• Nenhum resultado encontrado

Contribuição da metformina e sinvastatina para o entendimento da relação da resistência a insulina a inflamação

N/A
N/A
Protected

Academic year: 2017

Share "Contribuição da metformina e sinvastatina para o entendimento da relação da resistência a insulina a inflamação"

Copied!
84
0
0

Texto

(1)

Caroline Bulcão Souza

CONTRIBUIÇÃO DA METFORMINA E SINVASTATINA PARA O ENTENDIMENTO DA RELAÇÃO DA

RESISTÊNCIA À INSULINA COM A INFLAMAÇÃO

Tese apresentada à Universidade Federal de São Paulo - Escola Paulista de Medicina para obtenção de título de Doutor em Ciências

(2)

Caroline Bulcão Souza

CONTRIBUIÇÃO DA METFORMINA E SINVASTATINA PARA O ENTENDIMENTO DA RELAÇÃO DA

RESISTÊNCIA À INSULINA À INFLAMAÇÃO

Tese apresentada à Universidade Federal de São Paulo - Escola Paulista de Medicina para obtenção de título de Doutor em Ciências Área de concentração: Endocrinologia

Orientadora: Profa. Dra. Sandra Roberta G. Ferreira Coordenador: Prof. Dr. Sérgio Atala Dib

(3)

Bulcao-Souza, C.

Contribuição da metformina e sinvastatina para o entendimento da relação da resistência à insulina e inflamação. Caroline Bulcão Souza. São Paulo, 2006. p.1-79

Tese (Doutorado) - Universidade Federal de São Paulo, Escola Paulista de Medicina.

Programa de Pós-Graduação em Endocrinologia.

Título em inglês: Contribution of metformin and simvastatin for the knowledge of

insulin resistance and inflammation.

1. Insulin resistance 2. Inflammation 3. Metformin

(4)

Dedicatória

Dedico esta tese:

a meus pais tão amados, Jorge e Lêda, a quem devo tudo que conquistei até hoje na minha

vida.

a minha orientadora, dra Sandra, o maior e melhor exemplo de mulher, profissional,

pesquisadora, orientadora e amiga.

a meu marido, amigo e companheiro, Fernando, um pedaço de mim, sem o qual tudo seria

(5)

Agradecimentos

A Deus, que me dá força, coragem e esperança para seguir em frente nos momentos

difíceis.

Ao dr Fernando Flexa, pela colaboração durante todo o processo.

A todo pessoal do Hospital do Rim e Hipertensão, em especial, Paula, Edinir, Elza, Marta

e Nárcia.

A todo pessoal do Centro de Diabetes, disciplina de endocrinologia e do Ambulatório de

Endocrinologia da UNIFESP.

A todos os professores da Disciplina de Endocrinologia da UNIFESP.

Aos meus colegas de residência e pós-graduação, em especial, Regina, Isabel e Sílvia,

companheiras desde o princípio.

À Escola Paulista de Medicina, que me acolheu quando cheguei em São Paulo há mais

(6)

Índice

Página

1. CONSIDERAÇÕES INICIAIS . . . 2

1.a. Resistência à insulina . . . 4

1.b. Inflamação subclínica . . . 6

1.c. Justificativa . . . 9

1.d. Objetivos . . . 9

1.e. Resumo dos Artigos. . . 10

1.f. Referências bibliográficas . . . 12

2.ARTIGO 1: The New Adipose Tissue and Adipocytokynes” . . . . . . . 14

3. ARTIGO 2: Effects of Simvastatin and Metformin on Inflammation and Insulin Resistance in Mildly Metabolically Disturbed Individuals” . . . 45

4. ARTIGO 3: May Beneficial Cardiovascular Effects of Simvastatin Be Also Associated with Hormonal-Dependent Mechanism Improving Insulin Sensitivity?” . . . 63

(7)
(8)

1.CONSIDERAÇÕES INICIAIS

Neste capítulo serão apenas introduzidos alguns aspectos relevantes do tema

“resistência à insulina e inflamação”, uma vez que o aprofundamento do tema pode ser

encontrado no primeiro dos artigos integrantes desta tese (Artigo 1: “The New Adipose

Tissue and Adipocytokynes.”). Comentar-se-á sobre a sequência de idéias que levou os

autores à elaboração do protocolo de pesquisa, fornecendo o “nexo” que interliga os três

artigos que compõem esta tese.

Espera-se do “doutor em formação” definir o direcionamento inicial das suas

pesquisas que o orientará ao longo da sua vida acadêmica. Para alguns, a opção é pelo

enfoque clínico, embasado em uma série de razões que vão desde o interesse científico,

perfil profissional e potencial de continuidade da linha de trabalho a médio e longo prazo.

Porém, não se pode negar o papel da literatura vigente, que influencia de modo

considerável o rumo do conhecimento.

“Resistência à insulina e inflamação” são processos fisiopatológicos dos mais

relevantes para a saúde do homem atual. Pode-se afirmar que os principais problemas de

saúde pública da atualidade envolvem estes mecanismos, capazes de desencadear

doenças em proporções epidêmicas. Reconhecendo esta situação, a literatura tem

investido amplamente no tema; o presente trabalho procurou dar uma pequena contribuição

a este conhecimento.

O Programa de Pós-Graduação em Endocrinologia da Universidade Federal de São

Paulo oferece um leque de oportunidades para que profissionais atinjam nível de

excelência na produção de ciência básica, experimental e clínica. A opção deste trabalho

foi pela área clínica e, no contexto desta, as doenças mais prevalentes da endocrinologia,

que influenciam de modo significativo à sobrevida das populações. É natural neste perfil

buscar entender mecanismos etiopatogênicos que poderão, um dia, reverter em frutos na

área da prevenção e terapêutica. Tendo isso em mente, gerou-se a idéia da tese, em torno

das condições mórbidas associadas ao excesso de adiposidade corporal – a epidemia do

mundo atual.

Uma vez revisado o tema, o que resultou no Artigo 1, buscou-se recursos junto à

entidade de apoio à pesquisa (FAPESP 02/10010-9), para o desenvolvimento de um projeto

(9)

vias escolhidas para se explorar a etiopatogenia de anormalidades que compõem a

síndrome metabólica (SM), ao mesmo tempo procurou-se estudar mais duas medicações –

com benefícios são consagrados no tratamento (ou mesmo na prevenção) de algumas das

doenças da SM – para aprofundar tal conhecimento (Artigo 2: “Effects of Simvastatin and

Metformin on Inflammation and Insulin Resistance in Mildly Metabolically Disturbed

Individuals” e Artigo 3: “May Beneficial Cardiovascular Effects of Simvastatin Be Also

Associated with Hormonal-Dependent Mechanism Improving Insulin Sensitivity?”).

1.A.RESISTÊNCIA À INSULINA

Resistência à insulina (RI) é definida como uma condição, genética ou adquirida, onde ocorre menor utilização de glicose pelos tecidos em resposta ao estímulo insulínico.

Devido ao distúrbio na captação de glicose, há elevação compensatória da secreção pelas

células beta-pancreáticas que resulta em elevação dos níveis circulantes de insulina

(hiperinsulinemia). A glicemia se mantém estável enquanto as concentrações aumentadas

deste hormônio conseguem vencer a resistência tecidual, determinando captação de

glicose. Quando as células beta tornam-se incapazes de aumentar sua secreção para

superar a resistência, a glicemia se eleva, surgindo graus variados de intolerância à

glicose.

A obesidade se constitui numa das principais condições geradoras de RI e

importante fator de risco para o diabetes mellitus (DM) tipo 2. No momento em que o

diagnóstico de DM é confirmado, dois defeitos básicos desta doença estão presentes – a

resistência à insulina e a deficiência de secreção – que têm como resultado hiperglicemia

de graus variados, mesmo na condição de jejum. Em fase precoce da história natural do

DM a RI parece ser o distúrbio mais proeminente; apenas sob estímulo (teste de

sobrecarga de glicose) a deficiência de insulina torna-se manifesta pela elevação da

glicemia. A prevenção do aparecimento do DM é a melhor opção a ser buscada, uma vez

que, instalada a doença, os esquemas terapêuticos disponíveis não são eficazes em

manter permanentemente a normoglicemia. Estudos de intervenção sobre o estilo de vida

têm mostrado que a prevenção do DM tipo 2 é possível, particularmente por meio de

medidas não-farmacológicas (1,2).

É amplamente conhecido que a tolerância à glicose diminuída (TGD) e o DM tipo 2

(10)

diversas técnicas de complexidade variável. O método padrão-ouro de avaliação da

sensibilidade à insulina é o clamp euglicêmico hiperinsulinêmico (3). Devido à

complexidade e custo, o clamp não tem sido usado na prática clínica. Mesmo para fins de

pesquisa, estes limitantes fizeram com que técnicas alternativas para se mensurar a

sensibilidade à insulina fossem desenvolvidas. Entre estas, o cálculo da área sob a curva

glicêmica obtida pelo teste de sobrecarga com glicose, o índice HOMA-RI (4), o índice

ISI0,120 (5) ou a simples dosagem da insulinemia em jejum têm mostrado correlações

aceitáveis com o método de referência (6,7).

A hiperinsulinemia, dentre outras anormalidades, faz parte da síndrome descrita por

Reaven, em 1988 (8). Atualmente, com a incorporação de outras anormalidades

metabólicas (9), é conhecida como Síndrome Metabólica (SM). Engloba distúrbios tais

como obesidade central, resistência à insulina e/ou hiperinsulinemia, intolerância à glicose,

hipertensão arterial, dislipidemia (hipertrigliceridemia e HDL-colesterol baixo), lipemia

pós-prandial, disfunção endotelial (microalbuminúria), hipofibrinólise (aumento de PAI-1),

doença cardiovascular aterosclerótica, hiperandrogenismo (mulheres), hiperuricemia, além

de outros. O risco CV atribuído à distribuição central da adiposidade corporal parece

depender da RI gerada pelo excesso de tecido adiposo visceral (“teoria portal”). Este se

caracteriza por intensa atividade lipolítica, do que resulta grande produção de ácidos

graxos, lançados na circulação portal e sistêmica. Uma série de distúrbios metabólicos

ocorre, especialmente no fígado, pâncreas e musculatura esquelética, que deterioram a

sensibilidade à insulina, podendo gerar hiperinsulinemia. Tendo em mente os efeitos

fisiológicos da insulina sobre a reabsorção renal de sódio, tônus simpático, metabolismo

glico-lipídico, sistema de coagulação e efeitos tróficos sobre a musculatura lisa, é razoável

supor que a exacerbação destes poderia contribuir na gênese da hipertensão e

dislipidemia, que juntos concorrem para ocorrência de doença cardiovascular que

acompanha a SM. Nem todas as manifestações da SM estarão presentes em todos os

indivíduos resistentes à insulina, de modo que a estratégia terapêutica deve ser

individualizada.

Recentemente, o papel do tecido adiposo como órgão endócrino tem sido muito

explorado e são amplas as evidências de que substâncias (hormônios e citocinas) nele

produzidas contribuem para deteriorar a sensibilidade à insulina e elevar o risco

(11)

Ao lado dos clássicos fatores de risco cardiovascular (DM, hipertensão arterial,

dislipidemia e tabagismo), o efeito deletério da hiperinsulinemia tem sido reportado.

Demonstrou-se que a hiperinsulinemia per se associa-se independentemente à elevação

do risco cardiovascular (10-13). Os distúrbios do perfil lipídico que classicamente estão

associados à síndrome de resistência à insulina são a hipertrigliceridemia, HDL-colesterol

baixo e elevação das partículas de LDL pequenas e densas. Considerando que

hiperinsulinemia e dislipidemia são fatores de risco independentes, a soma de ambos os

fatores potencializa consideravelmente este risco.

Nas últimas décadas, alterações no sistema de coagulação e fibrinólise,

desencadeantes de eventos trombo-embólicos, têm sido associadas à RI. A hipofibrinólise

observada em pacientes com manifestações da SM pode ser decorrente de níveis elevados

do inibidor da ativação de plasminogênio - PAI-1 (14). Este fator encontra-se aumentado no

plasma de indivíduos com doença cardiovascular, dislipidemia, hipertensão e

hiperinsulinemia. Estes achados fazem supor que a predisposição à doença aterosclerótica

e trombo-embolismo de pacientes com estas condições pode estar também relacionada à

elevação do PAI-1 (15).

A mais recente associação da RI tem sido, no entanto, com marcadores de

processo inflamatório “subclínico” ou “de baixo grau”.

1.B.RESISTÊNCIA À INSULINA E INFLAMAÇÃO

Vários estudos revelam que o aumento de marcadores inflamatórios no plasma é

preditivo de doença cardiovascular (16,17). O fato desta doença e seus fatores de risco

associarem-se com RI, motivou a investigação de uma série de marcadores em diversas

condições clínicas. Existem evidências de que a proteína C reativa (PCR), mesmo

moderadamente elevada, está associada a risco coronariano aumentado. No estudo

prospectivo AFCAPS/TexCAPS, os níveis de PCR basal foram preditivos do primeiro

evento coronariano em indivíduos de risco (18). Mesmo em indivíduos “aparentemente”

normais, alguns estudos sugerem que este marcador inflamatório pode ser um método útil

para se avaliar o risco cardiovascular, particularmente se o perfil lipídico estiver preservado

(19,20). No entanto, não se sabe até que ponto fenômenos inflamatórios estariam

(12)

Outros marcadores inflamatórios também relacionados à maior morbidade cardiovascular são a interleucina-6 (IL-6), o Fator de Necrose Tumoral (TNF-α), o fibrinogênio, adiponectina, moléculas de adesão solúveis no plasma entre outros (21). A

literatura, entretanto, carece de estudos de grande porte que definam a inter-relação entre

processo inflamatório e RI, e nenhum estudo prospectivo, envolvendo intervenções

precoces no processo inflamatório, encontra-se disponível.

A RI pode ser atenuada através de medidas não-farmacológicas e de

medicamentos. Estudos epidemiológicos, envolvendo indivíduos de alto risco para DM,

demonstraram a eficácia de programas de atividades físicas e dieta (baixo teor de

gorduras, rica em fibras) em prevenir tal desfecho (1). Perda de peso e exercícios possuem

efeitos consagrados sobre sensibilidade à insulina, que certamente participaram da

redução do risco de DM nestes indivíduos. Embora a redução de peso seja uma das mais

importantes medidas no combate a RI, a prática clínica mostra que pode se constituir num

dos maiores desafios a ser alcançado no controle da SM. Estão disponíveis na atualidade

agentes eficazes em melhorar a sensibilidade à insulina, atuando em certos tecidos-alvos,

sem atuar sobre a secreção pancreática de insulina. As biguanidas se constituem numa

das classes mais antigas e mais estudadas. Dentre estas, a metformina atua

preferencialmente no fígado, diminuindo a produção de glicose (gliconeogênese), embora

seu mecanismo de ação não esteja totalmente esclarecido. Este agente está indicado a

pacientes resistentes à insulina, com alterações da tolerância à glicose. O estudo

epidemiológico Diabetes Prevention Program mostrou a eficácia da metformina em reduzir

em 31% a incidência de DM em indivíduos com TGD, acompanhados, em média, por 2,8

anos (2).

O papel da terapia hipolipemiante na prevenção primária e secundária de

manifestações da doença aterosclerótica já está bem estabelecido em estudos

epidemiológicos (22-25). O tratamento da dislipidemia, particularmente com as estatinas –

inibidores da HMG-Co A redutase – diminui os níveis de metaloproteases, a LDL oxidada, o

conteúdo lipídico do core e macrófagos, além de aumentar o conteúdo de colágeno na

matriz da placa, ações estas que contribuem para estabilizá-la, retardando a progressão da

aterogênese (26). Tais agentes têm se mostrado eficazes em reduzir significantemente a

mortalidade cardiovascular em pacientes com SM (18,27-29). No que se refere ao risco de

(13)

elementos-chave neste processo, inclusive a redução dos níveis de PAI-1 que estão associados a

estados pró-trombóticos (30).

O interesse pelas estatinas cresceu recentemente com as evidências de que são

capazes de diminuir os níveis de PCR em apenas seis semanas de tratamento,

independentemente da redução na LDL-colesterol (31,32). Este achado levantou a

possibilidade de que estes agentes possam ser dotados de ações anti-inflamatórias com

repercussões desejáveis não apenas sobre a aterogênese, mas também sobre a RI. Além

da redução da PCR, outros investigadores obtiveram diminuição dos níveis plasmáticos de

TNF-α de pacientes hipercolesterolêmicos pelo uso de pravastatina (33). Com base nestes

achados, poder-se-ia especular que parte dos benefícios alcançados por pacientes de risco

com estatinas possa ser decorrente dos seus efeitos sobre o processo inflamatório

subclínico, acarretando, talvez, melhora da RI. Ainda que não tenham sido confirmadas

relações causa-efeito entre processo inflamatório inicial e RI, se a estatina é capaz de

provocar efeitos na direção da normalização dos marcadores inflamatórios, poder-se-ia

especular sobre uma ação cardioprotetora adicional à redução nos níveis plasmáticos de

colesterol.

Nesta linha, alguns estudos em pacientes diabéticos tipo 2 corroboram com a

hipótese de que as estatinas melhoram não só o perfil lipídico do plasma, mas também

exercem efeito positivo na sensibilidade insulínica. Através de clamp euglicêmico

hiperinsulinêmicos ou do índice HOMA, alguns autores, mas não todos, encontraram

diminuição da RI destes indivíduos após o uso de estatinas (34,35). A presença de

hiperglicemia crônica, com seus efeitos deletérios sobre a capacidade secretória das

células beta, pode ser fator limitante na avaliação do efeito da estatina sobre a

sensibilidade tecidual à insulina. Portanto, a ausência de glicotoxicidade representaria a

condição ideal para se avaliar o real papel dos inibidores da HMG-Co A redutase. Seu

conhecido efeito benéfico sobre a função endotelial poderia ser decorrente, pelo menos em

parte, de uma melhora na sensibilidade à insulina. De fato, estudos preliminares in vitro

sugerem que a estatina determina efeitos celulares compatíveis com atenuação da

(14)

1.C.JUSTIFICATIVA

Visando à prevenção do DM tipo 2 e, a mais longo prazo, à prevenção de doença

cardiovascular em pacientes de risco, seria de grande interesse a descoberta de agente

terapêutico eficaz em várias das alterações características da SM, tais como a

hiperinsulinemia, intolerância à glicose, dislipidemia, alterações da fibrinólise e processo

inflamatório subclínico. Pelo que se conhece atualmente sobre a metformina e

especialmente sobre as estatinas, é possível que uma ou ambas possam desempenhar

várias destas “funções”. Um medicamento com estas propriedades seria bastante

promissor em prevenir ou pelo menos melhorar o prognóstico de pacientes com SM. As

doenças que compõem esta síndrome são, sem dúvida, os maiores problemas de saúde

pública da atualidade.

1.D.OBJETIVOS

Na presente tese, em linhas gerais, nos propusemos a estudar os efeitos de um

inibidor da HMG-CoA redutase em pacientes pré-diabéticos (com glicemia de jejum

alterada ou TGD) com excesso de peso (supostamente resistentes à insulina), comparando

aos da metformina, no que se refere ao perfil glico-lipídico, hormonal, à sensibilidade à

insulina e resposta de marcadores de inflamação sub-clínica.

Para tanto, foram elaborados três artigos científicos com objetivos específicos

relacionados a seguir.

- Artigo 1:

ƒ Discutir a importância da obesidade visceral, possíveis mecanismos que a

relacionam à resistência à insulina, métodos para avaliação da distribuição

do tecido adiposo, bem como descrever as principais substâncias –

adipocitoquinas – expressas e secretadas por este tecido.

- Artigo 2:

ƒ Estudar o efeito da sinvastatina e metformina sobre marcadores

(15)

- Artigo 3:

ƒ Avaliar o efeito da sinvastatina na resistência à insulina, leptina e

adiponectina, comparado aos da metformina, em indivíduos pré-diabéticos

com excesso de peso.

1.E.RESUMO DOS ARTIGOS

- Artigo 1: The New Adipose Tissue and Adipocytokines

ƒ A obesidade é fator determinante de resistência à insulina que está

envolvida na fisiopatogênese de um conjunto de anormalidades tais como o

diabetes mellitus tipo 2, dislipidemia, hipertensão arterial e a doença

cardiovascular. Mais que a quantidade total de gordura corporal, a

distribuição central do tecido adiposo (obesidade visceral) é relevante na

gênese destas anormalidades, conhecida como síndrome metabólica. O

tecido adiposo, antes reconhecido como um órgão de estoque de energia,

hoje é reconhecido como o maior órgão endócrino do organismo. Esse

tecido secreta numerosas substâncias – as adipocitocinas – com múltiplas

funções em processos metabólicos e imunológicos. O excesso de tecido

adiposo desencadeia inflamação, distúrbios metabólicos e hemostáticos e

aumenta risco de doenças cardiovasculares. As adipocitocinas podem agir

localmente ou à distância, como sinalizadores inflamatórios, imunes ou

hormonais. Nesta revisão, discutem-se os mecanismos pelos quais a

obesidade visceral determina resistência à insulina nos diferentes tecidos,

métodos para sua avaliação e ações das principais adipocitocinas expressas

e secretadas pelo tecido adiposo.

- Artigo 2: Effects of Simvastatin and Metformin on Inflammation and Insulin Resistance in Mildly Metabolically Disturbed Individuals

ƒ Além de suas ações hipolipemiantes e sensibilizadoras da ação da insulina,

as estatinas e metformina podem apresentar efeitos pleitrópicos. Este estudo

(16)

metformina sobre marcadores inflamatórios e a sensibilidade à insulina de

pacientes pré-diabéticos com excesso de peso. Quarenta e um indivíduos

com IMC >25 kg/m2 e glicemia de jejum alterada ou tolerância à glicose

diminuída foram randomizados para usar sinvastatina ou metformina por 16

semanas. Amostras de sangue foram obtidas para medida de parâmetros

metabólicos e inflamatórios antes e ao final de cada tratamento. Após

tratamento com metformina, houve redução significante nas médias de IMC,

circunferência da cintura e HOMA-IR. Com sinvastatina, observou-se

redução significante dos níveis de LDL-colesterol, triglicérides e

apolipoproteína B. As concentrações de PCR e IL-6 diminuíram de forma

semelhante com as2 medicações. Não houve mudança nos níveis de TNF-α.

Detectou-se correlação entre os valores basais de PCR e IL-6 e seus

percentuais de declínio (r = 0,71 e r = 0,67, respectivamente, p <0,001). No

grupo tratado com sinvastatina, não foi encontrada correlação entre a queda

de PCR e IL-6 com a queda nos lipídios séricos; do mesmo modo, no grupo

metformina, os percentuais de queda destes marcadores inflamatórios não

se correlacionaram com os do IMC e do HOMA-IR. Conclui-se que

atenuação da inflamação é obtida após tratamento com sinvastatina em

indivíduos pré-diabéticos com níveis de LDL normal ou pouco elevados. Os

achados também sugerem efeito benéfico da metformina sobre os níveis de

PCR e IL-6 em humanos. A ausência de correlação descrita acima sugere

efeito anti-inflamatório independente destes agentes. Reforça-se a

importância de se tratar indivíduos de risco cardiovascular antes do quadro

de diabetes ou da síndrome metabólica completa.

- Artigo 3: May beneficial cardiovascular effects of sinvastatin and metformin be also associated with hormonal-dependent mechanism improving insulin sensitivity?

ƒ Além de suas ações hipolipemiantes e cardioprotetoras, é possível que

estatinas possuam efeitos benéficos na sensibilidade à insulina. O objetivo

deste estudo foi avaliar os efeitos da sinvastatina sobre a resistência à níveis

de insulina, leptina e adiponectina e PCR, comparando-os aos da

(17)

um indivíduos com IMC >25 kg/m2 e glicemia de jejum alterada ou tolerância

à glicose diminuída foram randomizados para tratamento com sinvastatina,

20 mg ao dia (n = 20), ou metformina, 1,7 mg ao dia (n=21), por 16

semanas. Amostras de sangue foram obtidas para determinação de

parâmetros metabólicos, inflamatórios e hormonais, antes e após cada

medicação. Após tratamento com metformina, houve redução significante no

IMC e circunferência da cintura. Com a sinvastatina, houve redução

significante dos níveis séricos de LDL e triglicérides. O HOMA-IR caiu

apenas após o uso de metformina. As concentrações de PCR diminuíram de

forma semelhante com as 2 medicações. Não houve mudança nos níveis de

leptina e adiponectina com nenhuma medicação. Detectou-se correlação

entre os níveis basais de leptina e IMC (r = 0,314; p = 0,046) e entre os

níveis adiponectina e HDL (r = 0,466; p < 0,002). Nossos dados revelam que

a sinvastatina em doses baixas não apresenta efeito na resistência à insulina

e não altera os níveis de adiponectina ou leptina em indivíduos

pré-diabéticos com excesso de peso. Estudos envolvendo maior número de

indivíduos e com doses mais elevadas de estatinas são necessários para

confirmar tais achados.

1.F.REFERÊNCIAS BIBLIOGRÁFICAS

1. Tuomilehto J, Uusitupa M, Valle TT et al. Prevention of type 2 diabetes

mellitus by changes in lifestyle among subjects with impaired glucose

tolerance. N Engl J Med 344: 1343-9, 2001.

2. Diabetes Prevention Program Research Group. Reduction in the incidence of

type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:

393-403, 2002.

3. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for

quantifying insulin secretion and resistance. Am J Physiol 237: E214-E223,

1979.

4. Matthews DR, Hosker JP, Rudenski AS et al. Homeostasis model

assessment: insulin resistance and B-cell function from fasting plasma

(18)

5. Gutt M, Davis CL, Spitzer SB et al. Validation of insulin sensitivity index

(ISI0,120): comparison with other measures. Diabetes Res Clin Pract 2000;

33: 460-463.

6. Ikeda Y, Suehiro T, Nakamura T et al. Clinical significance of the insulin

resistance index assessed by homeostasis model assessment. Endocrinol J

448: 81-6, 2001.

7. Radziuk J. Insulin sensitivity and its measurement: structural commonalities

among the methods. J Clin Endocrinol Metab 85: 4426-33, 2000.

8. Reaven GM. Role of insulin resistance in human disease. Diabetes 37:

1595-606, 1988.

9. Reaven GM. Role of insulin resistance in human disease (syndrome X): and

expanded definition. Annu Rev Med 44: 121-31, 1993.

10. Eschwege E, Richard JL, Thibult N et al. Coronary heart mortality in relation

to diabetes, blood glucose and plasma insulin levels: the Paris Prospective

Study, 10 years later. Horm Metab Res 15: 1-6, 1985.

11. Després JP, Lamarche B, Mauriege P et al. Hyperinsulinemia as an

independent risk factor for ischemic heart disease. N Engl J Med 334:952-7,

1996.

12. Pyorala K, Savolainen E, Kaukola S, Haapakoski J. Plasma insulin as

coronary heart diseases risk factor: relationship to other risk factors and

predictive during 9½ year follow-up of the Helsinki Policeman Study

population. Acta Med Scand 701: 38-52, 1985.

13. Howard G, O’Leary DH, Zaccaro D et al. Insulin sensitivity and

atherosclerosis. Circulation 93:1809-17, 1996.

14. Juhan-Vague I, Alessi MC, Vague P. Increased plasminogen activator

inhibitor 1 levels. A possible link between insulin resistance and

atherothrombosis. Diabetologia 34: 457-62, 1991.

15. Bastard JP, Piéroni L, Hainque B. Relationship between plasma plasminogen

activator inhibitor 1 and insulin resistance. Diabetes, Metabolism Research

and Reviews 16: 192-201, 2000.

16. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other

markers of inflammation in the prediction of cardiovascular disease in

(19)

17. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic

atherosclerosis: a comparison of C-reactive protein, fibrinogen,

homocysteine, lipoprotein(a), and standard cholesterol screening as

predictors of peripheral arterial disease. JAMA 285:2481-5, 2001.

18. Downs JR, Clearfield M, Weis S et al. Primary prevention of acute coronary

events with lovastatin in men and women with average cholesterol levels:

results of AFCAPS/TexCAPS. JAMA 279:1615-22, 1998.

19. Koenig W, Sund M, Frohlich M et al. C-reactive protein, a sensitive marker of

inflammation, predicts future risk of coronary heart disease in initially healthy

middle-aged men: results from the MONICA (Monitoring Trends and

Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to

1992. Circulation 99: 237-42, 1999.

20. Danesh J, Whincup P, Walker M et al. Low grade inflammation and coronary

heart disease: prospective study and updated meta-analyses. BMJ 321:

199-204, 2000.

21. Wiklund O, Mattsson-Hultén L, Hurt-Camejo E, Oscarssoni J. Effects of

simvastatin and atorvastatin on inflammation markers in plasma. J Intern

Med 251: 338-47, 2002.

22. Brown G, Albers JJ, Fisher LD et al. Regression of Coronary artery disease

as a result of intensive lipid-lowering therapy in men with high levels of

apolipoprotein B. N Engl J Med 323: 1289-98, 1990.

23. Kane JP, Mallory MJ, Ports TA et al. Regression of coronary atherosclerosis

during treatment of familial hypercholesterolemia with combined drug

regimens. JAMA 264: 3007-12, 1990.

24. Haffner SM. Management of dyslipidemia in adults with diabetes. Diabetes

Care 21: 160-78, 1998.

25. Gotto Jr AM, Grundy SM. Lowering LDL cholesterol: questions from recent

meta-analyses and subset analyses of clinical trial DataIssues from the

Interdisciplinary Council on Reducing the Risk for Coronary Heart Disease,

Nineth Council Meeting. Circulation 99: E1-7, 1999.

26. Crisby M, Nordin-Fredriksson G, Shah PK et al. Pravastatin treatment

increases collagen content and decreases lipid content, inflammation,

metalloproteinases, and cell death in human carotid plaques: implications for

(20)

27. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins.

Implications for cardiovascular event reduction. JAMA 279: 1643-50, 1998.

28. Randomised trial of cholesterol lowering in 4444 patients with coronary heart

disease: the Scandinavian Simvastatin Survival Study (4S). Lancet

344(8934): 1383-9, 1994.

29. Kinlay S, Schwartz GG, Olsson AG, et al. Effects of atorvastatin on early

recurrent ischemic events in acute coronary syndromes: the MIRACL study: a

randomized controlled trial. JAMA 285: 1711-8, 2001.

30. Colli S, Eligini S, Lalli M et al. Statins inhibit tissue factor in cultured human

macrofages. A novel mechanism of protection against atherothrombosis.

Arterioscler Thromb Vasc Biol 17: 265-72, 1997.

31. Jialal I, Stein D, Balis D et al. Effect of hydroxymethyl glutaryl coenzyme a

reductase inhibitor therapy on high sensitive C-reactive protein levels.

Circulation 103: 1933-5, 2001.

32. Albert MA, Danielson E, Rifai N et al. Effect of statin therapy on C-reactive

protein levels: the pravastatin inflammation/CPR evaluation (PRINCE): a

randomized trial and cohort study. JAMA 286: 64-70, 2001.

33. Solheim S, Seljeflot I, Arnesen H et al. Reduced levels of TNF-α in

hypercholesterolemic individuals after treatment with pravastatin for 8 weeks.

Atherosclerosis 251: 411-5, 2001.

34. Paolisso G, Barbagallo M, Petrella G et al. Effects of simvastatin and

atorvastatin administration on insulin resistance and respiratory quotient in

aged dyslipidemic non-insulin dependent diabetic patients. Atherosclerosis

150:121-7, 2000.

35. Paolisso G, Sgambato S, De Riu S et al. Simvastatin reduces plasma lipid

levels and improves insulin action in elderly non-insulin-dependent diabetics.

Eur J Clin Pharmacol 40: 27-31, 1991.

36. Farrer M, Winocur PH, Evans K et al. Simvastatin in non-insulin-dependent

diabetes mellitus: effect on serum lipid, lipoproteins and haemostatic

(21)
(22)

2.ARTIGO 1

THE NEW ADIPOSE TISSUE AND ADIPOCYTOKINES

*Caroline Bulcão1, MD; Sandra Roberta G. Ferreira2, PhD; Fernando M. A. Giuffrida1, MD; Fernando Flexa Ribeiro-Filho1, PhD

1 Division of Endocrinology, Department of Internal Medicine, Federal University of

Sao Paulo, Brazil

2 Department of Preventive Medicine, Federal University of Sao Paulo, Brazil

Correspondence Caroline Bulcão

Disciplina de Endocrinologia – UNIFESP

Rua Botucatu, 740 - 2o andar

Caixa postal 20266

CEP 04034-970 - São Paulo, SP, Brasil

Phone: 55 11 8149-4745 Fax: 55 11 5572-0889

E-mail: cbulcao@uol.com.br

(23)

ABSTRACT

Obesity is a well-known risk factor for the development of insulin resistance, type 2

diabetes, dyslipidemia, hypertension, and cardiovascular disease. Rather than the total

amount of fat, central distribution of adipose tissue is very important in the pathophysiology

of this constellation of abnormalities termed metabolic syndrome. Adipose tissue, regarded

only as an energy storage organ until the last decade, is now known as the biggest

endocrine organ of the human body. This tissue secretes a number of substances –

adipocytokines – with multiple functions in metabolic profile and immunological process.

Therefore, excessive fat mass may trigger metabolic and hemostatic disturbances as well

as CVD. Adipocytokines may act locally or distally as inflammatory, immune or hormonal

signalers. In this review we discuss visceral obesity, the potential mechanisms by which it

would be related to insulin resistance, methods for its assessment and focus on the main

adipocytokines expressed and secreted by the adipose tissue.

Particularly, we review the role of adiponectin, leptin, resistin, angiotensinogen, TNF-α, and PAI-1, describing their impact on insulin resistance and cardiovascular risk, based on more recent findings in this area.

(24)

INDRODUCTION

Obesity has been seen from different points of view according to current cultural and

scientific values. When access to food was possible only by means of hunting and

gathering, obesity was not an issue; evolutionary mechanisms selected those individuals

with more efficient energy storage systems. Modern societies, characterized by easy access

to food and reduced physical activity, brought about obesity. Urbanization, industrialization

and automation processes still play a major role in the growing global epidemics of obesity.

Increasing interest on obesity has been noticed in the last decades since it was shown to be

strongly related to morbidity and mortality. Once, body fat was considered only as a

protective tissue against trauma and an energy storage organ, and obesity seen as a sign of

beauty, richness and health. Nowadays, obesity is a serious disease that predisposes to

insulin resistance, diabetes, essential hypertension and dyslipidemia. Some tumors,

gallstones, respiratory, reproductive, and locomotory diseases are also obesity-related

disorders (1,2).

Body mass index (BMI) is the main parameter used to quantify body adiposity, but

other anthropometric and imaging methods are more reliable to reflect body composition

and fat distribution. The importance of body fat distribution has been stressed since studies

by Vague in the beginning of last century (3). Central obesity is indicative of visceral fat

deposition, which is closely associated with metabolic disorders and cardiovascular risk.

Epidemiological data show that an indirect estimate of visceral fat such as waist

circumference is able to predict a number of diseases. This measurement should be a part

of routine clinical examination, since it improves prediction of cardiovascular complications

when combined with BMI (4-6).

Obesity became an important public health issue even in developing countries (7).

The number of obese individuals in the world is estimated to be around 100 million, and

marked growth is expected for the next decades (8). Almost 50% of the U.S. adult

population has BMI over 25 kg/m² and 25% are over 30 kg/m² (9). If this trend is not

reversed, 100% of the American population will be obese by 2230 (10).

VISCERAL OBESITY

Visceral accumulation of fat is a particularly important trigger of insulin resistance

and metabolic syndrome. Hyperinsulinemia may occur as a consequence of reduced insulin

(25)

intolerance, hypertension, dyslipidemia and cardiovascular disease (CVD) was first

described by Reaven, who coined the term syndrome X (11). Several metabolic factors,

including adipocytokines, have been included in the spectrum of the syndrome, which is

now known as metabolic syndrome. The simplest diagnostic criterion was proposed by the

National Cholesterol Education Program (12) and a broader one by the American

Association of Clinical Endocrinologists/American College of Endocrinology (13),

considering cytokine involvement in the pathophysiology of the syndrome. Such diagnosis is

of great relevance since it is closely related to CVD (14).

The impact of central distribution of fat on the deterioration of insulin sensitivity and

cardiovascular risk has been extensively shown in prospective studies (15-17). Due to

intense lipolytic activity of the visceral adipose tissue, large amounts of free fatty acids

(FFA) are released into portal circulation, leading to hepatic synthesis of triglycerides.

Mechanisms for the lipidic effect on hepatic glucose output include β-oxidation of fatty acids

and increased availability of glycerol. Oxidation of fatty acids provides ATP, the energy

needed to drive gluconeogenesis, as well as acetylCoA, which activates pyruvate

carboxylase, the first key enzyme in the gluconeolitic pathway. Glycerol, in turn, is an

excellent substrate for gluconeogenesis. This determines elevation of plasma glucose and

insulin secretion, which may cause hyperinsulinemia, worsened by the diminished hepatic

insulin clearance (18). Peripheral glucose uptake is reduced due to downregulation of

insulin receptors and the large amount of circulating FFA, competing with glucose in

oxidative metabolism and insulin signaling (19,20). In addition, FFA may deteriorate insulin

secretion, accelerating the development of type 2 diabetes (21). Elevated VLDL-cholesterol

production is a determinant of the typical atherogenic profile, characterized by small dense

LDL-cholesterol particles and low HDL-cholesterol (22).

ASSESSMENT OF VISCERAL FAT

Body fat distribution is usually assessed by anthropometry and imaging techniques.

Direct or indirect methods for the assessment of visceral fat are mandatory when the goal is

to estimate cardiovascular risk. Computed tomography (CT) is considered the gold standard

for quantification of visceral adipose tissue but some anthropometric measurements, like

waist circumference, waist-to-hip circumference ratio (WHR) and abdominal sagittal

diameter provide good estimates and have been used in epidemiological studies. Waist

(26)

factors, events and deaths (24-26). Despite significant correlation between WHR and

visceral fat area measured by CT or magnetic resonance imaging (MRI) (26), most authors

reported waist circumference to have a better correlations with reference methods than

WHR (25,26) and BMI (27), as well as a stronger association with metabolic syndrome.

Imaging techniques – CT, MRI, and ultrasonography (US) – are better predictors of

visceral adipose tissue than anthropometry. CT scan, obtained at the L4-L5 level, has high

reproducibility (28), but with the disadvantages of cost and exposure to ionizing radiation.

MRI has accuracy and reproducibility for total and visceral fat evaluation similar to CT (29).

The linear distance of intra-abdominal fat determined by US shows a strong correlation to

visceral fat area measured by CT (27,30). Therefore, US-determined visceral fat is an

alternative for quantification and follow-up of patients with central obesity, due to its low cost

and absence of radiation (27).

DEXA (dual energy x-ray absorptiometry) is a method for evaluation of fat and lean

mass (31). The exam takes only 10 to 20 minutes, with low irradiation rates and reasonable

reproducibility. Although body sections can be evaluated separately, the method does not

distinguish between visceral and SC fat. Its cost is high when compared to US, but it is less

expensive than CT or MRI.

ADIPOSE TISSUE AS AN ENDOCRINE ORGAN

Adipose tissue has a fundamental role in metabolism and homeostasis regulation

through secretion of several factors – the adipocytokines. Those implicated in insulin

resistance and atherogenesis will be discussed in this article. In general, adipocytokine

production is proportional to fat mass and its secretion is distinctive according to adipose

tissue location, i.e. subcutaneous or visceral.

According to this new concept, adipose tissue is an endocrine organ, capable of

secreting hormones and cytokines which, in abnormal amounts, can induce metabolic,

hemodynamic and hemostatic disturbances (32). The immunological term “cytokine”, which

designates a large group of molecules involved in immune cell signaling, has been

increasingly used in clinical sciences. Cytokines are produced during innate and specific

immune activation to mediate inflammatory and immune responses. The main groups of

cytokines are interferons, interleukins, colony stimulating factors and tumor necrosis factors

(33,34). Hormones – secretion products of endocrine glands - once in the bloodstream

(27)

responses (35). Therefore, adipose tissue could be regarded as the largest endocrine organ

in the human body, whose products – cytokines and hormones – are called

“adipocytokines”. They have autocrine, paracrine or endocrine actions and are involved in

inflammatory responses (36). Inflammatory properties of adipocytokines, along with their

possible role in insulin resistance, have been widely studied in recent years. In this article

the following will be emphasized: tumor necrosis factor alfa (TNF-α), interleukin 6 (IL-6),

resistin, adiponectin, leptin, angiotensinogen, and plasminogen activator inhibitor 1 (PAI-1).

ƒ Tumor Necrosis Factor Alpha – TNF-α

This adipocytokine, primarily known for its role in inflammatory responses, has

additional effects on glucose transport, lipid metabolism and insulin action, which have been extensively investigated, especially in rodents. TNF-α stimulates production of other cytokines involved in the inflammatory response such as IL-8 and IL-6, both related to

obesity and insulin resistance in animals and humans (37,38). It has been shown that TNF-α

has direct (independent of insulin), and indirect lipolytic activity. Activation of a TNF-α

-responsive serine kinase causes serine-phosphorilation of insulin receptor substrate 1

(IRS-1), resulting in a reduction of insulin signaling. Serine-phosphorilated IRS-1 is less effective

in activating phosphoinositide 3-kinase (PI3K), involved in insulin-determined lipolysis suppression (39). It has been previously suggested that TNF-α may also have paracrine actions, affecting insulin-stimulated glucose uptake at the skeletal muscle (39). Since this

adipocytokine production is proportional to body adiposity, these effects on glucose

metabolism are expected to be exacerbated in obesity.

A body of evidence has reinforced the impact of increased TNF-α levels on the

deterioration of insulin sensitivity despite some contradictory data. In the study by Tsigos et al, including 26 obese women, TNF-α was significantly correlated to WHR and insulin levels, but not to BMI (40). Similar findings were reported by others (41-43). The higher levels of

this adipocytokine in obese as compared to lean individual decreases following weight loss (42). These data are in accordance with the observation of increased TNF-α mRNA expression in human adipocytes from obese subjects with the highest circulating levels of

such adipocytokine (38). Moreover, thiazolidinediones were able to reverse the TNF-α

inhibitory effect on insulin action, supporting a pathogenic role in insulin resistance (44,45).

Nevertheless, Bruun et al did not find a difference in TNF-α levels between obese and lean

(28)

TNF-α with insulin resistance and type 2 diabetes was not confirmed in other studies (46-48); in an euglycemic hyperinsulinemic clamp study, TNF-α was not associated with hyperinsulinemia or obesity, and normal mRNA expression in obese and diabetic men was

observed (49).

A role for TNF-α has been raised in the pathogenesis of ovarian hyperandrogenism, included in the spectrum of the metabolic syndrome. In female rats, TNF-α stimulates

proliferation and steroidogenesis of theca cells in vitro and could be involved in anovulation

(50,51). Polycystic ovary syndrome is accompanied by increase in this cytokine, suggesting

that TNF-α could be related to hyperandrogenism, independent of obesity and insulin

resistance (43,52).

TNF-α seems to have a close relation to leptin in obese individuals, leading to the hypothesis that TNF-α hyperactivity could represent a common pathway in pathophysiology

of insulin resistance and hyperleptinemia in obesity (53,54).

ƒ Interleukin-6 – IL-6

Approximately one third of total circulating IL-6 in humans originate from adipose

tissue (55). Besides adipocytes, other cells produce IL-6: immune cells, endothelial cells,

skeletal muscle, and fibroblasts (36). Its secretion is distinctive according to adipose tissue

distribution; visceral adipose tissue releases 2 to 3 times more IL-6 than subcutaneous fat

(56).

This cytokine, essentially implied in inflammatory responses, has also plenty of

pleiotropic effects (57). Epidemiologic and genetic studies show an association between

IL-6 and insulin resistance. High IL-IL-6 levels are not only related to obesity and

hyperinsulinemia, but also predictive of type 2 diabetes (58) and myocardial infarction (59).

IL-6 is increased in obese subjects and decreases with weight loss (42,60,61); a study with

120 obese women confirmed positive correlations of IL-6 with BMI and WHR, as well as with

FFA, fasting insulin, and HOMA-IR; and showed a great reduction of IL-6 and FFA levels

with weight loss (60).

Several findings have linked IL-6 to insulin resistance. IL-6 increases fat oxidation

and circulating FFA in humans (62), which are known to deteriorate insulin sensitivity (63).

Additionally, IL-6 causes reduction in the secretion of adiponectin (60,64), a cytokine

positively related to insulin sensitivity. Moreover, deleterious actions on fibrinolysis and

(29)

hepatic secretion of fibrinogen, and in pro-coagulant platelet activity (65,66). Evidences that

IL-6 increases insulin resistance, has pro-coagulant effects, and induces increase in

C-reactive protein levels (65-67) suggest a role in the pathogenesis of metabolic syndrome

and in cardiovascular risk.

Finally, the systemic action of IL-6 in stimulating the hypothalamus-pituitary-adrenal

axis should be stressed. IL-6 increases hypothalamic corticotropin secretion, which

stimulates secretion of ACTH and cortisol (68). Subcutaneous administration of IL-6 to

healthy volunteers resulted in a raise in ACTH and cortisol levels (69). Cortisol, in turn,

suppresses IL-6 production by adipose tissue, acting through negative feedback (70).

Considering the complexity of mechanisms, current knowledge supports that IL-6

works essentially as a hormone, acting locally or systemically, with immune as well as

inflammatory actions, modulating insulin sensitivity, and participating in feedback loops.

ƒ Adiponectin

Adiponectin is specifically produced and secreted by adipose tissue (71,72). This

protein is similar to collagen and exists in large amounts in the circulation, i.e. 0.01% of total

plasma proteins (73). Interest in adiponectin grows because of its important role in energy

homeostasis and insulin sensitivity (36). In contrast to other cytokines, adiponectin is

diminished in obesity (73), type 2 diabetes, in other conditions of insulin resistance (74),

dyslipidemia (75) and CVD (76,77); concordantly with the latter effects, its levels increase

with weight loss (60,78,79).

Studies conducted in Caucasians and Pima Indians confirmed the association of

hypoadiponectinemia with obesity and type 2 diabetes, and adiponectin concentration was

more closely related to insulin sensitivity and fasting insulinemia than to adiposity and

glycemia (74). Several studies have shown that hypoadiponectinemia is an independent risk

factor for the development of diabetes (80-82). Low adiponectin levels in obese individuals

with diabetes may be largely attributable to insulin resistance and a role for

hypoadiponectinemia in the development of metabolic syndrome is reinforced.

Another research line contributes to understand the underlying mechanisms between

hypoadiponectinemia and insulin resistance. Growth hormone lowering therapies (such as

somatostatin analog or surgery) were shown to reverse the low levels of adiponectin found

in acromegalic patients (83). It is possible that hypoadiponectinemia contributes to generate

(30)

Data from animals corroborated humans’ findings. Leptin deficient ob/ob mice

crossed with globular adiponectin transgenic mice (gAd Tg ob/ob mice) resulted in

improvement of insulin sensitivity (84). In addition, gAd Tg ob/ob mice exhibited increase in

plasma insulin levels during glucose tolerance test, which was associated with increased

insulin content, suggesting a direct protective effect on beta cells (84). Lipoatrophic mice

with leptin deficiency and hypoadiponectinemia showed partial reversion of

hyperinsulinemia and insulin resistance-induced hyperglycemia with administration of

adiponectin; these disturbances were almost abolished by concomitant administration of

leptin and adiponectin (85). Similarly, another diabetic rodent model had reversion of insulin

resistance with adiponectin administration (85). These studies open a new therapeutic

perspective for metabolic syndrome and type 2 diabetes. Indeed, adiponectin seems to be,

at least in part, responsible for anti-inflammatory and insulin-sensitizing properties of

thiazolidinediones in humans, once its clinical use significantly increases adiponectin

circulating levels (86,87).

The mechanisms by which adiponectin acts on insulin sensitivity are not fully

understood. In human skeletal muscle it increases FFA oxidation, lowering FFA plasma

levels and hepatic influx, which ameliorates insulin sensitivity in these tissues (84,88).

Additionally, adiponectin stimulates glucose uptake via AMP-activated-protein-kinase in

adipocytes and skeletal muscle (85,89).

Recently, 2 receptors for adiponectin (ADIPOR1 and ADIPOR2) were identified in

human tissues (90). They share 67% homology with the mouse gene and show marked

conservation of the transmembrane domains from yeast to mammals. ADIPOR1 is

universally expressed, while ADIPOR2 seems to be more expressed in liver (90). Both exist

in large amounts in rat and human pancreatic beta cells (91). A recent finding of reduction of

mRNA ADIPOR1 in transformed lymphocytes of Afro-Americans with type 2 diabetes

compared with control cell lineages, suggests a possible role for this receptor in the

pathophysiology of metabolic syndrome (92).

Adiponectin is also involved in lipid metabolism. Elevated adiponectin is associated

with higher HDL-cholesterol and lower triglyceride levels, independently of insulin sensitivity

and obesity (76,79,93). The negative association with CRP and fibrinogen concentrations

(93-98) may indicate that adiponectin has anti-inflammatory and anti-atherogenic properties.

Moreover, inhibitory effects on monocyte adhesion to the endothelium, in macrophage

change to foam cell (99), and in TNF-α production (100-102) were reported. Adiponectin

(31)

metabolism (102) and in animal models of atherosclerosis (apoE-deficient mice) with high

expression of globular adiponectin, such adipocytokine inhibited the progression of

atherosclerosis in vivo, independently of conventional risk factors as plasma glucose and

lipid profile; it was also found to supress expression of class A scavenger receptor and

TNFα, both closely related to atherogenesis (84). In human aortic endothelial cells,

adiponectin inhibited TNFα-induced monocyte adhesion and suppressed expression of

vascular cell adhesion molecule (VCAM)-1 mRNA (103,104). Low plasma adiponectin levels

are associated with impaired endothelium-dependent vasodilation, which suggests this

hormone may act as a link between adipose tissue and the vasculature (105). These

findings are in accordance with evidences of hypoadiponectinemia in individuals with CVD

(76,100).

In summary, adiponectin is an adipocytokine with insulin sensitizing,

anti-inflammatory, and antiatherogenic properties; this may be also a cardio-protective

substance, what may provide a novel modality of treatment for metabolic syndrome.

ƒ Plasminogen activator inhibitor-1 – PAI-1

This glycoprotein is a serine protease inhibitor that circulates as a complex with

vitronectin, which stabilizes its active conformation and increases biological half-life (106).

The fibrinolytic system is controlled mostly by PAI-1 activity, through inhibition of the

endogenous fibrinolysis modulators: tissue plasminogen activator (tPA) and urokinase

plasminogen activator (uTPA) (106). The major sources of PAI-1 are the liver and

endothelial cells, but fibroblasts, mononuclear cells, platelets, and adipocytes participate in

its secretion (107,108).

PAI-1 activity is strongly related to BMI, triglyceride and insulin levels as well as

abdominal fat accumulation. Several studies suggested that visceral fat is an important

determinant of PAI-1 increase in insulin resistance (109-111). It is expressed in animal and

human adipose tissue (112), being more expressed in visceral adipose tissue of obese,

insulin resistant subjects (113). PAI-1 was more closely related to WHR than to BMI, and

clamp techniques indicated positive correlation with fasting glucose and insulin levels, and

negative correlation with the degree of insulin sensitivity (114). This altogether suggests that

fibrinolytic disturbances in individuals with central obesity and insulin resistance are likely

(32)

Insulin sensitizers as troglitazone (115,116) or metformin (117-119), physical activity

and weight loss (120-122) were shown to reduce circulating PAI-1, suggesting that

metabolic improvement can be the main determinant of PAI-1 reduction in metabolic

syndrome. Other evidences pointed out the importance of PAI-1 in reduction of 15 to 30% in

myocardial infarction occurrence (111,123,124). Similarly, high levels of PAI-1 increase the

risk of cardiovascular events in insulin resistant subjects, despite the presence of type 2

diabetes (125).

PAI-1 activity is regulated by several substances involved in the metabolic

syndrome. Cytokines like TNF-α (126,127), insulin and insulin-like growth factors (128-130),

triglycerides (131,132), unsaturated fatty acids (133) and angiotensin II (134,135) stimulate

PAI-1 release by endothelial cells. Administration of TNFα and insulin to animals led to

higher expression of PAI-1 in adipose tissue (126,127,136) and, in humans, angiotensin II

administration increased circulating PAI-1 levels (137).

The role of PAI-1 in the metabolic syndrome pathophysiology is not yet fully

understood, but certainly different cells and metabolic stimuli are involved.

ƒ Angiotensinogen

Angiotensinogen is a substrate for renin, yielding angiotensin I, which is in turn

transformed into active angiotensin II (AII), through the action of angiotensin-converting

enzyme (ACE). The main source of angiotensinogen is the liver, followed by adipose tissue,

which expresses ACE, renin (138,139), and angiotensin II type I and type II receptors

(138,140,141). A number of substances are able to stimulate angiotensinogen secretion in

hepatocytes but in adipocytes its secretion is stimulated only by FFA and glucocorticoids,

which, in rats, are implicated in white adipose tissue hypertrophy (142,143).

Many evidences link central obesity to the renin-angiotensin system.

Angiotensinogen is found in higher amounts in visceral than SC adipose tissue of animals

(144). In humans, a homozygous mutation of the ACE gene (D allele at intron 16) was

associated with an age-related greater prevalence of abdominal adiposity and tendency to

develop overweight and hypertension (145). These observations could explain, at least in

part, the higher prevalence of hypertension in subjects with metabolic syndrome. Blockade

of the renin-angiotensin system using ACE inhibitors and AII receptor antagonists led to

(33)

Along with its recognized systemic effect in blood pressure, AII has local actions in

the adipose tissue: (a) induces preadipocytes to differentiate into adipocytes by stimulating

prostacyclin production from adipocytes (148,149); (b) acts as a trophic factor involved in

organogenesis of animals and humans (150); and (c) stimulates lipogenesis and triglyceride

accumulation in human adipocytes (151). These effects support a possible role for the

renin-angiotensin system in adipose tissue development and metabolism.

ƒ Leptin

The product of the ob gene, expressed essentially in adipocytes (152,153), circulates

bound to a soluble form of its receptor and binds to a transmembrane receptor (36); it acts

as a signaling factor from adipose tissue to the central nervous system – hypothalamus –

regulating energy intake and expenditure, as well as acting in certain neuroendocrine axes

(154,155). The relationships between mRNA leptin expression, serum leptin levels and

amount of body fat are well established (154,156,157). Leptin concentrations are higher in

women than men independently of BMI (158); these differences are attributed to variations

of body fat distribution and the action of sexual hormones in leptin regulation (23).

Interestingly, the expression of mRNA leptin is greater in subcutaneous than in omental fat

and the leptin subcutaneous-to-omental ratio is higher in women than men (159). This could

be attributed to a larger size of subcutaneous as compared to omental adipocytes,

considering that leptin production increase proportionally to adipocyte size (160). Both in

obese and lean subjects, leptin secretion rate was shown to be 2 to 3 times higher in

subcutaneous tissue than in omental fat tissue (161). In addition to the amount of fat,

distribution, and size of adipocytes, nutritional and hormonal factors also regulate leptin

secretion. Its circulating levels increase 40% after a meal (162) and decreases in response

to fasting (163). Therefore, this hormone acts as an energy balance sensor. Likewise, TNF-α modulates leptin secretion by increasing gene expression and circulating levels (53,164,165).

The pathophysiological role of leptin in insulin resistance has been extensively

studied in animal models and humans. Leptin deficient mice (ob/ob) exhibit hyperphagia,

obesity, hypercortisolemia, infertility, and diabetes (166), which are reversed by leptin

replacement independently of body weight (167). Considine et al found positive correlation

between leptin concentrations and percent of body fat in humans (168). In addition, a

(34)

serum leptin (169-171). Such findings were discordant with known actions of leptin in

rodents – appetite reduction and increase of energy expenditure with weight loss. Thus, it

was suggested that obese individuals with insulin resistance may have also leptin

resistance, what would explain the lack of benefit from the exogenous administration of

leptin (172,173).

Rare human cases of complete leptin deficiency due to leptin gene mutations were

described. The phenotype is of severe obesity, insulin resistance, and hypogonadotropic

hypogonadism (174), which are reversed with exogenous leptin administration (175). A

similar profile is found in patients with mutations in the leptin receptor, equivalent to db/db

mice, except for an absence of response to leptin therapy in this situation (176). These

mutations are rare causes of obesity in humans.

An additional therapeutic use of leptin is lipodystrophy characterized by the absence

of adipose tissue, insulin resistance, low leptin and high triglyceride levels and hepatic

steatosis. Leptin replacement improved insulin sensitivity dramatically in animals (177,178)

and reduced both glucose and triglyceride levels in humans with this disease (179,180).

Taking all available data together, they strongly suggest that leptin acts as a signaler for

global regulation of insulin sensitivity.

ƒ Resistin

This polypeptide – expressed and secreted by adipose tissue – was discovered in

2001 by a cloning strategy designed to search for genes expressed during adipocyte

differentiation when thiazolidinedione-inducible downregulation in mature adipocyte was

being investigated (181). Although little is known about the function of this recently

recognized hormone, one possible effect is to deteriorate insulin sensitivity in animals and

humans.

The resistin gene is expressed in white adipose tissue in mice and rats (182) as well

as in immunocompetent cells (183). Increased circulating levels of this hormone were found

in obese mice and TZDs suppressed its expression (184); in vivo administration of

recombinant resistin to normal mice caused insulin resistance and cultured adipocytes

exposed to resistin showed a reduction of insulin-stimulated glucose uptake (184). However,

the expression of resistin mRNA and protein was found to be strongly suppressed in

adipose tissues in many models of experimental obesity (185,186) and the use of metformin

(35)

Resistin is also expressed in human adipose tissue (189) and was more often

detected in those from morbidly obese subjects than in normal controls (183). Its expression

is similar in both abdominal subcutaneous and omental depots, but resistin levels are higher

in abdominal than in thigh fat, what could explain the increased risk of type 2 diabetes

related to central obesity (190). Genetic studies also revealed an increased risk for higher

BMI in carriers of two resistin promoter polymorphisms (191). These findings are in contrast

with other studies that showed no association between insulin resistance and resistin

(183,192); resistin was found to be expressed neither in human muscle nor in most human

isolated fat cells or intact biopsies (193). Similar results were observed by others who did

not detect resistin mRNA in adipocytes from a severely insulin-resistant subject (183). In addition, insulin (194) and TNFα (195), both related to insulin resistance, were shown to inhibit resistin production and gene expression.

Possible additional effects of resistin resulted from in vitro studies, in which

recombinant resistin was shown to directly activate cultured human endothelial cells,

promoting endothelin-1 release and up-regulation of adhesion molecules (196).

In summary, a first report proposed that resistin could be related to insulin

resistance, but a number of others did not support such relation. A possible role for resistin

in metabolic disorders is not excluded. Nevertheless, more studies using resistin knock-out

mice may help to understand pathophysiological resistin variations in humans.

CONCLUSION

Adipocytes were once considered a passive energy storage organ and obesity a

consequence of chronically positive energy balance. Nowadays, adipose tissue is

recognized as an endocrine organ, capable of secreting a variety of adipocytokines which

are essential determinants of energetic metabolism. Several adipocytokines were pointed as

possible links between obesity, inflammation and insulin resistance; they can act

systemically on several sites like liver, vascular endothelium, and the coagulation system,

interacting in the development of atherosclerosis. The mechanisms by which adipocytokines

promote insulin resistance are not yet completely understood. Obesity, especially central

obesity, may increase the levels of TNF-α, IL-6, angiotensinogen, PAI-1, and maybe

resistin, all of them related to insulin resistance. Adiponectin and leptin, in turn, are essential

for insulin sensitivity. An ever growing number of researchers focus on obesity as an

(36)

complications. Lifestyle modifications with weight loss result in a beneficial profile of

adipocytokines, but other potentially effective therapeutic interventions are expected as

future studies continue to provide information linking inflammation and metabolism.

REFERENCES

1. Pi-Sunyer F. Medical hazards of obesity. Ann Intern Med 1993; 119: 655-60.

2. Foster DW. In: Wilson JD, Foster DW (Eds). Williams’ Textbook of Endocrinology.

Philadelphia, W.B. Saunders Co. 1992; 1335-52.

3. Vague J. The degree of masculine differentiation of obesities: a factor determining

predisposition to diabetes, atherosclerosis, gout and uric calculus disease. Am J

Clin Nutr 1956; 4: 20-34.

4. Kissebah A, Vydelingum N, Murray R et al. Relation of body fat distribution to

metabolic complications of obesity. J Clin Endocrinol Metab 1982; 54: 254-60.

5. Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on the

metabolism in men and women: importance of regional adipose tissue distribution.

J Clin Invest 1983; 72: 1150-62.

6. Egger G. The case for using waist to hip ratio measurements in the routine medical

checks. Med J Aust 1992; 156: 280.

7. Monteiro CA, Mondini L, Souza ALM, Popkin BM. The nutritional transition in

Brazil. European J Clin Nutr 1995; 49:105-13.

8. Bjorntorp P. Obesity - an alarming international problem. Scand J Nutr 1996; 40:

111-2.

9. World Health Organization. Diet nutrition and the prevention of chronic diseases.

Report of a WHO group, World Health Organization, Geneva. 1990; Technical

Report Series No 797.

10. Foreyt J, Goodrick K. Commentary: The ultimate triumph of obesity. Lancet 1995;

346: 134-5.

11. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37:

1595-606.

12. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in

Adults. Executive Summary of the Third Report of The National Cholesterol

(37)

of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285:

2486-97.

13. American Association of Clinical Endocrinologists, American College of

Endocrinology. ACE Guidelines for Glycemic Control. Endocr Pract 2003; 9 (Suppl

1): 7-19.

14. McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular

disease. J Clin Endocrinol Metabol 2001; 86: 713-8.

15. Donahue RP, Abbott RD, Bloom E, Reed DM, Yano K. Central obesity and

coronary heart disease in men. Lancet 1987; 1: 821-4.

16. Ohlson LO, Larsson B, Svardsudd K et al. The influence of body fat distribution on

the incidence of diabetes mellitus – 13.5 years of follow-up of the participants in

the study of men born in 1913. Diabetes 1985; 34: 1055-8.

17. Abate N, Garg A, Peshock RM et al. Relationship of generalized and regional

adiposity to insulin sensivity in men with NIDDM. Diabetes 1996; 45: 1684-93.

18. Boden G, Chen X, Ruiz J, White J, Rossetti L. Mechanisms of fatty acid-induced

inhibition of glucose uptake. J Clin Invest 1994; 93: 2438-46.

19. Randle PJ, Garland PB, Newsholme EA et al. The glucose fatty acid cycle in

obesity and maturity onset diabetes mellitus. Ann NY Acad Sci 1965; 131:

324-333.

20. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106:

171-6.

21. Unger RH, Zhou Y-T. Lipotoxicity of β-cels in obesity and in other causes of fatty

acid spillover. Diabetes 2001; 50 (suppl): S118-21.

22. Ginsberg HN. Insulin resistence and cardiovascular disease. J Clin Invest 2000;

106: 453-8.

23. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the

metabolic syndrome. Endocrine Reviews 2000; 21(6): 697-738.

24. Han TS, Richmond P, Avenell A, Lean ME. Waist circumference reduction and

cardiovascular benefits during weight reduction in women. Int J Obes Relat Metab

Disord 1997; 21: 127-34.

25. Pouliot M-C, Desprès J-P, Lemieux S et al. Waist circumference and abdominal

sagittal diameter: best simple anthropometric indexes of abdominal visceral

adipose tissue accumulation and related cardiovascular risk in men and women.

Referências

Documentos relacionados

Nem as interpolações de raiz ptolomaica, nem a decomposição sub-regional de cada uma das nove unidades asiáticas pré-definidas perturbam o essencial da leitura proposta por

Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis.. Diabetes Res

Figure 5 – Patients with a worsening of creatinine clearance (n = 17)... Table 6 – Characteristics of the patients in accordance with the response of their renal function

Receiver Operating Characteristic curve of urinary beta-trace protein gene expression between patients with and without type 2 diabetes

METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin

Improvement in medication adherence and self- management of diabetes with a clinical pharmacy program: a randomized controlled trial in patients with type 2 diabetes undergoing

Os sedimentos marinhos des- tes intervalos pertencem à Formação Palermo Em ter- mos de escala geocronológica, esse intervalo sedimentar posiciona-se no Permiano

Proposta de um Sistema de Classificação de Unidades Geotécnicas e Definição de Perfis Compostos de Solos Tropicais e Subtropicais. Caracterização