• Nenhum resultado encontrado

A expressão da 11beta-hidroxisteroide desidrogenase tipo 1 e reguladores chave da adipogênese humana não estão aumentados na síndrome de Cushing

N/A
N/A
Protected

Academic year: 2017

Share "A expressão da 11beta-hidroxisteroide desidrogenase tipo 1 e reguladores chave da adipogênese humana não estão aumentados na síndrome de Cushing"

Copied!
82
0
0

Texto

(1)

A EXPRESSÃO DA 11

β

-HIDROXISTERÓIDE

DESIDROGENASE TIPO 1 E REGULADORES CHAVE DA

ADIPOGÊNESE HUMANA NÃO ESTÃO AUMENTADOS NA

SÍNDROME DE CUSHING

Tese apresentada à Universidade Federal de São

Paulo – Escola Paulista de Medicina, para obtenção

do Título de Doutor em Ciências.

São Paulo

(2)

DANIELA ESPÍNDOLA ANTUNES

A EXPRESSÃO DA 11

β

-HIDROXISTERÓIDE

DESIDROGENASE TIPO 1 E REGULADORES CHAVE DA

ADIPOGÊNESE HUMANA NÃO ESTÃO AUMENTADOS NA

SÍNDROME DE CUSHING

Tese apresentada à Universidade Federal de São

Paulo – Escola Paulista de Medicina, para obtenção

do Título de Doutor em Ciências.

Orientador:

Prof. Dr. Claudio Elias Kater

Co-orientador:

Prof. Dr. José Antônio Silva Júnior

São Paulo

(3)

Espíndola-Antunes, Daniela

A expressão da 11β-hidroxisteróide desidrogenase tipo 1 e reguladores chave da adipogênese humana não estão aumentados na síndrome de Cushing. São Paulo, 2008.

x, 71p

Tese (Doutorado) – Programa de Pós-graduação em Endocrinologia Clínica – Universidade Federal de São Paulo. Escola Paulista de Medicina.

Orientador: Kater, Claudio Elias

Título em inglês: Expression of 11β-hydroxysteroid dehydrogenase type 1 and key regulators of human adipogenesis are not overexpressed in Cushing’s syndrome adipose depots.

(4)

iii

UNIVERSIDADE FEDERAL DE SÃO PAULO

ESCOLA PAULISTA DE MEDICINA

DEPARTAMENTO DE MEDICINA

DISCIPLINA DE ENDOCRINOLOGIA

CHEFE DO DEPARTAMENTO DE MEDICINA:

Prof. Dr. Ângelo Amato V. de Paola

COORDENADOR DO PROGRAMA DE PÓS-GRADUAÇÃO

EM ENDOCRINOLOGIA CLÍNICA:

(5)

A EXPRESSÃO DA 11

β

-HIDROXISTERÓIDE

DESIDROGENASE TIPO 1 E REGULADORES CHAVE DA

ADIPOGÊNESE HUMANA NÃO ESTÃO AUMENTADOS NA

SÍNDROME DE CUSHING

Presidente da Banca:

Prof. Dr. Claudio Elias Kater

Banca examinadora:

Prof. Dr. Ayrton Custódio Moreira

Prof. Dr. Bruno Geloneze Neto

Prof. Dr. João Bosco Pesquero

Profa. Dra. Regina Célia Mello Santiago Moisés

Suplentes:

Prof. Dr. Alfredo Halpern

(6)

v

In Harvey Cushing everyone recognized a person of brilliant

intellect and of great personal charm. His influence upon all who

came in contact with him was deep and inspiring and especially to

his students and associates he had a lasting effect upon their lives.

W.G. Mac Callum in: Biographical Memoir of Harvey Cushing (1869-1939). National Academy of Sciences of the United States of America, 1940.

(7)

A minha mãe e melhor amiga, Lenita Espíndola Antunes, que com sua

sabedoria e humildade me ensinou a viver com alegria e vontade de acertar; a

valorizar a família, a profissão e os amigos. Também foi com ela que aprendi a

ser grata por todas as graças (e foram muitas) e ensinamentos que a

Inteligência Superior e a Natureza me proporcionaram!

Ao meu pai, Osmar Antunes da Silva Dorninger, exemplo de inteligência e

honestidade, que sempre acreditou na medicina como a melhor profissão para

sua filha. Meu companheiro e grande torcedor desde a época do segundo grau e

cursinho, até os dias de hoje na pós-graduação. Papai, eu não seria tão feliz em

qualquer outra profissão!

A minha querida irmã, Denise Espíndola Antunes, minha alma gêmea, amiga

inseparável e segunda mãe. Meu exemplo de organização, de luta,

companheirismo e meiguice.

Ao meu namorado, Rafael Daher de Miranda, que mesmo longe se fez sentir

muito presente nos momentos de glória e nas dificuldades, tornando meus dias

mais leves e felizes. A você que me faz acreditar que tudo vai valer a pena!

À minha gatinha, Zinha, que torna minhas horas de estudo prazerosas. Minha

companheira ávida por novos artigos impressos a qualquer hora do dia, muito

(8)

vii

AGRADECIMENTOS

Ao meu orientador e amigo, Prof. Dr. Claudio Elias Kater, quem eu já admirava pelos

conhecimentos, inteligência, didática e polidez desde a época de acadêmica. Agradeço a

oportunidade e confiança em mim depositada nesses quatro anos e meio, nos quais pude

trabalhar com o mestre e aprender sobre Adrenal e Hipertensão. Aquele professor que

falava sobre as doenças e fisiologia das adrenais nos congressos é muito mais que um

cientista. É um ser humano extraordinário, iluminado e de valores; uma pessoa de bem

com a vida que vibra com as nossas vitórias, mas que também apóia nas dificuldades.

Agradeço pelas manhãs de sábado, feriados, sem falar nas tardes e noites, que emprestou

seu raciocínio para a discussão dos projetos em quem eu estava trabalhando. Agradeço a

paciência em conciliar seus horários com os meus depois que passei a trabalhar também

em Goiânia. Toda a minha gratidão por ter me inspirado e proporcionado iniciar a vida

acadêmica na área de Adrenal e Esteróides. Finalmente, obrigada por me ensinar que o

raciocínio flui melhor quando se interrompe as atividades para um “cafezinho” ou para um

final de semana com a família e com os amigos. Muito obrigada por tudo, Dr. Claudio!

Ao meu co-orientador, Prof. Dr. José Antônio Silva Júnior, jovem pesquisador e já

detentor de grandes conquistas, pelo exemplo a ser seguido. Agradeço também a confiança

em mim depositada, a paciência em responder as incansáveis dúvidas e o incentivo para a

concretização deste trabalho.

Aos meus preceptores de residência médica do Hospital Geral de Goiânia, Dr. Nelson

Rassi, Dr. Luciano Sanches e Dra. Eldeci Cardoso, pelos ensinamentos valiosos para o

exercício da profissão com dignidade, ética, segurança e respeito com o paciente.

Agradeço o despertar e o incentivo pela área acadêmica. Sou-lhes muito grata por todo o

suporte durante a residência em Endocrinologia e pela compreensão durante minha jornada

(9)

Universidade Federal de Goiás. Obrigada pelo despertar pela Endocrinologia e pelo

exemplo como profissional e professora.

À Prof. Dra. Ieda Verreschi, pela receptividade no laboratório de esteróides e no

ambulatório de gônadas. Obrigada pelas discussões de casos complicados e pelos

ensinamentos científicos sempre recheados de muita ética e de um “olhar” especial para o

PACIENTE.

Ao grupo da Unidade de Adrenal e Hipertensão, Dra. Martha Huayllas, Dra. Regina do

Carmo Silva e Dra. Dolores Pardini, pelos ensinamentos, incentivo e coleguismo.

Aos meus colegas de Pós-Graduação, Flávia Amanda Costa Barbosa, Viviane Chaves de

Carvalho, Maria Sílvia S. Caetano e Marcos Neres, pela ajuda na seleção de pacientes com

síndrome de Cushing, pela amizade e torcida.

Ao grupo do laboratório de esteróides, Lílian Fukusima Hayashi, Sâmia S. Cavassani,

Kelly C. de Oliveira e Ivonne F. Bianco, pelo suporte técnico e pela convivência prazerosa.

Aos cirurgiões e residentes da UNIFESP, Hospital do Servidor Público Estadual e Hospital

Brigadeiro, que auxiliaram na coleta de amostras de tecido adiposo, em especial ao Prof.

Dr. Cássio Andreoni.

À amiga Gláucia Carneiro, que me acolheu desde os primeiros dias de estágio na

UNIFESP, quando ainda éramos residentes de Endocrinologia. Obrigada pela amizade e

prontidão na ajuda e solução de problemas de qualquer ordem. Muito obrigada também

pelas calorosas discussões de estatística e qualquer assunto que dissesse respeito às nossas

(10)

ix

À minha grande amiga Monike Lourenço Dias Rodrigues, pela amizade, força e

companheirismo em todos os momentos da realização desse trabalho. Ao mesmo tempo

em que agradeço todo o suporte durante minha estada em São Paulo, desejo que essa troca

de idéias continue em Goiânia e, estou certa, que mais cedo ou mais tarde, teremos o

prazer de trabalharmos juntas e construir mais sonhos. Você é uma pessoa muito especial e

uma mente brilhante!

Às minhas tias Leide, Leni e Lênis Espíndola pelo carinho e pelas orações.

À minha avó Maria Antonieta de Amorim, pelas palavras confortantes e pelo carinho.

Às secretárias da pós-graduação Amarylis Cândida Salsano e Yeda Queiroga Confessor

pela atenção, prontidão e paciência.

Aos pacientes, sem os quais não seria possível a realização desse estudo.

(11)

SUMÁRIO

Dedicatória . . . vi

Agradecimentos . . . vii

1. INTRODUÇÃO . . . 01

2. ARTIGO 1: . . . . . .

11 -Hydroxysteroid Dehydrogenase Type 1 and Key Regulators of Human Adipogenesis Are Not Overexpressed in Cushing’s Syndrome Adipose Depots.

09

3. ARTIGO 2: . . .

Adipose Tissue 11 -Hydroxysteroid Dehydrogenase Type 1 in Obesity and in Cushing’s Syndrome.

36

5. PRINCIPAIS ACHADOS, CONCLUSÕES E NOVAS DIREÇÕES. . . 45

(12)
(13)

Pacientes com síndrome de Cushing têm adipogênese anormal e desenvolvem

obesidade de distribuição central com adelgaçamento de tecido subcutâneo, alterações

parcialmente reversíveis após tratamento ou suspensão do glicocorticóide (1,2). As

conseqüências metabólicas deletérias do hipercortisolismo crônico, como hipertensão,

dislipidemia, intolerância a glicose, obesidade visceral e osteoporose, entre outras, são bem

conhecidas. Entretanto, os mecanismos envolvidos na distribuição do tecido adiposo

mediados pelos glicocorticóides não são completamente compreendidos.

O cortisol aumenta, direta ou indiretamente, a massa total de tecido adiposo e o

redistribui da periferia para depósitos viscerais. A gordura visceral é biologicamente mais

ativa e associada às complicações da obesidade e à morte cardiovascular prematura (3,4). Os

glicocorticóides são conhecidos como hormônios catabólicos e, agudamente, ativam a

lipólise, liberando ácidos graxos livres na circulação. Entretanto, em 1997, Bujalska et al. (5-)

realizaram estudo in vitro com pré-adipócitos humanos e sugeriram que a obesidade poderia ser “uma doença de Cushing do omento”. A enzima apontada como responsável pela

superprodução local de cortisol era a 11β-hidroxiesteróide desidrogenase tipo 1 (11β-HSD1), descrita por Lakshmi e Monder em 1988 (6). Inicialmente, a 11β-HSD1 foi referida como uma versão menos potente da 11β-HSD tipo 2, que tem ação de desidrogenase, inativando o cortisol à cortisona e protegendo os receptores mineralocorticóides não seletivos (7).

Contudo, sabe-se, atualmente, que a 11β-HSD1 é dependente de NADP(H) e funciona como uma redutase na maioria das células e tecidos in vivo, convertendo a cortisona ao ativo cortisol (8).

Desde a descrição da 11β-HSD1 e, principalmente, após a associação da super-expressão dessa enzima com a obesidade visceral, houve um grande interesse da comunidade

científica na compreensão de suas funções na fisiopatologia da obesidade e da síndrome

metabólica. Apesar da expressão da 11β-HSD1 ser um assunto controverso, a maioria dos estudos apontam para uma super-expressão da enzima em tecido adiposo subcutâneo na

obesidade humana (9,10,11), sendo poucos os estudos realizados em omento (11). A

expressão aumentada da 11β-HSD1 também tem sido associada à resistência à insulina e às citocinas pró-inflamatórias (9,10,11). Além disso, inibição farmacológica da 11β-HSD1 melhora a sensibilidade insulínica em humanos (13). A 11β-HSD1 tornou-se, então, um alvo promissor para o tratamento da síndrome metabólica e do diabetes melito. Paralelamente, a

(14)

INTRODUÇÃO

3 para explicar uma questão não resolvida na síndrome de Cushing, o acúmulo de gordura

visceral. Um dos artigos que compõem essa tese faz revisão da história da 11β-HSD1 e suas correlações com obesidade, síndrome metabólica e síndrome de Cushing.

A ação biológica dos glicocorticóides é mediada pela sua interação com receptores de

glicocorticóide (GR), cuja expressão correlaciona-se com a expressão de 11β-HSD1. Fígado e pulmão de ratos, no período embrionário imediatamente anterior ao nascimento, período no

qual o nível sérico de corticosterona diminui, mostram maior expressão de 11β-HSD1 para compensar sua diminuição e aumentar a densidade de GR (14). Os GR pertencem à

superfamília dos receptores de esteróide, tiróide e retinóides. Duas isoformas de GR foram

descritas em humanos: GRα e GRβ, que se originam do mesmo gene por variantes de processamento de RNA. GRα é a isoforma predominante e mostra atividade de ligação com esteróide. Em condições fisiológicas, o splice alternativo leva à produção de GRα (15). Estudos têm reportado expressão de GRβ em tipos celulares específicos, maioria inflamatória, com super-expressão em estados de resistência aos glicocorticóides, como

asma, colite ulcerativa, leucemia linfocítica e polipose nasal (16). GRβ é inativo e incapaz de se ligar a todos os agonistas e antagonistas já testados.

A ação dos corticosteróides é, então, em parte regulada pela 11β-HSD1 antes da sua ligação ao receptor. Estudos prévios mostraram que a ação de redutase da 11β-HSD1 leva à diferenciação de pré-adipócitos em adipócitos maduros (17) e, provavelmente, à maior

expressão de GR. Pedersen et al. (18), mostraram que o tecido adiposo visceral contem

quatro vezes mais GR que o depósito subcutâneo. Recentemente, foi investigada a relação

entre obesidade e diferenciação de pré-adipócitos in vitro (19) e, ao contrário do que se esperava, os resultados indicaram potencial limitado de diferenciação de pré-adipócitos em

indivíduos com obesidade central, concluindo que o baixo potencial de diferenciação deve

ser, pelo menos em parte, conseqüente a menor expressão de GR. Por outro lado,

administração de metilprednisolona por uma semana diminuiu os níveis de GR e da proteína

de GR em tecido adiposo subcutâneo de indivíduos saudáveis (20).

A expressão da 11β-HSD1 é regulada por diversos fatores, dentre eles o receptor gama ativado pelo proliferador do peroxissomo (PPARγ). Os PPARγ estão entre os fatores de transcrição mais importantes no processo de diferenciação dos adipócitos. São o terceiro

(15)

aminoácidos adicionais na porção amino-terminal (21). Os PPARγ2 são expressos exclusivamente em tecido adiposo, enquanto os PPARγ1 são mais amplamente expressos, apesar de mais abundantes no tecido adiposo (22).

Os PPARγ são induzidos precocemente no processo de diferenciação dos pré-adipócitos. A exposição de pré-adipócitos humanos a agonistas dos PPARγ, tiazolidinedionas (TZD), induz diferenciação dos mesmos (23). Por outro lado, a transdução prévia destas

células com adenovírus expressando um mutante negativo e dominante do PPARγ bloqueia esse processo (21). Vários estudos têm mostrado que o aumento da gordura corporal

associada ao tratamento com TZD é mediado principalmente pelo acúmulo de gordura

subcutânea, enquanto que o volume de gordura visceral é reduzido ou não se altera (22,24).

Ligantes do PPARγ estão envolvidos na regulação do metabolismo lipídico e glicídico, sendo utilizados no tratamento do diabetes melito tipo 2 como drogas

sensibilizadoras da insulina. É provável que o PPARγ no tecido adiposo seja o alvo principal das TZD que aumentam a sensibilidade à insulina no tecido hepático e muscular, sugerindo

que os PPARγ controlem a expressão de genes envolvidos na sinalização do tecido adiposo para outros tecidos. Além disso, ligantes dos PPARγ regulam outros genes adipocitários que devem contribuir para a sensibilidade à insulina, como a adiponectina e a 11β-HSD1. Ligantes do PPARγ, TZD e não-TZD, diminuem a expressão desta enzima em adipócitos 3T3-L1 (25) e em tecido subcutâneo humano (26). Há sugestão de que a redução da

expressão de 11β-HSD1 nos adipócitos deva promover a sensibilidade insulínica, seja pela redução da expressão de genes induzidos pelos glicocorticóides nos adipócitos, seja pela

redução da secreção dos glicocorticóides (27).

Adicionalmente, as TZD induzem mudanças fenotípicas em adipócitos de ratos,

reduzindo o tamanho de adipócitos viscerais e aumentando seu potencial de estoque de

lipídeos (28). A ocorrência natural de mutantes do PPARγ também atesta o papel crucial desse promotor na adipogênese e na distribuição de gordura. Mutações com perda de função

no domínio de ligação PPARγ humano causam lipodistrofia, com perda de gordura subcutânea de membros e região glútea e relativa preservação de depósitos subcutâneos e

viscerais (22). Contudo, estudos a respeito da expressão dos PPARγ1 e PPARγ2 em tecido adiposo humano são conflitantes, dado o pequeno número de pacientes estudados e a

variabilidade de parâmetros considerados.

(16)

INTRODUÇÃO

5 por hipercortisolismo crônico e distribuição anormal de depósitos de gordura, cujos

mecanismos permanecem não solucionados. Assim, os objetivos do presente estudo foram:

(i) quantificar a expressão gênica da 11β-HSD1, GRα, PPARγ1 e PPARγ2 em tecido adiposo subcutâneo e visceral de pacientes do sexo feminino com síndrome de Cushing e controles

obesas e não obesas, (ii) avaliar os efeitos da exposição ao hipercortisolismo crônico na

expressão dos referidos genes, e (iii) correlacionar os achados moleculares com dados

clínicos

Abreviações:

Circunferência abdominal: CA

11β-Hidroxisteróide desidrogenase Tipo 1: 11β-HSD1 Índice de massa corporal: IMC

Receptor glicocorticóide isoforma alfa: GRα

Receptor gama ativado pelo proliferador do peroxissomo: PPARγ Tecido adiposo subcutâneo: SAT

Tecido adiposo visceral: VAT

(17)

REFERÊNCIAS

1. Lonn L, Kivist H, Ernest I, Sjostrom L. Changes in body composition and adipose

tissue distribution after treatment of women with Cushing’s syndrome. Metabolism,

1994;43(12):1517-1522.

2. Pivonello R, De Martino MC, De Leo M. Cushing’s syndrome: Aftermath of the cure.

Arq Bras Endocrinol Metab 2007;51(8):1381-1391.

3. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the

metabolic syndrome. Endocr Rev 2000;21(6):697-738.

4. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY et al.

Abdominal visceral and subcutaneous adipose tissue compartments: association with

metabolic risk factor in the Framingham heart study. Circulation 2007;116:39-48.

5. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of

the omentum”? Lancet 1997;349:1210-1213.

6. Lakshmi V, Monder C. Purification and characterization of the 11β-dehydrogenase component of the rat liver 11β-hydroxysteroid dehydrogenase complex. Endocrinology 1988;123:2390-2398.

7. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramires LC, Raul W, Rosler A,

Bradlow HL, New MI. A syndrome of apparent mineralocorticoid excess associated

with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab

1979;49:757-764.

8. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison

M, Stewart PM. 11 -Hydroxysteroid dehydrogenase type 1: A tissue especific

regulator of glucocorticoid response. Endocr Rev 2004;25:831-866.

9. Wake DJ, Rask E, Livingstone, Sodeberg S, Olsson T, Walker BR. Local and

systemic impact of transcriptional upregulation of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab

2003;88:3983-3988.

10. Lindsay RS, Wake DJ, Nair S, Bunt J, Livingstone DE, Permana PA, Tataranni PA,

Walker, BR. Subcutaneous adipose 11β-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in

(18)

INTRODUÇÃO

7 11. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Heintze U, Janke J, Luft FC,

Sharma AM. Regulation of 11β-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res 2004;12:9-17.

12. Goedeck JH, Wake DJ, Levitt NS, Lambert EV, Collins MR, Morton NM, Seckl JR,

Walker BR. Glucocorticoid metabolism within superficial rather than visceral adipose

tissues is associated with features of the metabolic syndrome in South African

women. Clin Endocrinol 2006; 65:81-87.

13. Andrews RC, Rooyackers O, Walker BR. Effects of the 11β-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2

diabetes. J Clin Endocrinol Metab 2003;88:285-291.

14. Yang K, Han VKM, Thompson, A. Differential expression of 11β-hydroxysteroid dehydrogenase trypes 1 and 2 mRNA and glucocorticoid receptor protein during

mouse embryonic development. J Ster Biochem Molec Biol 2004; 88:367-375.

15. Zennaro MC, Farman N, Bonvalet JP, Lombes M. Tissue-specific expression of α e

β mRNA isoforms of the human mineralocorticoid receptor in normal and

pathological states. J Clin Endocrinol Metab 1997;82:1345-1352.

16. Longui CA, Vottero A, Adamanson PC, Cole DE, Kino T, Monte O, Chrousos GP.

Low glucocorticoid receptor alpha/beta ratio in T-cell limphoblastic leukemia. Horm

Metab Res 2000;32:401-406.

17. Bujalska IJ, Kumar S, Hewison M, Stewart PM. A switch in the dehydrogenase to

reductase activity of 11β-hydroxysteroid dehydrogenase type 1 upon differentiation of human omental adipose stromal cells. J Clin Endocrinol Metab 2002;87:1205-1210.

18. Pedersen, SB, Jonler M, Richelsen B. Caracterization of regional and gender

differences in glcocorticoid receptors and lipoprotein lipase activity in human adipose

tissue. J Clin Endocrinol Metab 1994;78:1354-1459.

19. Permana PA, Nair S, Lee YH,Luczy-Bachman G, Vozarova de Courten B, Tataranni

PA. Subcutaneous abdominal pre-adipocyte differentiation in vitro inversily correlates

with central obesity. Am J Endocrinol Metab 2004;286(6):958-962.

20. Bronnegar M, Reynisdottir S, Marcus C, Stierna P, Arner P. Effect of

glucocorticosteroids treatment on glucocorticoid receptor in human adipocyte. J Clin

(19)

21. Gurnell M, Savage DB, Chatterjee VK, O’Rahilly S. The metabolic syndrome:

Peroxisome proliferator activated receptor γ and its therapeutic modulation. J Clin Endocrinol Metab 2003;88(6):2412-2421.

22. Sample RK, Chatterjee VK, O’Rahilly S. PPARγ and human metabolic disease. J Clin Invest 2006;116(3):581-589.

23. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE,

Sewter CP, Lazar MA, CHatterjee VK, O’Rahilly. Activators of PPARγ have depot-specific effects on human pre-adipocyte differentiation. J Clin Invest 1997;

100:3149-3153.

24. Larsen TM, Toubro S, Astrup A: PPARgamma agonists in the treatment of type II

diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat

Metab Disord 2003, 27:147-161.

25. Berger J, Tanen M, Elbrecht A, Hermanoswisk-Vosatika A, Moller DE, Wright SD,

Thieringer R. Peroxisome proliferator-activated receptor ligands inhibit adipocyte

11β-hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem 2001;276(16):12629-12635.

26.Mai K, Andres J, Bobbert T, Maser G, Mohlig M, Bahr V, Pffeifer AFH, Spranger J,

Diederic S. Rosiglitazone decreases 11β-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue. Clin Endocrinol 2007;67:419-425.

27.Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sciences 2004; 25:331-336.

28. Sharma AM, Staels B. Peroxisome proliferator-activated receptor (PPAR ) and

adipose tissue - understanding obesity-related changes in regulation of lipid and

(20)

2. Artigo 1

11β-Hydroxysteroid Dehydrogenase Type 1 and Key Regulators of Human

Adipogenesis Are Not Overexpressed in Cushing’s Syndrome Adipose Depots.

Espíndola-Antunes D, Goto EM, Guimarães AO, Pesquero JB, Silva JA Jr, Kater CE.

(21)

11

β

-Hydroxysteroid Dehydrogenase Type 1 and Key Regulators of

Human Adipogenesis Are Not Overexpressed in Cushing’s Syndrome

Adipose Depots

Daniela Espíndola-Antunes1, Eduardo M. Goto2, Alessander O. Guimarães3,

João B. Pesquero3, José A. Silva Junior2,4, Claudio E. Kater1

1

Division of Endocrinology and Metabolism, Department of Medicine; 2Department of

Pathology; and 3Department of Biophysics, Federal University of Sao Paulo (UNIFESP),

and 4Nove de Julho University (UNINOVE), Sao Paulo, SP, Brazil

Address for correspondence:

Claudio E. Kater, Associate Professor of Medicine

Division of Endocrinology, Department of Medicine

Universidade Federal de São Paulo

Rua Pedro de Toledo, 781 – 13o. andar

04039-032 São Paulo, SP - Brasil

Email: kater@unifesp.br

Running head:11 -HSD1, GRα and PPARγ in Cushing’s syndrome

Abbreviations: 11β-HSD1, 11β-hydroxysteroid dehydrogenase type 1; GRα,

glucocorticoid receptor alpha; PPARγ, peroxisome proliferator-activated receptor gamma;

AC, abdominal circumference; BMI, Body mass index; CS, Cushing’s syndrome; SF,

(22)

ARTIGO 1

11 ABSTRACT

Objective: To quantify and evaluate the effects of chronic exposure to

hypercortisolism on the expression of 11β-hydroxysteroid dehydrogenase type 1

(11-βHSD1), glucocorticoid receptor-α (GRα) and peroxisome proliferator-activated

receptor-γ (PPARγ) in adipose depots of patients with Cushing’s syndrome.

Design and methods: Samples of visceral (VAT) and subcutaneous adipose tissue

(SAT) were obtained during elective abdominal surgery from female patients with

Cushing’s syndrome (n=10), and obese (n=15) and nonobese controls (n=10), in whom

body mass index (BMI), abdominal circumference (AC), and salivary cortisol (SF) were

previously determined. 11β-HSD1, GRα, PPARγ1 and PPARγ2 mRNA expressions were

quantified by real-time PCR.

Results: 11β-HSD1 gene expressions in SAT and VAT of Cushing’s patients were not

different from nonobese and were upregulated in obese (P<0.0001 and P=0.019,

respectively). Additionally, GRα mRNA expression was downregulated in SAT of obese

and Cushing’s patients (P<0.0001 for both). PPARγ2 mRNA expression was higher in

VAT of obese than in Cushing’s patients (P<0.05) and lower in SAT than nonobese. In the

whole group, 11β-HSD1, PPARγ1 and PPARγ2 levels showed no correlations with SF.

Moreover, 11β-HSD1 mRNA expression correlated positively with GRα in VAT (r=0.6,

P<0.0001); in SAT, it correlated positively with PPARγ1 (r= 0.77; P<0.0001) and

negatively with PPARγ2 (r=-0.54, P=0.01). Finally, the best predictor of BMI and AC was

PPARγ2 mRNA in SAT (and not in VAT).

Conclusion: Chronic hypercortisolism, as seen in Cushing’s syndrome, do not result in

upregulation of 11β-HSD1 and PPARγ gene expressions in adipose depots, in contrast to

(23)

INTRODUCTION

Glucocorticoids (GC) have a major role in determining adipose tissue distribution and

metabolism. Subjects with endogenous or exogenous hypercortisolism develop a central

obesity pattern that is reversible upon treatment or GC withdrawal (1). The mechanisms

involved in GC-mediated adipose tissue distribution are not completely understood.

Part of GC action is regulated at a pre-receptor level by 11β-hydroxysteroid

dehydrogenase type 1 (11β-HSD1), an NADPH-dependent enzyme highly expressed in the

liver and adipose tissue, where it is co-localized with the GC receptor-α (GRα). In most

intact cells and tissues, 11β-HSD1 functions as a reductase, converting inactive cortisone

to active cortisol (2). GC regulate multiple processes in the adipose tissue: (a) they

influence fat cell size, so that enlarged abdominal fat cells are seen in Cushing’s syndrome

(3); (b) promote differentiation of human pre-adipocytes into mature adipocytes, increasing

fat cell number (4-5); and (c) activate lipolysis, releasing free fatty acids into circulation.

However, chronic exposure to cortisol, as seen in Cushing’s syndrome, is associated with a

2-3 fold increase in lipoprotein lipase activity, resulting in lower lipolytic capacity (3).

The nuclear receptor, peroxisome proliferator-activated receptor-γ (PPARγ), has a

central role in the entire adipogenesis program, promoting not only the conversion of

fibroblasts into adipocytes, but also the transdifferentiation of myoblasts into adipocytes

(6-7). Diverse promoters coupled with alternate splicing of the PPARγ gene gives rise to

three mRNA isoforms: PPARγ1 and PPARγ3, which encodes the same protein product,

and PPARγ2 which is identical to PPARγ1, except for an additional 28 amino-acids at its

N-terminal (8). PPARγ2 is virtually adipose tissue-specific, whereas PPARγ1 is widely

expressed (9), albeit more abundantly in the adipose tissue. Exposure of primary human

(24)

ARTIGO 1

13 sensitizing drugs, induces adipocyte differentiation (10), whereas in vitro loss-of-function experiments block this process (11). PPARγ activation is extensively manifested in the

mature fat cell phenotype, including morphological changes, lipid accumulation, and the

acquisition of insulin sensitivity (12). It has been hypothesized that tissue-specific

deregulation of cortisol metabolism may be involved in the complex pathophysiology of

the metabolic syndrome and obesity. Transgenic mice overexpressing 11β-HSD1 in

adipose tissue develop obesity with all features of the metabolic syndrome (13), whereas

11β-HSD1-knockout mice are protected from both (14). The bulk of evidences points to an

overexpression and increased activity of 11β-HSD1 also in human adipose tissue (15-18),

although there are contrasting data (19). Serum cortisol levels are not elevated in obesity

(20,21); instead, it may be locally increased in the adipose tissue due to a greater activity of

11β-HSD1.

Furthermore, several studies in humans have demonstrated that treatment with TZD

leads to selective accumulation of subcutaneous adipose tissue (SAT), with concomitant

lack of change or reduced adiposity of visceral depots (22). PPARγ ligands regulate genes

that may contribute to insulin sensitivity, such as 11β-HSD1. TZD and non-TZD PPARγ

agonists markedly reduce 11β-HSD1 gene expression in 3T3-L1 adipocytes (23), visceral

depots in rats (24) and subcutaneous depots in the human (25). However, PPARγ

expression in human adipose tissue is still a matter of debate (26-28).

There are striking similarities between Cushing’s and the metabolic syndrome, namely

the combination of visceral obesity, systemic arterial hypertension, dyslipidemia and

glucose intolerance. Besides, omental adipose stromal cells cultured with cortisol showed

increased activity of 11β-HSD1 (4,29). All these observations led to the speculation that

11β-HSD1 gene expression is upregulated in the visceral adipose tissue (VAT) of subjects

(25)

Relying on the evidences that 11β-HSD1 mRNA expression is closely related to 11β

-HSD1 activity (16), we examined the hypothesis that 11β-HSD1, GRα and PPARγ are

distinctively expressed in subcutaneous and visceral compartments of Cushing’s syndrome

and obese patients.

Research design and methods:

Subjects/Procedures

The study, previously approved by the local Ethics Committee, encompassed 10 female

patients with adrenal Cushing’s syndrome and 25 female control subjects who gave their

full, informed, written consent.

Body mass index (BMI), abdominal (AC) and hip circumferences were determined.

The control group was stratified according to BMI, into two subgroups: the nonobese

(BMI<30 Kg/m2) with 10 subjects, and the obese with 15, including 7 class I/II (BMI≥30

and <40 Kg/m2) and 8 class III (BMI≥ 40 Kg/m2). Exclusion criteria included the presence

of any inflammatory and/or malignant condition, diabetes, fasting impaired glucose (>5.6

mmol/liter) or current use of medications known to interfere with 11 -HSD1 expression or

function.

The diagnosis of adrenal Cushing’s syndrome was established by elevated 23:00h

salivary cortisol (SF), lack of cortisol suppression after overnight 1mg oral dexamethasone,

increased 24h urinary free cortisol excretion and undetectable plasma ACTH levels, and

confirmed in all on pathology grounds.

Approximately 2g subcutaneous and visceral adipose tissue samples were obtained

from the patients with Cushing’s syndrome during videolaparoscopic adrenalectomy for a

(26)

ARTIGO 1

15 surgery (colecistectomy in 13 and bariatric surgery in 10; ovarian cystectomy in one and

tubal sterilization in one). Samples were immediately frozen in dry ice and stored at -70°C

until RNA extraction.

The night before surgery, all patients remained fast after 22:00h and were instructed to

collect saliva at 23:00h in a specific collector (Salivette®, Sarstedt, Germany) after oral

hygiene with filtered water; the material was kept under refrigeration until the next

morning.

Measurement of salivary cortisol

Saliva samples were centrifuged at 2,000 rpm and kept frozen until assay. Salivary

cortisol was measured in 25µl saliva aliquots by an in-house radioimmunoassay (RIA)

without previous extraction or chromatography, as previously described (30). In brief, the

intra- and inter-assay coefficients of variation were 4.4% and 5.1%, respectively, with a

detection limit of 10 ng/dL.

Tissue preparation and reverse transcriptase (RT)

Total RNA was isolated from SAT and VAT by TRIzol reagent (Gibco BRL,

Gaithersburg, MD, USA), according to the manufacturer’s protocol. RNA was subjected to

DNase I digestion, and quantified using spectrophotometric analyses (ND-1000,

NanoDrop, Wilmington, DE, USA). RNA integrity was assessed by electrophoresis on 1%

agarose gel. A standard curve for each pair of primers was generated by serial dilution of

(27)

Real-Time PCR

PCR was performed in a 7000 Sequence Detection System (ABI Prism, Applied

Biosystems, Foster City, CA, USA) using the SYBRGreen core reaction kit (Applied

Biosystems). Primers used for 11β-HSD1, GRα, PPARγ1, and PPARγ2 mRNA

quantifications were as follows:

11β-HSD1, 5´-GCAGCCTCAGCACACTACATTG-3´ (forward),

5´-GGTGATGTGGTTGAGAATGAGC-3´ (reverse)

(GenBankTM accession number J00691);

GRα, 5´-CCCCAGGTAAAGAGACGAATG-3´ (forward),

5´-CGGTAAAATGAGAGGCTTGCA-3´ (reverse)

(GenBankTM accession number NM_030851);

PPARγ1, 5´-TGAACCACCCTGAGTCCTCACA-3´ (forward),

5´-CGTGTTCCGTGACAATCTGTCT-3´ (reverse)

(GenBankTM accession number NM_138712.3);

PPARγ2, 5´-GGCAATTGAATGTCGTGTCTGT-3´ (forward),

5´-TGCAAGGCATTTCTGAAACC-3´ (reverse)

(GenBankTM accession number NM_015869.4).

All reactions were multiplexed with the housekeeping human 18S gene with the

following sequence: 5´-GTAACCCGTTGAACCCCATT-3´ (forward),

5´-CCATCCAATCGGTAGTAGCG-3´ (reverse).

All results were confirmed using the housekeeping ARPO gene (data not shown).

Each sample was run in duplicate and the mean of duplicate was used to calculate

transcript level. Quantitative values for 11β-HSD1, GRα, PPARγ1, PPARγ2, and 18S

mRNA transcription were obtained from the threshold cycle (Ct) number, where the

(28)

ARTIGO 1

17 detected. Melting curves were generated at the end of every run to ensure product

uniformity. The relative target gene expression level was normalized on the basis of 18S

expression as endogenous RNA control.

ΔCt values of the samples were determined by subtracting the average Ct value of 11β

-HSD1, GRα, PPARγ1, and PPARγ2 mRNA from the average Ct value of the internal

control 18S gene.Reactions were performed as follows: 50°C for 2 min, 95°C for 10 min,

and then 50 cycles of 95°C for 15 sec and 60°C for 30s, and a dissociation cycle.

Statistical analysis

Statistical analysis was performed using the SPSS software 16.0.1 version for

Windows (SPSS Inc. Chicago, IL, USA). Comparisons between groups were performed by

ANOVA for variables with a normal distribution and Kruskal-Wallis for non-parametric

variables, whereas Pearson and Spearman tests were used to verify correlation between

variables. Multiple regression analyses were employed to adjust for the influence of BMI

and AC. The data are expressed as mean±SD, unless otherwise stated. Differences were

considered statistically significant when P was less than 5%.

RESULTS

Subjects characteristics

Clinical and biochemical characteristics of patients with CS, and nonobese and obese

subjects are shown in table 1. BMI of Cushing’s patients were similar to nonobese

(28.5±4.0 vs 25.5±2.2 Kg/m2), and significantly lower than obese class I/II and class III (33.5±3.7 Kg/m2; P=0.043 and 46.3±4.3 Kg/m2; P<0.0001, respectively). Abdominal and

(29)

(125±15.2 vs 97.8±17.7 cm; P<0.001 and 136.7±17.6 vs 103.9±11.8 cm; P<0.0001, respectively), nonobese (P<0.0001 for both) and obese I/II (P=0.031 and P=0.001,

respectively). Similar to BMI, abdominal and hip circumferences in Cushing’s syndrome

were closer to those in nonobese.

Salivary cortisol at 23:00h was noticeably higher in Cushing’s (1,114±805 ng/dL) than

in nonobese (182±105 ng/dL; P<0.0001), obese class I/II (126.6±70 ng/dL; P<0.0001) and

class III (108.5±40 ng/dL; P<0.001), but did not differ among the latter 3 groups.

When no differences were observed in a specific variable between class I/II and class III

obese, all of these patients were grouped together. Means (±SD) of age, BMI, AC and SF

in the whole obese group were: 49.6±15.4 years; 40.3±7.6 Kg/m2; 115.6±16.4 cm and

118±57 ng/dL, respectively.

Table 1. Clinical and biochemical characteristics of the female patients studied.

Cushing’s syndrome (n=10)

Nonobese (n=10)

Obese class I/II (n=7)

Obese class III (n=8) Age (years) 42.1±17.7

[21 – 81]

41.5 ±17 [20 – 80]

58.6±14.5 [42 – 79]

41.9±12 [27 – 57]

BMI (Kg/m2) 28.5±4.0**,*** [22.6 – 35.3]

25.5±2.2 [21.3 - 28.3]

33.5±3.7† [30 – 39]

46.3±4.3††,& [27 – 57]

Abdominal

circumference (cm)

97.8±17.7*** [96 – 120]

87.9±7.3 [78 – 100]

104.8±10.3 [90-120]

125±15.2††,& [105-153]

Hip circumference (cm)

103.9±11.8*** [84 – 130]

96.5±4.3 [91 – 103]

110.5±7.8 [102 – 120]

136.7±17.6††,& [112 – 158]

23:00h Salivary cortisol (ng/dL)

1,114±805*,**,*** [293 – 2,680]

182±105 [57 – 347]

126.6±70 [22 – 235]

108.5±40 [53 – 152]

All data are mean±SD, followed by range in brackets.

(30)

ARTIGO 1

19 Comparison of 11β-HSD1 and GRα mRNA levels in subcutaneous and visceral

adipose tissue

In Cushing’s syndrome, 11β-HSD1 expressions in SAT and VAT were not statistically

different from those in nonobese (0.35±0.1 vs 0.17±0.06 and 1.3±0.56 vs 0.95±0.36, respectively) (Figure 1), whereas they were significantly lower than in obese only in SAT

(0.35±0.1 vs 0.64±0.3; P=0.01). In obese, 11β-HSD1 mRNA levels were higher than in nonobese patients both in SAT and VAT (0.64±0.3 vs 0.17±0.06; P<0.0001 and 1.6±0.7 vs 0.95±0.36; P=0.019, respectively).

GRα mRNA expressions in SAT of Cushing’s and obese subjects were significantly

lower than in nonobese (0.14±0.08 and 0.17± 0.09 vs 0.36±0.1; P<0.0001 for both) (Figure 1). However, in VAT, GRα mRNA expression was higher in obese class I/II than in

Cushing’s patients (2.81±1.6 vs 1.07±0.26; P<0.05).

Cushing’s

11β-HSD1/18S mRNA

VAT SAT

Obese Nonobese

0 1.0

0.5 2.0

1.5 0 1.0

0.5 2.0

1.5

GRα/18S mRNA

*

* * * * *

* *

* *

11β-HSD1: * P<0.01 (vs obese), ** P<0.001 (vs nonobese), *** P<0.02 (vs nonobese); GRα: * P<0.0001 (vs nonbese), ** P<0.05 (class I/II vs CS).

(31)

A significant correlation between visceral, but not subcutaneous, 11β-HSD1 and GRα

mRNA levels was observed when the analyses was performed either with the whole group

(nonobese, obese and Cushing’s, r=0.6; P<0.0001) or with Cushing’s syndrome and obese

subjects individually (r=0.87; P=0.001 and r=0.74; P=0.002, respectively). (Figure 2)

R=0.6 P<0.0001 0 1 2 3 4 5 6

0 0,5 1 1,5 2 2,5 3 3,5

GR α m RNA /1 8 S

11βHSD-1 mRNA/18S

0 1 2 3 4 5 6

0 0,5 1 1,5 2 2,5 3 3,5

11βHSD-1 mRNA/18S

GR α m R NA /18S

11βHSD-1 mRNA/18S

GR α m RNA /1 8 S 0 1 2 3 4 5 6

0 0,5 1 1,5 2 2,5

R=0.87 P=0.001

R=0.74

P=0.002 Whole group

Cushing’s syndrome Obese subjects

r=0.87 P=0.001 r=0.74 P=0.002 r=0.6 P<0.0001

Figure 2. Correlations between 11β-HSD1 and GRα mRNA expressions in visceral adipose tissue of the whole group of patients (nonobese, obese and Cushing’s) and in Cushing’s and obese patients separately.

Comparison of PPARγ and 11β-HSD1 levelsin subcutaneous and visceral adipose

tissue

PPARγ1 mRNA expression in SAT of obese class III was significantly higher than in

nonobese patients (1.84±0.8 vs 0.79±0.2; P<0.05), whereas in VAT it was significantly lower (1.27± 0.6 vs 3.1±1.6; P=0.013). (Figure 3)

PPARγ2 mRNA expression was significantly reduced in SAT of Cushing’s and obese

class I/II and class III patients as compared to nonobese (0.05±0.03, 0.090±0.1, and

(32)

ARTIGO 1

21 significantly greater expression of PPARγ2 mRNA in VAT than obese class III and

Cushing’s patients (1.2±0.8 vs 0.14±0.9 and 0.2±0.13; P<0.05, respectively).

Cushing’s

PPARγ1/18S mRNA

VAT SAT

Obese I I I Nonobese

0 0.8 1.2

PPARγ2/18S mRNA

0.4 0 2.0 3.0

1.0

Obese I / I I

*

*

*

* *

* * *

PPARγ1: * P<0.05 (vs nonbese), ** P<0.013 (vs nonobese); PPARγ2: * P<0.05 (vs nonbese), ** P<0.05 (vs Cushing’s).

Figure 3. PPARγ1 and PPARγ2 mRNA expressions in subcutaneous

(SAT) and visceral adipose tissues (VAT) of nonobese, obese (classes I/II and III) and Cushing’s patients.

In the whole group, there was a strong positive correlation between 11β-HSD1 and

PPARγ1 mRNA expressions in SAT (r= 0.79; P<0.001), but not in VAT (Figure 4); in

contrast, a strong positive correlation between both was observed in VAT of Cushing’s

patients alone (r=0.88; P=0.001).

In addition, when the whole group was analyzed, a significant and inverse correlation

between 11β-HSD1 and PPARγ2 mRNA levels was observed in SAT (r=-0.54; P=0.01),

but not in VAT. Instead, a strong positive correlation was observed between both in obese

(33)

0 1 2 3 4 5 6 7

0 0,5 1 1,5

Obese class I/II 0 0,2 0,4 0,6 0,8 1

0 0,5 1 1,5

R=0.77

P<0.001 R=-0.54P=0.01

11β-HSD1 mRNA/18S

0 0,5 1 1,5 2 2,5

0 1 2 3

R=0.83 P=0.01 PPA R γ 2 m R N A /1 8S

11β-HSD1 mRNA/18S 0

1 2 3 4

0 0,5 1 1,5 2 2,5

R=0.87 P=0.001

11β-HSD1 mRNA/18S

PPA R γ 1 m R N A /18S

B) PPARγ2 in the whole group

11β-HSD1 mRNA/18S

PPA R γ 2 m R NA/18S VAT PPA R γ 1 m R N A /18S PPA R γ 2 m R N A /18S SAT Whole group r=-0.54 P=0.01 SAT Cushing’s VAT r=0.88 P=0.001 r=0.79 P<0.001 r=0.83 P=0.01

Figure 4. Correlations between 11β-HSD1 and PPARγ1 and PPARγ2 expressions in subcutaneous adipose tissue (SAT) of the whole group of patients (upper 2 panels) and in visceral adipose tissue (VAT) in Cushing’s and obese class I/II patients separately (lower 2 panels).

Association of 11β-HSD1, GRα, and PPARγ mRNA with anthropometric and

biochemical parameters

In the whole group, 11β-HSD1 expressions in SAT and VAT were positively and

significantly correlated with BMI (r=0.43; P=0.01 and r=0.35; P=0.041, respectively) and

with AC (r=0.36; P=0.033 and r=0.4; P=0.008, respectively) (Table 2). Individually, 11β

-HSD1 expression correlated with BMI in SAT of nonobese (r=0.63; P=0.049) and with AC

in VAT of Cushing’s patients (r=0.66; P=0.038). In contrast, GRα mRNA levels in SAT,

but not in VAT, were negatively correlated with BMI and AC in the whole group (r=-0.37;

P=0.028 and r=-0.45; P=0.007, respectively), but did not correlate with either in individual

(34)

ARTIGO 1

23 In the whole group, a positive and significant correlation was observed in SAT between

PPARγ1 and both BMI and AC (r=0.50; P=0.002 and r=0.35; P=0.034, respectively),

whereas an inverse correlation was observed between PPARγ2 and AC (r=-0.59;

P<0.0001). In contrast, PPARγ1 and PPARγ2 gene expressions correlated negatively with

BMI in VAT (significant only for PPARγ1: r= -0.4; P= 0.017) (Table 3), whereas no

correlations were seen for AC, except for PPARγ1 in Cushing’s alone (r=0.68; P=0.028).

Table 2. Correlation of 11β-HSD1, GRα, PPARγ1, and PPARγ2 mRNA levels with anthropometric parameters in the whole group (nonobese, obese and Cushing’s patients).

11β-HSD1 GRα PPARγ1 PPARγ2

SAT VAT SAT VAT SAT VAT SAT VAT

BMI (Kg/m2 )

r= +0.43 P= 0.01

r= +0.35 P= 0.04

r= -0.37 P= 0.028

NS r= +0.5 P= 0.002

r= -0.4 P= 0.017

NS NS

AC (cm) r= +0.36 P= 0.03

r= +0.40 P= 0.008

r= -0.45 P= 0.007

NS r= +0.35 P= 0.034

NS r= -0.59

P<0.001 NS

BMI: Body mass index; AC: Abdominal circumference

Salivary cortisol had a strong positive correlation with PPARγ1 expression (r= 0.9;

P=0.037) in VAT but not in SAT of obese class III patients, and did not correlate with 11β

-HSD1, GRα, or PPARγ2 in any group or altogether in VAT or SAT.

When 11β-HSD1, GRα, PPARγ1, and PPARγ2 were analyzed altogether in the whole

group (by stepwise multiple regression), PPARγ2 in SAT was found to be the best

predictor of both AC and BMI; however, when only 11β-HSD1 and GRα genes are

considered, the former was the best predictor of BMI and the latter the best predictor of

(35)

DISCUSSION

In our study, there were no significant differences between 11β-HSD1 mRNA

expressions in SAT and VAT from Cushing’s patients as compared to nonobese controls.

Furthermore, 11β-HSD1 expression in VAT was greater in obese than in Cushing’s

patients, a finding confirmed in the only published study in Cushing’s syndrome (34) that

reported no differences in 11β-HSD1 mRNA expression in omental biopsies as compared

to normal weight controls. Of interest, both ours and Mariniello’s study (34) are not in

accordance with previous in vitro experiments, which demonstrated increased activity and expression of 11β-HSD1 in human omental adipose stromal cells cultured with cortisol,

suggesting that obesity could be “Cushing’s disease of the omentum” (5), a finding

recently confirmed by Lee et al (29). Thus, it is anticipated that both systemic

hypercortisolism and cortisol generated from 11β-HSD1 in an autocrine manner, could

promote adipocyte differentiation (4) and proliferation (35), as seen in stromal cells in

vitro. However, chronic exposure to cortisol in vivo, as observed in CS in our study, seems instead to downregulate 11β-HSD1 expression in both subcutaneous and visceral

compartments and 11β-HSD1 expression is remarkably correlated with its activity (16).

Also, we demonstrate that 11β-HSD1 mRNA expression is upregulated in both SAT and

VAT of obese subjects. These findings are in agreement with preliminary studies

performed in SAT (15-18). Although VAT appears biologically more active than SAT and

responsible for obesity-related complications and increased mortality (31), there is only a

few controversial studies in VAT in obesity: one observed increased 11β-HSD1 expression

(32) and others did not (19,33). Despite similarities between Cushing’s syndrome and the

(36)

ARTIGO 1

25 The expression of PPARγ isoforms in human adipose depots and their correlation with

obesity parameters are vastly controversial in the literature. Previous studies have shown:

(a) increased PPARγ2 levels in obesity and no correlations of PPARγ1 with BMI (26); (b)

increased PPARγ2 levels in obesity and inverse correlation of PPARγ1 with BMI (28) and

inverse correlation of PPARγ2 with BMI (27); and (c) increased levels of PPARγ1 in

overweight patients (36) and no correlations with BMI (37). The dispute could be partially

explained by the considerable variability of the parameters studied, such as the adipose

compartment (whole versus freshly isolated tissue), gender, degree of obesity, transcriptional factors involved in fat storage control (27) and in short-term regulators (37),

including degree of intra-operatory stress.

In our study, PPARγ1 expression was augmented in SAT and reduced in VAT of obese

subjects, whereas PPARγ2 was reduced in SAT of obese and Cushing’s and augmented in

VAT of only class I/II obese patients. In addition, PPARγ1 was positively correlated with

BMI and AC in SAT and inversely correlated in VAT (only BMI). Nevertheless, PPARγ

expression in CS is difficult to predict, as to date there is only one report in SAT of

untreated Cushing’s patients that showed a decreased PPARγ2/PPARγ1ratio, in agreement

with our data (38).

Although 11β-HSD1 mRNA expression was positively correlated with BMI and AC

both in SAT and VAT of the whole group, as shown in other studies (16-18,34,39), it did

not correlate with systemic cortisol. Salivary cortisol levels were increased in Cushing’s

syndrome, but were not associated with either 11β-HSD1 or GRα expressions. The lack of

association between 11β-HSD1 and SF was also observed in the other groups individually

or altogether, suggesting that its expression in whole adipose tissue is not regulated by

(37)

We also observed a lack of correlation between SF and PPARγ mRNA expression

(except for PPARγ1 in obese class III). However, 11β-HSD1 was positively correlated

with PPARγ1 in the whole group in SAT and in Cushing’s patients in VAT, and inversely

correlated with PPARγ2 in the whole group in SAT. Although there are no reports to date

on correlations between these genes and Cushing’s syndrome, indirect evidences point to

regulation of PPARγ expression by tissue levels of cortisol generated in an autocrine

manner. Treatment with the PPARγ agonist rosiglitazone during 8 weeks reduced 11β

-HSD1 expression and activity in subcutaneous fat of male volunteers with impaired

glucose tolerance (25). This was also observed in patients with type 2 diabetes after a

12-week treatment period, but not on a short-term period (5 12-weeks) in healthy men (40).

Moreover, in this same study, Wake DJ et al. found no reduction in adipose 11β-HSD1

activity with glucocorticoid blockade with RU486 and metyrapone alone, but a significant

reduction when rosiglitazone was added (results were limited to SAT). In addition,

experiments in rats showed that metabolic response to rosiglitazone and reduction in 11β

-HSD1 expression in white adipose tissue is not influenced by adrenalectomy (41).

Therefore, taken altogether, it is tempting to assume that it is the intra-adipocyte

glucocorticoid concentration that regulates PPARγ expression, not its serum levels.

GRα mRNA expression in VAT also showed a strong and positive correlation with

11β-HSD1 in the whole group and in obese and Cushing’s groups separately, strengthen

the theory that co-expression of these two genes may amplify glucocorticoid action locally

(2). Additionally, the inverse correlation of GRα mRNA expression with BMI and AC in

SAT is in agreement with Zoi et al (32). However, they observed an inverse correlation of

GRα mRNA expression in omental depots with BMI and visceral adiposity (32). Besides,

(38)

ARTIGO 1

27 compensatory downregulation to increased 11β-HSD1. On the other hand, GRα mRNA

expression in VAT of Cushing’s and obese subjects did not undergo downregulation,

despite the 11β-HSD1 increment in obese. Our results with the obese patients are in

keeping with a previous study (42) that also demonstrated a significant decrease in GRα

mRNA levels in SAT, whereas this phenomenon was not observed in the visceral adipose

compartment. Although 11β-HSD1 expression was not evaluated, the work of

Boullu-Ciocca (42) suggests that the downregulation of GRα gene in subcutaneous compartments

of obese patients is a consequence of local hypercortisolism due to 11β-HSD1

overexpression, as observed in our study. The absence of this protective mechanism in

VAT could contribute to obesity related metabolic complications. As for Cushing’s

syndrome, this is the first report to evaluate GRα expression in adipose tissue. Chronic

hypercortisolism in vivo seems to result in downregulation of GRα gene expression in both SAT and VAT. Indeed, health volunteers treated for one week with prednisolone had a

50% decrease both in GR protein and mRNA levels in subcutaneous abdominal biopsies

(43).

It has been recognized that large abdominal adipose depots are closely linked to

cardiovascular complications. However, some evidences suggest that 11β-HSD1 may not

hold a good relationship with body composition in VAT (19,33). Indeed, we found that the

best predictors of BMI and AC in SAT, but not in VAT, were respectively 11β-HSD1 and

GRα when only these two genes are considered, and PPARγ2 when all four genes are

analyzed. Also, biopsying subcutaneous depots is a much easier procedure, so that these

observations will facilitate methodology of further studies.

11β-HSD1 is now emerging as a key component in homeostatic adaptation, rather than

the cause of visceral obesity or metabolic syndrome. Recent studies suggest that the

(39)

whole-body rates of cortisol generated by 11β-HSD1 (44). Moreover, 11β-HSD1 undergoes

downregulation in the adipose tissue of high-fat fed mice (45). Accordingly, the lack of

11β-HSD1 increase in Cushing’s syndrome may suggest a protective mechanism against

the metabolic complications. Indeed, when the opposite occurs, e.g., weight loss in simple

obesity, 11β-HSD1 undergoes upregulation (46), although this is not a universal finding

(18). Thus, there are several evidences suggesting that 11β-HSD1 adjusts local cortisol

concentration independently of its circulating levels.

In summary, 11β-HSD1 gene expression is downregulated in Cushing’s syndrome and

is up-regulated in obesity. In addition, GRα and PPARγ2 mRNA levels are downregulated,

respectively in SAT and in SAT and VAT of Cushing’s patients. The expected

upregulation of 11β-HSD1 and PPARγ gene expressions in VAT of Cushing’s patients was

not observed. Finally, based on the evidences that 11β-HSD1 mRNA expression is closely

coupled to its activity, autocrine cortisol production, but not its serum levels, seems to play

(40)

ARTIGO 1

29 ACKNOWLEDGEMENTS

We are grateful to our colleagues, Viviane Chaves, Martha Huayllas, Flávia Amanda

Barbosa and Marcos Neres for referring patients with Cushing´s syndrome. We thank

Lilian Hayashi, Sâmia Cavassani and Kelly de Oliveira for measurement of salivary

cortisol and for technical support.

This study was supported in part by a grant from Fundação de Amparo a Pesquisa do

(41)

REFERENCES

1. Lonn L, Kivist H, Ernest I, Sjostrom L: Changes in body composition and adipose tissue distribution after treatment of women with Cushing’s syndrome. Metabolism 43:1517-1522, 1994

2. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM: 11 -Hydroxysteroid dehydrogenase type 1: A tissue specific

regulator of glucocorticoid response. Endocr Rev 25:831-866, 2004

3. Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P: Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 67:1122-1128, 1988

4. Bujalska IJ, Kumar S, Hewison M, Stewart PM: A switch in the dehydrogenase to reductase activity of 11β-hydroxysteroid dehydrogenase type 1 upon differentiation of

human omental adipose stromal cells. J Clin Endocrinol Metab 87:1205-1210, 2002

5. Bujalska IJ, Kumar S, Stewart PM: Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 349:1210-1213, 1997

6. Tontonoz P, Hu E, Spielgelman BM: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid activated transcription factor. Cell 79:1147-1156, 1994

7. Hu E, Tontonoz P, Spiegelman BM: Transdifferantiation of myoblasts by adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA 92:9856-9860, 1995

(42)

ARTIGO 1

31

9. Sample RK, Chatterjee VKK, O’Rahilly S: PPARγ and human metabolic disease. J

Clin Invest 116:581-589, 2006

10. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, O’Rahilly S: Activators of PPARγ have

depot-specific effects on human preadipocyte differentiation. J Clin Invest 100:3149-3153, 1997

11. Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK: A

dominant negative peroxisome proliferator-activated receptorγ (PPARγ) mutant is a

constitutive repressor and inhibits PPARγ-mediated adipogenesis. J Biol Chem 275:5754-5759, 2000

12. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM: Transcriptional regulation of adipogenesis. Genes Dev 14:1293-1307, 2000

13. Masuzaki H, Paterson JM, Shinyama H, Morton NM, Mullins JJ, Seckl JR: A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166-2170, 2001

14. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C, Walker BR, Flier JS, Mullins JJ, Seckl JR: Novel adipose tissue-mediated resistance to diet-induced

visceral obesity in 11β-hydroxysteroid dehydrogenase type 1 deficient mice. Diabetes

53:931-938, 2004

15. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M: Expression of the mRNA coding for 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese

patients: an in situ hybridization study. J Clin Endocrinol Metab 87:2701-2705, 2001

16. Wake DJ, Rask E, Livingstone, Sodeberg S, Olsson Tommy, Walker BR: Local and systemic impact of transcriptional up-regulation of 11β-hydroxysteroid dehydrogenase

(43)

17. Lindsay RS, Wake DJ, Nair S, Bunt J, Livingstone DE, Permana PA, Tataranni PA, Walker BR: Subcutaneous adipose 11β-hydroxysteroid dehydrogenase type 1 activity and

messenger ribonucleic acid levels are associated with adiposity and insulinemia in Pima

indians and caucasians. J Clin Endocrinol Metab 88:2738-2744, 2003

18. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Heintze U, Janke J, Luft FC, Sharma AM: Regulation of 11β-HSD genes in human adipose tissue: influence of central

obesity and weight loss. Obes Res 12:9-17, 2004

19. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM: Expression of 11β -hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J

Clin Endocrinol Metab 87:5630-5635, 2002

20. Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, Labate AM, Barbara L: The hypothalamic pituitary adrenal axis in obese women with different

patterns of body fat distribution. J Clin Endocrinol Metab 77:341-346, 1993

21. Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH: Association of 24h-cortisol production rates, cortisol binding globulin, and plasma free cortisol levels

with body composition, leptin levels, and aging in adult men women. J Clin Endocrinol Metab 89:281-287, 2004

22. Larsen TM, Toubro S, Astrup A: PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat

Metab Disord 27:147-161, 2003

23. Berger J, Tanen M, Elbrecht A, Hermanoswisk-Vosatika A, Moller DE, Wright SD, Thieringer R: Peroxisome proliferator-activated receptor ligands inhibit adipocyte 11β

(44)

ARTIGO 1

33

24. Laplante M, Sell H, Macnaul KL, Richard D, Berger JP, Deshailes Y: PPAR activation mediates adipose depot-specific effects on gene expression and lipoprotein

lipase activity. Diabetes 52:291-299, 2003

25. Mai K, Andres J, Bobbert T, Maser G, Mohlig M, Bahr V, Pffeifer AFH, Spranger J, Diederic S: Rosiglitazone decreases 11β-hydroxysteroid dehydrogenase type 1 in

subcutaneous adipose tissue. Clin Endocrinol 67:419-425, 2007

26. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS: Peroxisome proliferator-activated receptor gene expression in human adipose

tissues. J Clin Invest 99:2416-2422, 1997

27. Giust V, Verdumo C, Suter M, Gaillard RC, Burckhardt P, Pralong F: Expression of peroxisome proliferator-activated receptor-γ1 and peroxisome proliferator-activated

receptor-γ2 in visceral and adipose tissue of obese women. Diabetes 52:1673-1676, 2003

28. Sewter C, Blows F, Considine R, Vidal-Puig A, O’Railly S: Differential effects of adiposity on peroxisome proliferator-activated receptor γ1 and γ2 messenger ribonucleic

acid expression in human adipocytes. J Clin Endocrinol Metab 87:4203-4207, 2002

29. Lee M-J, Fried SK, Mundt SS, Wang Y, Sullivan S, Stefanni A, Daugherty BL, Hermanowski-Vosatka A: Depot specific regulation of the conversion of cortisone to

cortisol in human adipose tissue [article online], 2008. Available from

http://www.nature.com/oby/journal/vaop/ncurrent/abs/oby2008207a.html;jsessionid=BBA

A28210C59C51B4207700F6E77190F. Acessed on 29 Apr 2008

30. Vieira JGH, Noguti KO, HidaI JT, Russo EMK, Maciel RMB: Assay of salivary cortisol as a method to evaluate its free fraction in serum (port). Arq Bras Endocrinol

Metab 28:8-10, 1984

(45)

32. Zoi M, Jensen MD, Dumesic DA, Chapman KE, Seckl JR, Walker BR, Morton NM: Omental 11β-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of

obesity. Obesity 15:1155-1163, 2007

33. Goedeck JH, Wake DJ, Levitt NS, Lambert EV, Collins MR, Morton NM, Seckl JR, Walker BR: Glucocorticoid metabolism within superficial rather than visceral adipose

tissues is associated with features of the metabolic syndrome in South African women.

Clin Endocrinol 65:81-87, 2006

34. Mariniello B, Ronconi V, Rilli S, Bernante P, Boscoro M, Mantero F, Giachetti G: Adipose tissue 11β-hydroxysteroid dehydrogenase type 1 expression in obesity and

Cushing’s syndrome. Eur J Endocrinol 155:435-441, 2006

35. Bujalska IJ, Kumar S, Hewison M, Stewart PM: Differentiation of adipose stromal cells: the role of glucocorticoids and 11β-hydroxysteroid dehydrogenase. Endocrinology 140:3188-3196, 1999

36. Yanase T, Yashiro T, Takitani K, Kato S, Taniguchi S, Takayanagi R, Nawata H: Differential expression of PPARγ1 and γ2 isoforms in human adipose tissue. Biochem Biophys Res Commun 233:320-324, 1997

37. Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M, Vidal H: Tissue distribution and quantification of the expression of mRNAs of

peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no

alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319-1327, 1997

38. Bogazzi F, Ultimieri F, Raggi F, Russo D, Manetti F, Cosci C, Sardella C, Costa A, Santini F, Locci T, Bartalena L, Martino E. Abnormal expression of PPAR gamma

isoforms in the subcutaneous adipose tissue of patients with Cushing Disease. Clin

(46)

ARTIGO 1

35

39. Kannisto K, Pietilainen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A, Iki-Jarvinen H: Overexpression of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue

is associated with acquired obesity and features of insulin resistance: studies in young adult

twins. J Clin Endocrinol Metab 89:4414-4421, 2004

40. Wake DJ, Stimson RH, Tan GD, Homer NZM, Andrew R, Karp F, Walker BR: Effects of peroxisome proliferator-activated receptors-α and γ agonist on 11β

-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in man. J Clin

Endocrinol Metab 92:1848-1866, 2007

41. Berthiaume M, Sell H, Landode J, Gelinas Y, Tchernof A, Richard D, Deshaies Y: Actions of PPARγ agonism on adipose tissue remodeling, insulin sensitivity, and lipemia

in the absence of glucocorticoids. Am J Physiol Regul Integr Comp Physiol 287:1116-1123, 2004

42. Boullu-Ciocca S, Paulmyer-Lacroix O, Fina F, Ouafik LH, Alessi MC, Oliver C, Grino M: Expression of mRNAs coding for glucocorticoid receptor isoforms in obesity.

Obes Res 11:925-928, 2003

43. Bronnegar M, Reynisdottir S, Marcus C, Stierna P, Arner P: Effect of glucocorticosteroids treatment on glucocorticoid receptor in human adipocyte. J Clin

Endocrinol Metab 80:3608-3612, 1995

44. Basu R, Singh R, Basu A, Johnson CM, Rizza RA: Effect of nutrient ingestion on total-body and splanchnic cortisol production in humans. Diabetes 55:667-674, 2006

45. Walker BR: Extra-adrenal regeneration of glucorticoids by 11β-hydroxysteroid dehydrogenase type 1: physiological regulator and pharmacological target for energy

(47)

46. Tomlinson JW, Moore JS, Clark PMS, Holder G, Shakespeare L, Stewart PM: Weight loss increases 11β-hydroxysteroid dehydrogenase type 1 expression in human

(48)

3. Artigo 2

Adipose Tissue 11β-Hydroxysteroid Dehydrogenase Type 1 in Obesity and in

Cushing’s Syndrome.

Espíndola-Antunes D, Kater CE.

Referências

Documentos relacionados

O coeficiente de correlação de Pearson foi utilizado para verificar a associação entre os resultados obtidos e a experiência dos atletas anos como jogador de HP em cada uma

Transcripts for the GC receptor (GR) and 11 -Hydroxysteroid dehydrogenase (11 HSD) type I, the enzyme that catalyzes the conversion of cortisone to its active metabolite

A sensibilidade da ressonância magnética na detecção de sinovite e erosões é maior na ressonância magnética que na ecografia, porém ambos os métodos têm

Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1

This leads normal cells to respond to p53 reactivators with cell cycle arrest (cytostatic effect), instead of cell death (cytotoxic effect) (Carvajal et al., 2005; Rao et al.,

Assim, neste trabalho pretende-se desenvolver uma modelagem do sistema CRM da empresa RadioPro Sistemas LTDA, visando a estabelecer um melhor relacionamento dos clientes no que

To achieve this, there was an attempt to create an editor, that would allow the user to create content while using different interaction paradigms (voice commands, touch inputs)

Como se pode notar, os autores da revista Escola trouxeram várias sugestões de problemas e questões de Aritmética e Geometria para que os professores do Ensino