• Nenhum resultado encontrado

Lie derivatives of almost contact structure and almost paracontact structure with respect to...

N/A
N/A
Protected

Academic year: 2017

Share "Lie derivatives of almost contact structure and almost paracontact structure with respect to..."

Copied!
7
0
0

Texto

(1)

http://dx.doi.org/10.20852/ntmsci.2016115657

Lie derivatives of almost contact structure and almost

paracontact structure with respect to

X

C

and

X

V

on

tangent bundle

T

(

M

)

Hasim Cayir and Gokhan Koseoglu

Department of Mathematics, Giresun University, Giresun, Turkey

Received: 13 November 2015, Revised: 10 December 2015, Accepted: 4 January 2016 Published online: 31 January 2016.

Abstract: The differential geometry of tangent bundles was studied by several authors, for example: D. E. Blair [1], V. Oproiu [3], A. Salimov [5], Yano and Ishihara [8] and among others. It is well known that differant structures deffined on a manifoldMcan be lifted to the same type of structures on its tangent bundle. Our goal is to study Lie derivatives of almost contact structure and almost paracontact structure with respect toXCandXVon tangent bundleT(M). In addition, this Lie derivatives which obtained shall be studied for some special values.

Keywords: Lie derivative, almost contact structure, almost paracontact structure, tangent bundle.

1 Introduction

LetMbe ann−dimensional differentiable manifold of classC∞and letTp(M)be the tangent space ofMat a pointpof

M.Then the set [8]

T(M) = ∪

p∈MTp(M) (1)

is called the tangent bundle over the manifoldM.For any point ˜pof T(M),the correspondence ˜p→p determines the bundle projectionπ:T(M)→M,thusπ(p˜) =p,whereπ:T(M)→M defines the bundle projection ofT(M)overM. The setπ−1(p)is called the fibre overpMandMthe base space.

Suppose that the base spaceMis covered by a system of coordinate neighbour-hoods{U;xh}

,where(x

h)is a system of

local coordinates defined in the neighbour-hood U of M. The open set π−1(U)T(M) is naturally differentiably homeomorphic to the direct productU×Rn,R

nbeing thendimensional vector space over the real field R,in such a

way that a point ˜p∈Tp(M)(p∈U)is represented by an ordered pair(P,X)of the point p∈U,and a vectorX ∈R

n

,whose components are given by the cartesian coordinates(yh)of ˜pin the tangent spaceTp(M)with respect to the natural

base{∂h},where∂h= ∂

∂xh. Denoting by(x

h)the coordinates of p=π(p˜)inU and establishing the correspondence

(xh

,y

h)p˜π−1(U)

,we can introduce a system of local coordinates(x

h,yh)in the open setπ−1(U)T(M)

.Here we cal(xh,y

h)the coordinates inπ−1(U)induced from(xh)or simply, the induced coordinates inπ−1(U)

.

We denote by ℑr

s(M) the set of all tensor fields of classC∞and of type(r,s)inM.We now putℑ(M) = ∞ ∑

r,s=0

ℑr s(M), which is the set of all tensor fields inM.Similarly, we denote byℑr

s(T(M))andℑ(T(M))respectively the corresponding

(2)

2 Vertical lifts

If f is a function inM,we write fvfor the function inT(M)obtained by forming the composition ofπ:T(M)→Mand f:M→R,so that

fv=f oπ. (2)

Thus, if a point ˜p∈π−1(U)has induced coordinates(xh

,y

h)

,then

fv(p˜) =fv(x,y) =f oπ(p˜) =f(p) =f(x). (3)

Thus, the value offv(p˜)is constant along each fibreTp(M)and equal to the value f(p). We call fvthe vertical lift of the

functionf [8].

Let ˜X∈ℑ1

0(T(M))be such that ˜X fv=0 for all f ∈ℑ00(M).Then we say that ˜X is a vertical vector field. Let

[

˜ Xh

˜ Xh¯

]

be

components of ˜X with respect to the induced coordinates. Then ˜X is vertical if and only if its components inπ−1(U)

satisfy [

˜ Xh

˜ Xh¯

]

=

[

0 Xh¯

]

. (4)

Suppose thatX∈ℑ1

0(M),so that is a vector field inM.We define a vector fieldX

vinT(M)by

Xv(ι ω) = (ωX)v (5)

ωbeing an arbitrary 1−form inM.We calXvthe vertical lift ofX[8].

Let ˜ω ∈ℑ0

1(T(M))be such that ˜ω(X)v=0 for allX ∈ℑ10(M).Then we say that ˜ω is a vertical 1−form inT(M).We define the vertical liftωvof the 1formω by

ωv= (ω

i)v(dxi)v (6)

in each open setπ−1(U)

,where(U;x

h)is coordinate neighbourhood inMandωis given byω=ω

idxiinU. The vertical

liftωvofωwith lokal expressionω=ω

idxi has components of the form

ωv:(ωi

,0) (7)

with respect to the induced coordinates inT(M).

Vertical lifts to a unique algebraic isomorphism of the tensor algebraℑ(M)into the tensor algebraℑ(T(M))with respect to constant coefficients by the conditions

(P⊗Q)V =PVQV

, (P+R)

V=PV+RV (8)

P,QandRbeing arbitrary elements ofℑ(M). The vertical liftsF

V of an elementF1

1(M)with lokal componentsFih

has components of the form [8]

FV:

(

0 0 Fih0

)

(3)

Vertical lift has the following formulas ([4],[8]):

(f X)v=fvXv,I

vXv=

0,η

v(Xv) =

0 (10)

(fη)v=fvηv

,[X

v,Yv] =0

vXv=0

Xvfv=0,X

vfv=0

hold good, where f∈ℑ0

0(Mn),X,Y∈ℑ

1

0(Mn),η∈ℑ

0

1(Mn),ϕ∈ℑ

1

1(Mn),I=idMn.

3 Complete lifts

Iff is a function inM,we write f

cfor the function inT(M)defined by

fc=ι(d f)

and callfcthe comple lift of the function f.The complete lift f

cof a function f has the lokal expression

fc=yi∂if =∂f (11)

with respect to the induced coordinates inT(M), where∂f denotesyi∂if.

Suppose thatX∈ℑ1

0(M). then we define a vector fieldXcinT(M)by

Xcfc= (X f)c

, (12)

f being an arbitrary function inM and callXcthe complete lift ofX inT(M)([2],[8])

.The complete liftX

cofX with

componentsxhinMhas components

Xc=

(

Xh ∂Xh

)

(13)

with respect to the induced coordinates inT(M).

Suppose thatω∈ℑ0

1(M),then a 1−formω

cinT(M)defined by

ωc(Xc) = (ωX)c

. (14)

X being an arbitrary vector field inM.We callωcthe complete lift ofω.The complete liftωcofω with componentsω i

inMhas components of the form

ωc:(∂ ω

i,ωi) (15)

with respect to the induced coordinates inT(M)[2].

The complete lifts to a unique algebra isomorphism of the tensor algebraℑ(M)into the tensor algebraℑ(T(M))with respect to constant coefficients, is given by the conditions

(P⊗Q)C=PC⊗QV+PV⊗QC, (P+R)

C=PC+RC

(4)

whereP,QandRbeing arbitrary elements ofℑ(M). The complete liftsF

Cof an elementF1

1(M)with lokal components

Fh

i has components of the form

FC:

(

Fih 0 ∂FihFih

)

. (17)

In addition, we know that the complete lifts are defined by ([4],[8]):

(f X)c=fcXv+fvXc= (X f)c

, (18)

Xcfv= (X f)v,η

v(xc) = (η(x))v

,

Xvfc= (X f)v,ϕ

vXc= (ϕX)v

, ϕcXv= (ϕX)v,(ϕX)

c=ϕcXc

, ηv(Xc) = (η(X))c

c(Xv) = (η(X))v

,

[Xv,Yc] = [X,Y]v,I

c=I,IvXc=Xv

,[X

c,Yc] = [X,Y]c

.

Let M be ann−dimensional diferentiable manifold. Differantial transformationD=LX is called Lie derivation with

respect to vector fieldX∈ℑ1 0(M)if

LXf =X f,∀f ∈ℑ

0

0(M), (19)

LXY = [X,Y],∀X,Y ∈ℑ

1 0(M).

[X,Y]is called by Lie bracked. The Lie derivativeLXFof a tensor fieldFof type(1

,1)with respect to a vector fieldXis defined by ([8])

(LXF)Y= [X,FY]−F[X,Y].

Proposition 1.For any X∈ℑ1

0(Mn), f ∈ℑ00(Mn)andLX is the Lie derivation with respect to vector field X [8]

(i) LXvfv=0, (ii) LXvfc= (LXf)v, (iii) LXcfv= (LXf)v, (iv) LXcfc= (LXf)c.

Proposition 2.For any X,Y ∈ℑ1

0(Mn)andLXis the Lie derivation with respect to vector field X [8]

(i) LXvYv=0, (ii) LXvYc= (∇XY)v, (iii) LXcYv= (∇XY)v, (iv) LXcYc= (∇XY)c.

4 Main results

Definition 1. Let an n−dimensional differentiable manifold M be endowed with a tensor fieldϕof type(1,1),a vector fieldξ, a1−formη, I the identity and let them satisfy

ϕ2=I+ηξ

(5)

Then(ϕ,ξ,η)define almost contact structure onM([4],[7],[8]). From (20), we get on taking complete and vertical lifts

(ϕc)2=I+ηvξc+ηcξv

, (21)

ϕcξv=0

cξc=0

vc=0

, ηcc=0

v(ξv) =0

v(ξc) =1

, ηc(ξv) =

1,η

c(ξc) =

0.

We now define a(1,1)tensor fieldJonℑ(M)by

J=ϕcξvηv+ξcηc

. (22)

Then it is easy to show thatJ2Xv=−XvandJ2Xc=−Xc,which give thatJis an almost contact structure onℑ(M).We get from (22)

JXv= (ϕX)v+ (η(X))vξc

,

JXc= (ϕX)c−(η(X))vξv+ (η(X))cξc

for anyX∈ℑ1 0(M)[4].

Theorem 1. ForLXthe operator Lie derivation with respect to X , J1

1(ℑ(M))defined by (22) andη(Y) =0,we have (i) (LXvJ)Yv=0,

(ii) (LXvJ)Yc= ((LXϕ)Y)v+ ((LXη)Y)vξc, (iii) (LXcJ)Yv= ((LXϕ)Y)v+ ((LXη)Y)vξc, (iv) (Lc

XcJ)Yc= ((LXϕ)Y)c−((LXη)Y)vξv+ ((LXη)Y)cξc, whereX,Y ∈ℑ1

0(M),a tensor fieldϕ∈ℑ

1

1(M),a vector fieldξ and a 1−formη∈ℑ

0 1(M).

Proof.ForJ=ϕcξvηv+ξcηcandη(Y) =0, we get

(i) (LXvJ)Yv=LXv(ϕc−ξv⊗ηv+ξc⊗ηc)Yv−(ϕc−ξv⊗ηv+ξc⊗ηc)LXvYv

=LXv(ϕY)v−LXv(ηv(Y)v)ξv+LXv(η(Y))vξc

=0,

(ii) (LXvJ)Yc=LXv(ϕc−ξv⊗ηv+ξc⊗ηc)Yc−(ϕc−ξv⊗ηv+ξc⊗ηc)LXvYc

=LXvϕcYc−LXv(ηY)vξv+LXv(η(Y))cξc−ϕcLXvYc

+ηv(L

XY)vξv−(η(LXY))vξc

= (LXvϕc)Yc+ϕc(LXvYc)−ϕcLXvYc−(LX(η(Y)))vξc+ ((LXη)Y)vξc

= (LXϕ)Y)v+ ((L

Xη)Y)vξc,

(iii) (LXcJ)Yv=LXc(ϕc−ξv⊗ηv+ξc⊗ηc)Yv−(ϕc−ξv⊗ηv+ξc⊗ηc)LXcYv

=LXcϕcYv−LXc(ηv(Y)v)ξv+LXc(η(Y))vξc−ϕcLXcYv

+ηv(L

XY)vξv−(η(LXY))vξc

= (LXcϕc)Yv+ϕc(LXcYv)−ϕcLXcYv−(LX(η(Y)))vξc+ (LXη)Y)vξc

= (LXϕ)Y)v+ ((L

Xη)Y)vξc,

(iv) (LXcJ)Yc=LXc(ϕc−ξv⊗ηv+ξc⊗ηc)Yc−(ϕc−ξv⊗ηv+ξc⊗ηc)LXcYc

=LXcϕcYc−LXc((ηY)v)ξv+LXc(η(Y))cξc−ϕcLXcYc

+ (η(LXY))vξv(η(L XY))cξc

(6)

−(LX(η(Y)))cξc+ ((L

Xη)Y)cξc

= (LXϕ)Y)c((L

Xη)Y)vξv+ ((LXη)Y)cξc.

Corollary 1.If we put Y=ξ, i.e.η(ξ) =1andξ has the conditions of (20),then we get different results

(i) (LXvJ)ξv= (LXξ)v,

(ii) (LXvJ)ξc= ((LXϕ)ξ)v+ (((LXη))ξ)vξc,

(iii) (LXcJ)ξv= ((LXϕ)ξ)v+ (LXξ)c+ ((LXη)ξ)vξc,

(iv) (LXcJ)ξc= (LXϕ)ξ)c−(LXξ)v−((LXη)ξ)vξv+ ((LXη)ξ)cξc.

Definition 2. Let an n−dimensional differentiable manifold M be endowed with a tensor fieldϕ of type(1,1), a vector fieldξ, a1−formη, I the identity and let them satisfy

ϕ2=Iηξ

, ϕ(ξ) =0, ηoϕ=0, η(ξ) =1. (23)

Then(ϕ,ξ,η)define almost paracontact structure onM([4],[7]). From (23), we get on taking complete and vertical lifts

(ϕc)2=Iηvξcηcξv

, (24)

ϕcξv=0

cξc=0

vc=0

, ηcc=0

v(ξv) =0

v(ξc) =1

, ηc(ξv) =

1,ηc(ξc) =

0.

We now define a(1,1)tensor fieldJeonℑ(M)by

e

J=ϕcξvηvξcηc

. (25)

Then it is easy to show thatJe2Xv=XvandJe2Xc=Xc

,which give thatJeis an almost product structure onℑ(M).We get from (25) for anyX∈ℑ1

0(M).

e

JXv= (ϕX)v−(η(X))vξc

,

e

JXc= (ϕX)v−(η(X))vξv(η(X))cξc

.

Theorem 2. ForLXthe operator Lie derivation with respect to X ,Je∈ℑ1

1(ℑ(M))defined by (25)andη(Y) =0, we have (i) (LXvJe)Yv=0,

(ii) (LXvJe)Yc= ((LXϕ)Y)v−((LXη)Y)vξc, (iii) (LXcJe)Yv= ((LXϕ)Y)v−((LXη)Y)vξc,

(iv) (LXcJe)Yc= ((LXϕ)Y)c−((LXη)Y)vξv−((LXη)Y)cξc,

whereX,Y ∈ℑ1

0(M),a tensor fieldϕ∈ℑ

1

1(M),a vector fieldξ∈ℑ

1

0(M)and a 1−formη∈ℑ01(M).

Proof.ForJe=ϕcξvηvξcηcandη(Y) =0

,we get

(i) (LXvJe)Yv=LXv(ϕc−ξv⊗ηv−ξc⊗ηc)Yv−(ϕc−ξv⊗ηv−ξc⊗ηc)LXvYv

=LXv(ϕY)v−LXv(ηv(Y)v)ξv−LXv(η(Y))vξc

=0,

(ii) (LXvJe)Yc=LXv(ϕc−ξv⊗ηv−ξc⊗ηc)Yc−(ϕc−ξv⊗ηv−ξc⊗ηc)LXvYc

(7)

+ηv(L

XY)vξv+ (η(LXY))vξc

= (LXvϕc)Yc+ϕc(LXvYc)−ϕc(LXY)v+ (LX(η(Y)))vξc−((LXη)Y)vξc

= (LXϕ)Y)v((L

Xη)Y)vξc,

(iii) (LXcJe)Yv=LXc(ϕc−ξv⊗ηv−ξc⊗ηc)Yv−(ϕc−ξv⊗ηv−ξc⊗ηc)LXcYv

=LXcϕcYv−LXc(ηv(Y)v)ξv−LXc(η(Y))vξc−ϕcLXcYv

+ηv(L

XY)vξv+ (η(LXY))vξc

= (LXcϕc)Yv+ϕc(LXcYv)−ϕcLXcYv+ (LX(η(Y)))vξc−(LXη)Y)vξc

= (LXϕ)Y)v((L

Xη)Y)vξc,

(iv) (LXcJe)Yc=LXc(ϕc−ξv⊗ηv−ξc⊗ηc)Yc−(ϕc−ξv⊗ηv−ξc⊗ηc)LXcYc

=LXcϕcYc−LXc((ηY)v)ξv−LXc(η(Y))cξc−ϕcLXcYc

+ (η(LXY))vξv+ (η(L XY))cξc

= (LXcϕc)Yc+ϕc(LXcYc)−ϕcLXcYc+ (LX(η(Y)))vξv−((LXη)Y)vξv

+ (LX(η(Y)))cξc((L

Xη)Y)cξc

= (LXϕ)Y)c((L

Xη)Y)vξv−((LXη)Y)cξc.

Corollary 2.If we put Y=ξ, i.e.η(ξ) =1andξ has the conditions of (23),then we have

(i) (LXvJe)ξv=−(LXξ)v,

(ii) (LXvJe)ξc= ((LXϕ)ξ)v−(((LXη))ξ)vξc,

(iii) (LXcJe)ξv= ((LXϕ)ξ)v−(LXξ)c−((LXη)ξ)vξc,

(iv) (LXcJe)ξc= (LXϕ)ξ)c−(LXξ)v−((LXη)ξ)vξv−((LXη)ξ)cξc.

References

[1] D.E.Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math, 509, Springer Verlag, New York, (1976). [2] S.Das, Lovejoy, Fiberings on almost r-contact manifolds, Publicationes Mathematicae, Debrecen, Hungary 43 (1993) 161-167. [3] V.Oproiu, Some remarkable structures and connexions, defined on the tangent bundle, Rendiconti di Matematica 3 (1973) 6 VI. [4] T.Omran, A.Sharffuddin, S.I.Husain, Lift of Structures on Manifolds, Publications de 1’Instıtut Mathematıqe, Nouvelle serie, 360

(50) (1984) 93 – 97.

[5] A.A.Salimov, Tensor Operators and Their applications, Nova Science Publ., New York (2013).

[6] S.Sasaki, On The Differantial Geometry of Tangent Boundles of Riemannian Manifolds, Tohoku Math. J., no.10(1958) 338-358. [7] A.A.Salimov, H.C¸ ayır, Some Notes On Almost Paracontact Structures, Comptes Rendus de 1’Acedemie Bulgare Des Sciences,

tome 66 (3) (2013) 331-338.

Referências

Documentos relacionados

We propose an ecologically-based environmental risk aSSf'ssment ( ERA ) model that follows the 1 998 USEPA guidelines, focu sing on potential adverse effect s to

Se essa manifestação tem, para a medicina, o sentido de um “acontecimento”, de um “acidente corporal”, ele também constitui um “acontecimento psíquico” (DEL VOLGO, 1998,

Assim sendo, a partir do estudo das legislações dos países integrantes do Mercosul, da revisão bibliográfica e análise jurisprudencial, constatar-se-á na segunad parte deste

Nessa esteira, discutem-se os aspectos relacionados à abordagem conceitual, à expansão da jurisdição social dos profissionais da saúde sobre uma parcela crescente

de 1976.. 13.303/2016, que estabelece o regime jurídico das empresas estatais brasileiras, independentemente da natureza da atividade exercida. A pesquisa evidenciou que o

This algorithm follows a continuation approach to tessellate implicit surfaces, so that it applies symbolic factorization to decompose the function expression into symbolic

Utilizando como estrategia el seguimiento de egresados, el presente trabajo pretende evaluar el ejercicio profesional, grado de desempleo y volumen de trabajo de egresados de

Por acreditarmos que esse processo possa ser construído de forma lúdica, flexível e eficaz para a clientela nas séries iniciais, consideramos os jogos digitais como