroscopiaEletrônica,UniversidadeFederaldeSãoPaulo,RuaBotucatu,862,térreo,SãoPaulo,SP,04023-900,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1April2013

Receivedinrevisedform17July2013 Accepted1August2013

Available online 8 August 2013

Keywords: Trypanosomadionisii Tridimensionalultrastructure 3Dreconstruction

Epimastigote Glycolipid

a

b

s

t

r

a

c

t

Trypanosoma(Schizotrypanum)dionisii isanon-pathogenicbat trypanosomeclosely relatedto Try-panosomacruzi,theetiologicalagentofChaga’sdisease.Bothkinetoplastidspresentsimilarmorphological stagesandareabletoinfectmammaliancellsinculture.Inthepresentstudyweexamined3D ultrastruc-tureaspectsofthetwospeciesbyserialsectioningepimastigoteandtrypomastigoteforms,andidentified commoncarbohydrateepitopesexpressedinT.dionisii,T.cruziandLeishmaniamajor.Amajordifferencein 3DmorphologywasthatT.dionisiiepimastigoteformspresentlargermultivesicularstructures,restricted totheparasiteposteriorregion.ThesestructurescouldberelatedtoT.cruzireservosomesandarealso richincruzipain,themajorcysteine-proteinaseofT.cruzi.Weanalyzedthereactivityoftwomonoclonal antibodies:MEST-1directedtogalactofuranoseresiduesofglycolipidspurifiedfromParacoccidioides brasiliensis,andBST-1directedtoglycolipidspurifiedfromT.cruziepimastigotes.Bothantibodieswere reactivewithT.dionisiiepimastigotesbyindirectimmunofluorescense,butwenoteddifferencesinthe locationandintensityoftheepitopes,whencomparedtoT.cruzi.Insummary,despitesimilarfeaturesin cellularstructureandlifecycleofT.dionisiiandT.cruzi,weobservedauniquemorphologicalcharacteristic inT.dionisiithatdeservestobeexplored.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Trypanosoma(Schizotrypanum)dionisiiisanon-pathogenicbat trypanosomecloselyrelatedtoTrypanosomacruzi,theetiological agentofChaga’sdisease.In1978,Bakeretal.suggestedthe phy-logeneticproximitybetweenT.dionisiiandT.cruzi,andin1987,

Petryetal.(1987a,b,c)demonstratedthatthesespeciesshare epi-topes,definedbymonoclonalantibodies(MAbs)anti-epimastigote forms.Thephylogeneticproximitybetweenthesespecieswas con-firmedyearslater,basedongenesofthesmallsubunitribosomal RNA,and theglycosomalglyceraldehyde phosphate dehydroge-nase(Hamiltonetal.,2007).

AsT.cruzi,duringitslifecycle T.dionisiialternatesdifferent developmental forms between hosts: epimastigotes and meta-cyclictrypomastigotesintheinvertebratehostandbloodstream trypomastigotesandamastigotesinthemammalianhost(Baker etal.,1971;WilkinsandBaker,1975;Molyneux,1991).Invitro,

∗Correspondingauthor.Tel.:+551155764528.

E-mailaddress:castro.oliveira@unifesp.br(M.P.d.C.Oliveira).

metacyclictrypomastigoteformsareabletoinvadeandreplicate withinalargenumber ofmammaliancells.Theseforms remain inthecytoplasmandtransformintoamastigotes,thereplicative forms.Afteranintensemultiplication phase,amastigotes trans-formintotrypomastigotesandaftercellularrupturearereleased intothemedium(Bakeretal.,1971;Thorneetal.,1979;Bakerand Selden,1981;Glauertetal.,1982;Molyneux,1991).

ManyT.cruzistudieshaveindicatedthatparasiteandhostcell glycoconjugatesareinvolvedinthecellularinvasionprocesses(De Arrudaetal.,1989;Mingetal.,1993;Ramirezetal.,1993;Giordano etal.,1994;Silvaetal.,2006;Cortezetal.,2006a,b;Ferreiraetal., 2006).Glycoconjugatescontaininggalactofuranose(Galf)residues have been described in fungi, bacteria, and parasites such as: polysaccharidesofMycobacteriumsp.,Streptococcussp.,Aspergillus

sp;lipopolysaccharidesofEscherichiacoli;glycoproteinsofCrithidia

sp.,Leptomonas samueliand T.cruzi; and glycolipidsof T. cruzi,

T.dionisii,Leishmaniasp.,Histoplasmacapsulatumand Paracoccid-ioidesbrasiliensis(AlvesandColli,1975;Mendonc¸a-Previatoetal., 1983;LederkremerandColli,1995;Toledoetal.,1995;Branquinha etal.,1999;PedersenandTurco,2003;Takahashietal.,2009;Tefsen etal.,2012)

(2)

M.P.d.C.Oliveiraetal./ActaTropica128 (2013) 548–556 549

Fig.1. T.dionisiiepimastigoteG1/Sphase(3Dreconstructionofmicrographsshowedatsupplementarydata,Fig.S1).(A)ageneralviewoforganellesdistribution.Green: mitochondrion;lightgreen:kinetoplast;darkyellow:flagellarpocket;orange:basalbodies;red:flagellum;royalblue:Golgi;lightyellow:electron-densevesicles;blue: nucleus;lightblue:nucleolus;lightgray:electron-densechromatin;brown:reservosomes;darkgray:membrane;pink:nonelectron-densevesicles(acidocalsisomes); white:contractvacuole.(B)Detailofthediskshapedkinetoplast(lightgreen)inthemiddleoftheuniquemitochondrion(green),thenucleusinblueandnucleolusinlight blue.(C)Detailofthecytostome-cytopharynx(lightpink)emergingfromtheflagellarpocket(darkyellow)andcontouringthekinetoplast(lightgreen)andthenucleus (blue).Parasiteswereprocessedfortransmissionelectronmicroscopyandthe3DmodelwasgeneratedwithBlender®software.Scalebar:2␮m.

Althoughthe biological role of Galfresidues is still unclear, thepostulatedabsenceofGalfandgalactofuranosidasesin mam-malianspecies suggeststheintriguinghypothesis that terminal Galfresidues play a central role in survival of fungiand para-sites,bypreventingtheactionofthehost’sglycosidasesontheir glycoconjugates. If this hypothesis is correct, Galf residues are potentiallyusefulasspecifictargetmoleculesfortherapyof par-asiticand fungal diseases.But,there is littleinformation about differences of these glycoconjugates containing Galf residues, betweenpathogenicandnon-pathogenictrypanosomatides.

In T. cruzi studies, Golgher et al. (1993), showed that Galf

residuespresentinT.cruziglycoconjugatesarehighlyantigenic, sincepatientswithChagas’diseasepresent anti-Galfantibodies andBertinietal.(2003a,b)demonstratedthatT.cruzi trypomas-tigotesGalf-containingglycoproteinsareimportantforVerocells invasion.Moreover,Nogueiraetal.(2007),demonstratedthatGalf -containingGIPCs are important for T. cruzi epimastigote forms differentiation,proliferationandinteractionwithhostmidgutcells, andSuzukietal.(2002,2008)suggestedthat,inother trypanoso-matids,asLeishmaniamajor,glycoinositolphospholipidscontaining

Galf residues could be involved in promastigote-macrophage attachment and invasion, using Fab fragments of MAb MEST-1 (whichrecognizesterminalGalfresidue presentonGIPL-1ofL. majorpromastigotes),andp-nitrophenyl-␤-d-galactofuranoside.

Ourrecentstudydescribedsimilaritiesonhostcellinteraction andinvasionprocessesofT.dionisiiandT.cruzi,andalsoimportant differences,suchasthereducedtrans-sialidaseactivityinT. dion-isii,whichmaybeoneofthefactorsresponsibleforintracellular retentionofsomeamastigotesintotheparasitophorousvacuoles, preventingtheirscapeintothecytoplasm,andsubsequent differ-entiationtotrypomastigotes(infectiveforms)(Oliveiraetal.,2009). Webelievethatthesimilaritiesanddifferencesbetweentheseso closelyspeciesdeservetobebetterexplored,inordertoidentify newtargetstoChagas’diseasevaccines.

(3)

Fig.2. T.dionisiiepimastigotemitosisphase(3Dreconstructionofmicrographsshowedatsupplementarydata,Fig.S2).(A)Ageneralviewoforganelledistribution.Green: mitochondrion;lightgreen:kinetoplast;yellow:flagellarpocket;red:twoflagella;pink:nonelectron-densevesicles(acidocalsisomes);blue:nucleus;lightgray:chromatin; brown:multivesicularstructures(reservosomes);darkgray:membrane.(B)Azoomofthekinetoplastdivision(lightgreen).(C)Aviewofthekinetoplast(lightgreen)inthe middleoftheuniquemitochondrion(green).Parasiteswereprocessedfortransmissionelectronmicroscopyandthe3DmodelwasgeneratedwithBlender®software.Scale

bar:2␮m.

3Dreconstructionsusingserialsectionsofthematerialunder study,isapowerful methodtovisualizemorphologicalaspects. Recentstudiesshowedtrypanosomatidentirecells,atthe3Dlevels, givinginformationaboutorganellesdistributionindifferentcell stages(Porto-Carreiroetal.,2000;Alberioetal.,2004;Eliasetal., 2007;Ferreiraetal.,2008).

Inthisstudyweexamined3DultrastructureofT.dionisii,and comparedwiththeresultsrecentlydescribedforT.cruzi(Eliasetal., 2007;Ferreiraetal.,2008;Ramosetal.,2011),andalsoidentified glycogonjugateepitopes,containingGalfresiduesrecognizedby MAbMEST-1,sharedbyT.dionisii,T.cruzi,P.brasiliensis,andL.major

(Suzukietal.,1997,Takahashietal.,2009),andrecognizedbyMAb BST-1(directedtoT.cruziglycolipids,Bertinietal.,2003a,b)shared byT.dionisiiandT.cruzi.

2. Materialsandmethods

2.1. Parasites

(4)

M.P.d.C.Oliveiraetal./ActaTropica128 (2013) 548–556 551

Fig. 3. T. dionisii trypomastigote forms processed for transmission electron microscopy.Organellesdistributioninanultrathincentralcutoftheparasite. Kine-toplast(blackarrow),reservosome(yellowarrow),nucleus(greenarrow),lipid inclusions(blackarrowheads),acidocalsisomes(greenarrowheads)and mitochon-drion(redarrow).Scalebar:2␮m.

miceandinLITcontaining5%FBS.MetacyclicformsofCLstrain wereobtainedafteronepassageinGrace’s medium(Gibco),by seeding5mlLITcultureinto35mlmedium.Metacyclicformsfrom culturesatthestationarygrowthphasewerepurifiedbypassage throughDEAE-cellulosecolumn(Camargo,1964;Yoshida,1983). Allanimalexperimentalprocedureswereapprovedbythe Institu-tionalEthicalCommitteeofUNIFESP/EPM.

2.2. Monoclonalantibodiesandimmunofluorescencelabeling

MAbBST-1(IgG3)andMAbMEST-1(IgG3)werepreviously pro-duced,byimmunizationofBALB/cmicewithpurifiedglycolipid fractionofT.cruzi(CLstrain)epimastigotes(MAbBST-1) (unpub-lisheddata),andpurifiedglycolipidfractioncontainingterminal residuesofGalfofP.brasiliensis(MAbMEST-1),whichcross-reacts withglycolipidscontainingGalf␤1–3terminalresiduesexpressed inT.cruziandL.major(Suzukietal.,1997).

Anti-cruzipain MAb, which recognizes a major cysteine-proteinaseof T. cruzi present in the reservosomes, was kindly providedbyDr.SergioSchenkman(DepartmentofMicrobiology, Parasitology,andImmunolgy,UNIFESP,SãoPaulo,Brazil).

2.3. Immunofluorescencelabeling

Formaldehyde (4%) fixed parasites and live parasites, were adsorbed onto coverslips treated with 0.1% poly-lysine. The adsorbed parasites were blocked with 5% bovine serum albu-min(BSA) inphosphate-bufferedsaline(PBS)and incubatedfor 1h, at roomtemperature, withMAb culturesupernatants (pri-mary antibody). Bound IgGs were developed with anti-mouse IgGconjugatedtoAlexa-Fluor488(SigmaChemicalCo.,St.Louis, MO, EUA) and DNA-rich structures were stained with 10␮M DAPI (4,6-diamidino-2-phenylindoledihydrochloride, Molecular Probes,EugeneOR,USA).Thecoverslipswereexaminedona Bio-Rad1024-UVconfocalmicroscopy.Controlsperformedusingan irrelevantMAb(IgG3).

Fixed parasites adsorbed onto coverslips were delipidated ornot witha mixture of isopropanol–hexane–water (55:20:25,

vol/vol/vol,upperphasediscarded)atroomtemperature,blocked withBSA/PBS,andusedforimmunofluorescenceassay.

2.4. Transmissionelectronmicroscopy

Parasiteswerefixedfor1hatroomtemperature,withamixture of2%formaldehydeand2.5%glutaraldehydeincacodylatebuffer (0.1Msodium cacodylate buffer, pH 7.2). Then, parasites were decantedovernightonACLAR®(ElectronMicroscopySciences)film precoatedwith0.01% poly-l-lysine. Thefilmwaswashed three timeswithcacodylatebuffer,andmorethree timeswithwater. Afterthat,theparasiteswerefixedwith1%osmiumtetroxide,in thesamebuffer, for30minatroomtemperature.Thefilm was thenwashedwithcacodylatebuffer,followedbythreewasheswith waterandtreatedfor30minwith0.4%uranylacetateinwater(for membranecontrastenhancement).Then,thefilmwasgradually dehydratedinaseriesofethanolsolutions,andfinallyembedded inEponTMresin(ElectronMicroscopySciences).Aftersectioning, toproduceconsecutivessections,thematerialwasstainedwith uranylacetateand leadcitrate,mountedonFormvargrids, and observedinaJeol1200EXIItransmissionelectronmicroscopy.

2.5. 3Dreconstructions

3D reconstructions were made with electron micrographs, obtainedwithacameraattachedtothemicroscopy,andscanned athighresolution.TheimageswerealignedusingtheReconstruct® (version 1.1.0.0) software (Fiala, 2005) by selecting congruent points in alternate images. After alignment, the morphological structuresweremanuallytracedusingthedrawclosedpointby pointfunction,andthe3Dimagesgeneratedbytheprogram. Sub-sequently,modelsofallstructuresweremergedintheBlender® 3D(version2.49b)modelingsoftware(http://www.blender.org/).

2.6. PAGE-SDSandWesternblotting

T.dionisii andT. cruzi(CL andG strains)epimastigoteforms (8×109 cells) were solubilized in 0.5ml of sample buffer and submitted toPAGE-SDS (Laemmli,1970). Afterelectrophoresis, antigensweretransferredtoanitrocellulosemembrane(NC)that was blocked with5% BSA, and incubated with MAb (BST-1 or MEST-1)for 2h. Then, NCwasincubatedfor 2h, atroom tem-perature,withhorseradishperoxidase-conjugatedtoanti-mouse immunoglobulins(Sigma)and for 5minwithSuperSignal West PicoChemiluminescentSubstrate(Pierce,IL,USA).Reactive anti-genswerevisualizedbythephotodocumentationsystemG-BOX HR-16(Syngene)(Tagliarietal.,2012).

3. Resultsanddiscussion

G1,S,G2,M(mitosis)andC(cytokinesis)T.cruziepimastigote cellularcycle,phaseswererecentlymorphologicallycharacterized (Eliasetal.,2007).UltrathinserialcutsofT.dionisiiepimastigote G1/Sphase (Supplementary dataFig. S1) wereanalyzed by 3D reconstruction.T.dionisiiepimastigoteG1/Sphaseasoccurswith

T.cruzi,hasauniqueflagellum,onenucleusandonekinetoplast (Fig. 1). We have observed, that unlike happens with T. cruzi

(5)

Fig.4.T.dionisiiexpressesglycoepitopesharedwithT.cruziwhichisrecognizedbyMAbBST-1.T.dionisiiepimastigoteswerefixedandlabeledwithMAbBST-1.(Aand C)Phasecontrastimage.(B)MergedimageofMAbBST-1ingreenandDAPI(nucleusandkinetoplast)inblue.Whitearrowsindicateposteriorstructures(reservosomes) labeledwithMAbBST-1andwhitearrowheadsshowapunctuallabelingofparasitessurface.(D)AcloseupofT.dionisiiBST-1labeled.YellowarrowshowsDAPI(nucleus andkinetoplast)inblueofanonBST-1labeledparasite.Whitearrowspointtothereservosomeslabelingandwhitearrowheadpointstosurfacepunctuallabeling.Images acquiredunderconfocalmicroscopy.Scalebar:10␮m.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthe article.)

-lucentinclusions,whicharenotlimitedbyaunitmembraneand presentsanelectron-densematrix.

The distribution of the acidocalcisomes occurs throughout the cytoplasm of T. dionisii epimastigotes at G1/S and mitosis phases(pinkvesicles,inFigs.1Aand2A).Thesestructuresappear inthe electron-micrographsasempty organelles,containingan electron-denseconstricted region(datanot shown). The acido-calcisomes are acid organelles, rich in calcium, polyphosphate and othersions, and mayplay animportant rolein osmoregu-lationand maintainingpHhomeostasis (Docampo et al.,2005).

T.dionisiimitosisultrathinserialcuts(Supplementary data,Fig. S2)wereanalizedby3Dreconstruction,andwedidnotobserve either lipid inclusions or electron dense vesicles, it was only observed some acidocalcisomesscattered throughout the cyto-plasm(Fig.2A).

Thereservosomesarestructuresresponsibleforprotein,lipids andproteasessorting,andprobablyhavelysosomaltypical func-tions(Cunha-e-Silvaetal.,2006;Sant’Annaetal.,2008;DeSouza etal.,2009a).AmastigoteandtrypomastigoteformsofT.cruzido notpresentatypicalreservosome,butreservosome-likestructures (Sant’Annaetal.,2008;DeSouzaetal.,2009a).Intrypomastigotes ofT.dionisiiweidentifiedauniquelargereservosome,nexttothe kinetoplast(Fig.3).Wealsodetectedpresenceofcruzipain,the majorT.cruzicytseine-proteinase(Cazzulloetal.,1997,2001),inT.

dionisiiepimastigotesreservosomesbyimmunofluorescence(data notshown).

AcentralcutoftheT.dionisiitrypomastigoteformshowthat these evolutionaryforms appear tobe very poorin intracellu-larstructureswhencomparedtotheepimastigoteform.Weonly observed thecharacteristic rounded kinetoplast,a unique large reservosome,themitochondrion,theelongatednucleus,somelipid inclusions,andafewvesicleswithacidocalcisomecharacteristics (Fig.3).ThesinglemitochondrionofT.dionisiiwasidentifiedby thepresenceofitsdoublemembrane.Itisextensivelybranched and resembles a tubular network, as described in T. cruzi (De Souzaet al.,2009b;Ramos etal., 2011)however witha differ-ence,inT.dionisiiepimastigoteformsitseemstobedistributed throughoutthecytoplasmandnotrestrictedtotheparasitesurface (Figs.1A–Cand2AandC).Thekinetoplastwaspositionedinside theuniquemitochondrion,andlocatedinaseparated regionof thisorganelle(Figs.1A–Cand2Aand2C)aspreviousdescribedin

T.cruzi(O’DalyandBretana,1976;DeSouzaetal.,2009b;Ramos etal.,2011).

Intrypanosomes,Morrisetal.(2001)andLiuetal.(2005)have proposedthemechanismsofkinetoplastdivision.Morerecently,

(6)

M.P.d.C.Oliveiraetal./ActaTropica128 (2013) 548–556 553

Fig.5. T.cruzi(CLstrain)BST-1andMEST-1labeling.AandC:phasecontrastimages.B:mergedimageofMAbBST-1ingreenandDAPI(nucleusandkinetoplast)inblue. Whitearrowsindicateastrongreservosomeslabelingandwhitearrowheadastrongpunctuallabelingoftheflagellum.D:mergedimageofMAbMEST-1ingreenandDAPI (nucleusandkinetoplast)inblue.Whitearrowsindicateapunctuallabelingatparasitebodiesandwhitearrowheadapunctuallabelingoftheflagellum.Imagesacquired underconfocalmicroscopy.Scalebars:10␮m.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

earlystepsofT.dionisii,showedakinetoplastconstriction(Fig.2B), suggesting that in this parasite the division occurs from the peripherytothecenter,similarasoccursinT.brucei(Ogbadoyi etal.,2003),anddistinctfromT.cruzi.

TheGolgicomplex,nucleusand electron-densechromatinof

T. dionisiiforms, were identified bytheir typicalmorphologies, as occurs with T. cruzi 3D reconstruction (Ramos et al., 2011) (Figs.1Aand2A).

RegardingthedensechromatindistributioninthenucleusofT. dionisiiepimastigotesatG1/S,wehavenotedthatitis intercon-nectedandlocatedmainlyinthenuclearperiphery,closetothe nuclearmembrane(Fig.1A),asdescribedforT.cruzi(Ramosetal., 2011).Thedensechromatinleavesaninternalspaceforacentrally locatednucleolus,whichissphericalandcentral(Fig.1A),similarly asinT.cruzi(DeSouza,2002).InT.dionisiimitosis3D reconstruc-tion,weobservedthecharacteristicdispersedchromatin,theintact nucleusmembrane,andtheabsenceofthenucleolus(Fig.2A),as previouslydescribedbySolari(1995)inT.cruzi.

TheT.cruzicytostomeisaninvaginationoftheplasma mem-brane,whichcanpenetratedeeplyintothecytoplasm(Milderand Deane,1969;De Souza,1984,2008), and forma tubular struc-turecalledcytostome-cytopharynx. Themacromoleculescanbe

capturedinthecytostome,followingintothecytopharynxandthen internalizedintoendocyticvesicles,whichmergedinthe reservo-somes(DeSouzaetal.,2009a).T.dionisiicytostome-cytopharynx, asitwasdescribedinT.cruzi3Dreconstruction(Ramosetal.,2011), progressesfromtheparasitesurfacetowardtheposteriorend, con-touringthekinetoplast,andthenucleus(Fig.1C).Aswellascited inT.cruzi,byPorto-Carreiroetal.(2000),theT.dionisiicytostome extendstowardthereservosomes.WealsoobservedthatinT. dion-isii,thecomplexcytostome-cytopharynxisassociatedinitsorigin withtheflagellarpocket(Fig.1C),aswasdescribedinT.cruzi,by

Okudaetal.(1999),andrecentlyshowedon3Dreconstructionof

T.cruziepimastigotes(Ramosetal.,2011).Oursobservations cor-roboratetheendocyticandexocyticsiteoftheflagellarpocket(De Souzaetal.,2009a).

(7)

Fig.6.T.dionisiiexpressesglycolipidpresentingterminalresiduesofGalfrecognizedbyMAbMEST-1.Fixedparasitesweredelipidatedornotwithamixtureof iso-propanol/hexane/water(55:20:25;vol/vol/vol).AfterT.dionisiidelipidationMAbMEST-1reactivitywasabolished(PanelD).(A)Controlparasites,phasecontrastimage.(B) controlparasites,mergedimageofMAbMEST-1ingreenandDAPI(nucleiandkinetoplasts)inblue.Whitearrowsindicatedparasiteswithastrongpunctuallabelingof surfaceorvesiclesotherthenreservosomes,andwhitearrowheadsindicatedparasitesweaklylabeled.(C)Delipidatedparasites–phasecontrast.(D)Delipidatedparasites mergedimageofMAbMEST-1(itshouldappearingreen)andDAPI(nucleiandkinetoplasts)inblue.ImageshowtheabolishedMAbMEST-1reactivity.ImagesAandB acquiredunderconfocalmicroscopy.ImagesCandDacquiredunderfluorescencemicroscopy.Scalebar:10␮m.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthearticle.)

togetherwithsharingmechanismsofcellularinvasionprocessand differencesintrans-sialidaseexpression,betweenT.dionisiiandT. cruzi,thatwe describedinpreviouswork(Oliveiraetal.,2009), canenrichthenew‘batseeding’hypothesisofT.cruzievolution (Hamiltonetal.,2012).

Inadditiontothethree-dimensionalmorphologicalstudiesofT. dionisiiweverified,usingMAbsBST-1andMEST-1,thatthis para-sitesharescarbohydrateepitopes,suchasglycoepitopescontaining Galfresidues,withT.cruziepimastigotes.

InT.dionisiiepimastigotes,theMAbBST-1(whichwasraised against T. cruzi CL epimastigoteglycolipids), showed reactivity withmultivesicularstructures(reservosomes,indicatedbywhite arrowsinFig.4BandD).Also,aweakBST-1labelingwasobserved intheparasitesurfaceandflagellum(arrowheads).However,not allparasitesarelabeledwithBST-1.Theseresultssuggestthe exist-enceofthreesubpopulationsofT.dionisiiepimastigotes:parasites thatexpressweakBST-1 labelingat surface/vesiclesotherthan reservosomes,parasitesthatexpressglycoepitopesrecognizedby BST-1atsurfaceandinreservosomevesicles,andparasiteswhich arenotlabeledbyBST-1.T.cruziepimastigoteheterogeneitywas previouslyreportedbySilvaetal.,2006,analyzingdifferent epi-mastigoteepitopes,andalsocitedbyusinT.dionisii,usingdistinct MAbsanti-T. cruzi (Oliveira et al., 2009).BST-1 reacts withall

populationofT.cruziepimastigotes(strainsCL),astrong fluores-cenceisobservedinreservosomes(arrow),parasitesurfaceand flagellum(Fig.5B).

TheMAbMEST-1,previouslyraisedagainstP.brasiliensis gly-colipidscontainingterminalresiduesofGalf(Suzukietal.,1997), whichalsoreactsstronglywithT.cruziglycolipidspresentin reser-vosomes(Suzukietal.,1997,2001)andL.majorsurfaceglycolipids (Suzukietal.,1997),alsorecognizesT.dionisiiepimastigotes.The MEST-1 labelingwaspunctual,appearing tobeconcentratedat theperipheryoftheparasitebody(Fig.6B),wealsonotedsome parasitesweaklylabeled,showingagainparasitesubpopulations (arrowheads).T.dionisiiMAbMEST-1labelingwastotallydifferent fromthatshowedforepimastigotesofT.cruziYstrain,whereitwas observedastronglabelingofparasitereservosomes(Suzukietal., 2001).Ontheotherhandsimilarpatternoflabelingwasobserved betweenT.cruziCLstrainandT. dionisii(Figs.5Dand 6B).InT. dionisiiepimastigotesMEST-1reactivegalactofuranosecontaining antigensseemtobeconcentratedatparasitesurfaceprobablyin membranemicrodomainsorinvesiclesotherthanreservosomes (Fig.6B).

(8)

M.P.d.C.Oliveiraetal./ActaTropica128 (2013) 548–556 555

Fig.7. ProfileofT.cruziandT.dionisiiepimastigotecomponentsrecognizedbyMAb BST-1.Parasites(8×109cells)weresolubilizedinsamplebuffer,submittedto

PAGE-SDS8%electrophoresisandanalyzedbyWesternblotting.MAbBST-1recognized inT.cruziCLstrain(CL)alowmolecularweightcomponent(lessthan26kDa)and inGstrain(G)twomaincomponentsbetween80and115kDa.InT.dionisii(Tdio) MAbBST-1recognizedalowmolecularweightcomponent(lessthan26kDa)and componentsbetween72and115kDa.

a mixture of isopropanol–hexane–water (55:20:25; vol/vol/vol) andlabeledwithMEST-1.UndertheseconditionstheMEST-1 label-ingwasabolished(Fig.6D),confirmingthelipidcharacteristicof therecognizedantigen.Moreover,Westernblotresultsshowthat MAbBST-1 recognizedinT. dionisiiepimastigotes, aswellin T. cruziGstrainepimastigotes,highmolecularweightglycoproteins (72–115kDa).BST-1alsorecognizeslowmolecularweightantigens (lowerthan26kDa)inT.dionisiiepimastigotes(Fig.7).The pres-enceoftheselowmolecularweightantigenscouldberelatedto theNETNESglycoproteinsofT.cruzi(MacRaeetal.,2005),which containsanunusuallysmallmaturepeptidecomponent(13amino acids)andmolecularweightbetween13and15kDa,orcorrespond toreactiveglycolipidantigens.Thesedatashouldbebetterstudied. ThefactofT.dionisiiglycolipidepitopesrichinGalfresidues appearstobelessabundantthaninT.cruzi,inadditionto previ-ousobservationsthatT.dionisiiislessinvasiveandpresentslow infectivecapacity(invitro),exceptundercontrolled environmen-talconditions(Oliveiraetal.,2009;Maedaetal.,2012),corroborate thehypothesisthatglycoconjugatesrichinGalfresiduesmaybe relatedtoparasitesinfectivityandwesuggestthatmaybegood targetsforthedevelopmentsofnewdrugsandvaccinesagainst Chagas’disease.

Acknowledgments

ThisworkwaspartofMiriamPiresdeCastroOliveira’sPhD the-sis.ThefinancialsupportfromtheBrazilianagenciesCoordenac¸ão

deAperfeic¸oamentodePessoaldeNívelSuperior(CAPES),Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq),and Fundac¸ãodeAmparoàPesquisadoEstadodeSãoPaulo(FAPESP, 06/07005-4).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, in the online version, at http://dx.doi.org/10.1016/j.actatropica. 2013.08.001.

References

Alberio,S.O.,Dias,S.S.,Faria,F.P.,Mortara,R.A.,Barbieri,C.L.,Freymuller,H.E.,2004. UltrastructuralandCytochemicalidentificationofmegazomeinLeishmania (Leishmania)chagasi.ParasitologyResearch92,246–254.

Alves,M.J.M.,Colli,W.,1975.GlycoproteinsfromTrypanosomacruzi:partial purifi-cationbygelchromatography.FEBSLetters52,188–192.

Baker,J.R.,Selden,L.F.,1981.Trypanosoma(Schizotrypanum)dionisiiasamodelfor chemotherapeuticstudiesrelatedtoChagas’sdisease.TransactionsoftheRoyal SocietyofTropicalMedicineandHygiene75,80–95.

Baker,J.R.,Chaloner,L.A.,Green,S.M.,1971.Intracellulardevelopmentinvitroof Trypanosomadionisiiofbats.RoyalSocietyofTropicalMedicineandHygiene65, 427.

Baker, J.R., Miles, M.A., Godfrey, D.G., Barrett, T.V., 1978. Biochemical char-acterization of some species of Trypanosoma (Schizotrypanum) from bats (Microchiroptera).TheAmericanJournalofTropicalMedicineandHygiene27, 483–491.

Bertini, S., Takahashi, H.K., Straus, A.H., 2003a. Inhibition oftrypomastigotes infectivitybymonoclonalantibodyBST-1,directedtoepimastigotesGIPCs. Cross-reactivitywithhighmolecularweightantigenpresentintrypomastigotes. RevistadoInstitutodeMedicinaTropicaldeSãoPaulo45,83.

Bertini, S., Takahashi, H.K., Straus, A.H., 2003b.Inhibition oftrypomastigotes infectivitybymonoclonalantibodyBST-1,directedtoepimastigotesGIPCs. Cross-reactivitywithhighmolecularweightantigenpresentintrypomastigotes. RevistadoInstitutodeMedicinaTropicaldeSãoPaulo45,83-83.

Branquinha,M.H.,Vermelho,A.B.,Almeida,I.C.,Mehelert,A.,Ferguson,M.A.,1999. StructuralstudiesonthepolarglycoinositolphospholipidsofTrypanosoma (Schizotrypanum)dionisiifrombats.MolecularandBiochemicalParasitology 102,179–189.

Brener, Z., Chiari, E., 1963. Variac¸ões morfológicas observadas em diferentes amostrasdeTrypanosomacruzi.RevistadoInstitutodeMedicinaTropicalde SãoPaulo5,220–224.

Camargo,E.P.,1964.GrowthanddifferentiationofTrypanosomacruzi.I.Originof metacyclictrypanosomesinliquidmedia.RevistadoInstitutodeMedicina Trop-icaldeSãoPaulo6,93–100.

Cazzullo,J.J.,Stokova,V.,Turk,V.,1997.Cruzipain,themajorcysteineproteinase fromtheprotozoanparasiteTrypanosomacruzi.BiologicalChemistry378,1–10. Cazzullo,J.J.,Stokova,V.,Turk, V.,2001.Themajorcysteineproteinaseof Try-panosomacruzi:avalidtargetforchemotherapyofChagasdisease.Current PharmaceuticalDesign7,1143–1156.

Cortez,M.,Atayde,V.,Yoshida,N.,2006a.HostcellinvasionmediatedbyTypanosoma cruzisurfacemoleculegp82isassociatedwithF-actindisassemblyandinhibited byenteroinvasiveEscherichiacoli.MicrobesandInfection8,1502–1512. Cortez,M.,Silva,M.R.,Neira,I.,Ferreira,D.,Sasso,G.R.S.,Luquetti,A.O.,Rassi,A.,

Yoshida,N.,2006b.Trypanosomacruzisurfacemoleculegp90downregulates invasionofgastricmucosalepitheliuminorallyinfectedmice.Microbesand Infection8,36–44.

Cunha-e-Silva,N.L.,Sant’Anna,C.,Pereira,M.G.,Porto-Carreiro,I.,Jeovanio,A.L., deSouza, W.,2006.Reservosomes Multipurpouseorganelles? Parasitology Research99,325–327.

DeArruda,M.V.,Colli,W.,Zingales,B.,1989.Terminal␤-d-galactofuranosyl epi-topesrecognizedbyantibodiesthatinhibitTrypanosomacruziinternalization intomammaliancells.EuropeanJournalofBiochemisty182,413–421. DeSouza,W.,1984.CellbiologyofTrypanosomacruzi.InternationalReviewof

Cytol-ogy86,197–283.

DeSouza,W.,1999.AshortreviewonthemorphologyofTrypanosomacruzi:From 1909to1999.TheMemóriasdoInstitutoOswaldoCruz941,17–36.

DeSouza,W.,2002.BasiccellbiologyofTrypanosomacruzi.CurrentPharmaceutical Design8,269–285.

DeSouza,W.,2008.Electronmicroscopyoftrypanosomes–ahistoricalview.The MemóriasdoInstitutoOswaldoCruz103,313–325.

DeSouza,W.,Sant’Anna,C.,Cunha-e-Silva,N.L.,2009a.Electronmicroscopyand cytochemistry analysisof the endocytic pathway ofpathogenic protozoa. ProgressinHistochemistryandCytochemistry44,67–124.

DeSouza,W.,Attias,M.,Rodrigues,J.C.,2009b.Particularitiesofmitochondrial struc-tureinparasiticprotists(ApicomplexaandKinetoplastida).TheInternational JournalofBiochemistry&CellBiology41,2069–2080.

(9)

Ferguson,M.L.,Torri,A.F.,Perez-Morga,D.,Ward,D.C.,Englund,P.T.,1994. Kineto-plastDNAreplication:mechanisticdifferencesbetweenTrypanosomabruceiand Crithidiafasciculata.JournalofCellBiology126,631–639.

Ferreira,D.,Cortez,M.,Atayde,V.D.,Yoshida,N.,2006.Actincytoskeleton-dependent andindependenthostcellinvasionbyTrypanosomacruziismediatedbydistintct parasitesurfacemolecules.InfectionandImmunity74,5522–5528.

Ferreira,L.R.,Dossin,F.M.,Ramos,T.C.,Freymuller,E.,Schenkman,S.,2008.Active transcriptionandultrastructuralchangesduringTrypanosomacruzi metacyclo-genesis.AnaisdaAcademiaBrasileiradeCiencias(RiodeJaneiro)80,157–166. Fiala,J.C.,2005.Reconstruct:afreeeditorforserialsectionmicroscopy.Journalof

Microscopy218,52–61.

Giordano,R.,Chammas,R.,Veiga,S.S.,Colli,W.,Alves,M.J.M.,1994.Anacidic compo-nentoftheheterogeneousTc-85proteinfamilyfromthesurfaceofTrypanosoma cruziisalamininbindingglycoprotein.MolecualrandBiochemistryParasitology 65,85–94.

Glauert,A.M.,Baker,J.R.,Selden,L.F.,1982.Mechanismofentryanddevelopmentof Trypanosomadionisiiinnon-phagocyticcells.JournalofCellScience56,371–387. Golgher,D.B., Colli,W., Souto-Padrón, T., Zingales, B.,1993. Galactofuranose-containing glycoconjugates of epimastigote and trypomastigote forms of Trypanosomacruzi.MolecularandBiochemistryParasitology60,249–264. Hamilton,P.B.,Gibson,W.C.,Stevens,J.R.,2007.Patternsofco-evolutionbetween

trypanosomesandtheirhostsdeducedfromribosomalRNAandprotein-coding genephylogenies.MolecularPhylogeneticsandEvolution44,15–25. Hamilton,P.B.,Teixeira,M.M.,Stevens,J.R.,2012.TheevolutionofTrypanosoma

cruzi:the‘batseeding’hypothesis.TrendsinParasitology4,136–141. Laemmli,U.K.,1970.Cleavageofstructuralproteinsduringtheassemblyofthehead

ofbacteriophageT4.Nature227,680–685.

Lederkremer,R.M.,Colli,W.,1995.Galactofuranose-containningglycoconjugatesin trypanosomatids.Glycobiology5,547–552.

Liu,B.,Liu,Y.,Motyka,S.A.,Agbo,E.E.,Englund,P.T.,2005.Fellowshipoftherings: thereplicationofkinetoplastDNA.TrendsinParasitology21,363–369. MacRae,J.I.,Acosta-Serrano,A.,Morrie,N.A.,Mehlert,A.,Ferguson,M.A.J.,2005.

StructuralcharacterizationofNETNES,anovelglycoconjugateinTrypanosoma cruziepimastigotes.JournalofBiologicalChemistry280,12201–12211. Maeda,F.Y.,Cortez,C.,Melatto-Alves,R.,Yoshida,N.,2012.Mammaliancellinvasion

bycloselyrelatedTrypanosomaspeciesT.dionisiiandT.cruzi.ActaTropica121, 141–147.

Mendonc¸a-Previato,L.,Gorin,P.A.J.,Braga,A.F.,Sharfstein,J.,Previato,J.O.,1983. Chemicalstructureandantigenicaspectsofcomplexesobtainedfrom epi-mastigotesofTrypanosomacruzi.Biochemistry22,4980–4987.

Milder,R.,Deane,M.P.,1969.ThecytostomeofTrypanosomacruziandTrypanosoma conorhini.JournalofProtozoology16,730–737.

Ming,M.,Chuenkova,M.,Ortega-Barria,E.,Pereira,M.E.,1993.Mediationof Try-panosomacruziinvasionbysialicacidonthehostcellandtrans-sialidaseonthe trypanosome.MolecularandBiochemicalParasitology59,243–252. Molyneux,D.H.,1991.Trypanosomesofbats.In:Kreier,J.P.,Baker,J.R.(Eds.),

Para-siticProtozoa.AcademicPress,SanDiego,pp.195–223.

Morris,J.C.,Drew,M.E.,Klingbeil,M.M.,Motyka,S.A.,Saxowsky,T.T.,Wang,Z., Englund,P.T.,2001.ReplicationofkinetoplastDNA:anupdateforthenew millennium.InternationalJournalofParasitology31,453–458.

Nogueira,N.F.S.,Gonzales,M.S.,Gomes,J.E.,Souza,W.,Garcia,E.S.,Azambuja, P., Nohara, L.L., Almeida, I.C., Zingales, B., Colli, W., 2007. Trypanosoma cruzi:involvementof glycoinositolphospholipidsintheattachmentto the luminalmidgutsurfaceofRhodniusprolixus.ExperimentalParasitology116, 120–128.

O’Daly,J.A.,Bretana,A.,1976.UltrastructuralobservationsofTrypanosomacruziina liquidmedium:Thekinetoplast-mitochondrionindivisionforms.International JournalofParasitology6,271–278.

Ogbadoyi, E.O., Robinson, D.R., Gull, K., 2003. A high-order trans-membrane structurallinkageisresponsibleformitochondrialgenomepositioningand seg-regationbyflagellarbasalbodiesintrypanosomes.MolecularBiologyoftheCell 14,1769–1779.

Okuda,K.,Estevan,M.,Segura,E.L.,Bijovsy,A.T.,1999.ThecytostomeofTrypanosoma cruziepimastigotesisassociatedwiththeflagellarcomplex.Experimental Para-sitology92,223–231.

Oliveira,M.P.D.C.,Cortez,M.,Maeda,F.Y.,Fernandes,M.C.,Haapalainen,E.F.,Yoshida, N.,Mortara,R.A.,2009.UniquebehaviorofTrypanosomadionisiiinteractingwith mammaliancells:invasion,intracellulargrowth,andnuclearlocalization.Acta Tropica110,65–74.

Petry,K.,Schottelius,J.,Baltz,T.,1987a.Purificationofmetacyclictrypomastigotesof TrypanosomacruziandTrypanosomadionisiifromcultureusinganepimastigote specificmonoclonalantibody.ParasitologyResearch73,224–227.

Petry, K., Voisin, P.,Baltz, T., 1987b. Complexlipids ascommonantigens to Trypanosomacruzi,T.dionisii,T.vespertilionisandnervoustissue(astrocytes neurons).ActaTropica44,381–386.

Petry,K.,Voisin,P.,Baltz,T.,Labouesse,J.,1987c.Epitopescommontotrypanosomes (T.cruzi,T.dionisiiandT.vespertilionis(Schizotrypanum)):astrocytesand neu-rons.JournalofNeuroimmunology16,237–252.

Porto-Carreiro,Attias,I.,Miranda,M.,DeSouza,K.,Cunha-e-Silva,W.,2000. Try-panosomacruziepimastigoteendocyticpathway:cargoentersthecytostome andpassesthroughanearlyendossomalnetworkbeforestoragein reservo-somes.EuropeanJournalofCellBiology79,858–869.

Ramirez,M.I.,Ruiz,R.C.,Araya,J.E.,FrancodaSilveira,J.,Yoshida,N.,1993. Involve-mentofthestage-specific82-kilodaltonadhesionmoleculeofTrypanosomacruzi metacyclictrypomastigotesinhostcellinvasion.InfectionandImmunity61, 3636–3641.

Ramos,T.C.,Haapalainen,E.F.,Schenkman,S.,2011.Three-dimensional reconstruc-tionofTrypanosomacruziepimastigotesandorganelledistributionalongthecell divisioncycle.CytometryPartA79A,538–544.

Sant’Anna,C.,Parussini,F.,Lourenc¸o,D.,DeSouza,W.,Cazzulo,J.J.,Cunha-e-Silva, N.L.,2008. AllTrypanosomacruzi developmentalformspresent lysossome-relatedorganelles.HistochemistryandCellBiology130,1187–1198. Silva,C.V.,Luquetti,A.O.,Rassi, A., Mortara, R.A.,2006.Involvement ofSsp-4

relatedcarbohydrateepitopesinmammaliancellinvasionbyTrypanosomacruzi amastigotes.MicrobesInfection8,2120–2129.

Soares,M.J.,DeSouza,W.,1988.Cytoplasmicorganellesoftrypanosomatids:a cytochemicalandstereologicalstudy.JournalofSubmicroscopicCytologyand Pathology20(2),349–361.

Solari,A.J.,1995.Mitosisandgenomepartitionintrypanosomes.Bio-Cell19,65–84. Suzuki,E.,Toledo,M.S.,Takahashi,H.K.,Straus,A.H.,1997.Amonoclonalantibody directedtoterminalresidueofgalactofuranoseofaglycolipidantigenisolated fromParacoccidioidesbrasiliensis:cross-reactivitywithLeishmaniamajorand Trypanosomacruzi.Glycobiology7,363–368.

Suzuki, E., Mortara, R.A., Takahashi, H.K., Straus, A.H., 2001. Reactivity of MEST-1(Antigalactofuranose)withTrypanosomacruziglycosylinositol phos-phorylceramides(GIPCs):ImmunolocalizationofGIPCsinacidicvesiclesof epimastigotes.ClinicalandDiagnosticLaboratoryImmunology8,1031–1035. Suzuki,E.,Tanaka,A.K.,Toledo,M.S.,Takahashi,H.K.,Straus,A.H.,2002.Roleof

beta-d-galactofuranoseinLeishmaniamajorinvasion.InfectionandImmunity 70,6592–6596.

Suzuki,E.,Tanaka,A.K.,Toledo,M.S.,Levery,S.B.,Straus,A.H.,Takahashi,H.K.,2008. Trypanosomatidandfungalglycolipidsandsphingolipidsasinfectivityfactors andpotentialtargetsfordevelopmentofnewtherapeuticstrategies.Biochimica etBiophysicaActa1780,362–369.

Tagliari,L.,Toledo,M.S.,Lacerda,T.G.,Suzuki,E.,Straus,A.H.,Takahashi,H.K.,2012. MembranemicrodomaincomponentsofHistoplasmacapsulatumyeastforms, andtheirroleinalveolarmacrophageinfectivity.BiochimicaetBiophysicaActa 1818,458–466.

Takahashi,H.K.,Toledo,M.S.,Suzuki,E.,Tagliari,L.,Straus,A.H.,2009.Current relevanceoffungalandtrypanosomatidglycolipidsandsphingolipids: stud-iesdefiningstructuresconspicuouslyabsentinmammals.AnaisdaAcademia BrasileiradeCiencias(RiodeJaneiro)81,477–488.

Tefsen,B.,Ram,A.F.J.,vanDie,I.,Routier,F.H.,2012.Galactofuranoseineukaryotes: aspectsofbiosynthesisandsfunctionalimpact.Glycobiology22(4),456–469. Thorne,K.J.,Glauert,A.M.,Svvennsen,R.J.,Franks,D.,1979.Phagocytosisandkilling

ofTrypanosomadionisiibyhumanneutrophils,eosinophilsandmonocytes. Para-sitology79,367–379.

Tocheva,E.I.,Li,Z.,Jensen,G.J.,2010.Electroncryotomography.ColdSpringHarbor PerspectivesinBiology2,a003442.

Toledo,M.S.,Suzuki,E.,Straus,A.H.,Takahashi,H.K.,1995.Glycolipidsof Paracoc-cidioidesbrasiliensis,Isolationofagalactofuranosecontainingglycolipidreactive seraofpatientswithparacoccidioidomycosis.JournalofMedicalandVeterinary Mycology33,247–251.

Wilkins, S.R., Baker, J.R., 1975. Proceedings: limited survival of Trypanosoma (Schizotrypanum)dionisiiinRhodniusprolixus.TransactionsoftheRoyalSociety ofTropicalMedicineandHygiene69,433-433.

Referências

Documentos relacionados

Para tal, foram estimadas para uma amostra selecionada não só o parâmetro de aversão ao risco da Teoria da Utilidade Esperada, como os parâmetros da função valor e

The factorial correspondence analyses showed that variation among individuals was similarly explained by both axes (Fig. Two unnamed males from the APNR were very different from other

A high frequency of intestinal parasites was found in Baré and Baniwa ethnic groups. Ascaris lumbricoides was found at frequencies higher than 70%, and mixed infections by

Our results indicate that for a full ML of Te coverage, the surface presents a (1 1) reconstruction, in agreement with experimental results, and the dimer- ization of the surface

Thus, human MC express DP2 intracellularly rather than on their surface, and the function of DP2 in human MC is different than in other immune cells such as Th2 cells, eosinophils

Since we previously demonstrated that mES cells promiscuously express a large variety of functional and tissue specific cell surface proteins at the protein level [19], it

The results showed that: (1) both the tangential velocity and turbulence intensity on the liquid surface caused by a Rushton turbine were the highest of the three conditions at

1.2.1 Life cycle of Trypanosoma brucei 7 1.2.2 Cell structure of Trypanosoma brucei parasites 10 1.2.3 The Variant Surface Glycoprotein Coat of Trypanosoma brucei 11