• Nenhum resultado encontrado

Comportamento assintético de sistemas de Bresse com dissipação friccional e dissipação na fronteira

N/A
N/A
Protected

Academic year: 2017

Share "Comportamento assintético de sistemas de Bresse com dissipação friccional e dissipação na fronteira"

Copied!
107
0
0

Texto

(1)

❆▲❉❖ ❍❊◆❘■◗❯❊ ❉❊ ❙❖❯❩❆ ▼❊❉❊■❘❖❙

❈❖▼P❖❘❚❆▼❊◆❚❖ ❆❙❙■◆❚Ó❚■❈❖ ❉❊ ❙■❙❚❊▼❆❙ ❉❊ ❇❘❊❙❙❊ ❈❖▼ ❉■❙❙■P❆➬➹❖ ❋❘■❈❈■❖◆❆▲ ❊ ❉■❙❙■P❆➬➹❖ ◆❆

❋❘❖◆❚❊■❘❆

❉✐ss❡rt❛çã♦ ❛♣r❡s❡♥t❛❞❛ à ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❝♦♠♦ ♣❛rt❡ ❞❛s ❡①✐✲ ❣ê♥❝✐❛s ❞♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛✱ ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ▼❛❣✐st❡r ❙❝✐❡♥t✐❛❡✳

❱■➬❖❙❆

(2)

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

T

Medeiros, Aldo Henrique de Souza,

1992-M488c

2016

Comportamento assintótico de sistemas de Bresse com

dissipação friccional e dissipação na fronteira / Aldo Henrique

de Souza Medeiros. – Viçosa, MG, 2016.

viii, 97f. : il. (algumas color.) ; 29 cm.

Orientador: Margareth da Silva Alves.

Dissertação (mestrado) - Universidade Federal de Viçosa.

Referências bibliográficas: f. 95-97.

1. Matemática aplicada. 2. Equações diferenciais parciais.

3. Análise matemática. 4. Teoria assintótica. I. Universidade

Federal de Viçosa. Departamento de Matemática. Programa de

Pós-graduação em Matemática. II. Título.

(3)

❆▲❉❖ ❍❊◆❘■◗❯❊ ❉❊ ❙❖❯❩❆ ▼❊❉❊■❘❖❙

❈❖▼P❖❘❚❆▼❊◆❚❖ ❆❙❙■◆❚Ó❚■❈❖ ❉❊ ❙■❙❚❊▼❆❙ ❉❊ ❇❘❊❙❙❊ ❈❖▼ ❉■❙❙■P❆➬➹❖ ❋❘■❈❈■❖◆❆▲ ❊ ❉■❙❙■P❆➬➹❖ ◆❆

❋❘❖◆❚❊■❘❆

❉✐ss❡rt❛çã♦ ❛♣r❡s❡♥t❛❞❛ à ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❝♦♠♦ ♣❛rt❡ ❞❛s ❡①✐✲ ❣ê♥❝✐❛s ❞♦ Pr♦❣r❛♠❛ ❞❡ Pós✲●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛✱ ♣❛r❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ▼❛❣✐st❡r ❙❝✐❡♥t✐❛❡✳

❆P❘❖❱❆❉❆✿ ✶✾ ❞❡ ❢❡✈❡r❡✐r♦ ❞❡ ✷✵✶✻✳

❆♥❞❡rs♦♥ ❆❧❜✉q✉❡rq✉❡ ❞❡ ❆r❛✉❥♦

✭❈♦♦r✐❡♥t❛❞♦r✮ ❆♥❞ré ❏✉♥q✉❡✐r❛ ❞❛ ❙✐❧✈❛ ❈♦rrê❛✭❚✐t✉❧❛r ■♥t❡r♥♦✮

❍✉② ❍♦❛♥❣ ◆❣✉②❡♥ ✭❚✐t✉❧❛r ❊①t❡r♥♦✮

(4)

❉❡❞✐❝♦ ❡st❡ tr❛❜❛❧❤♦ ❛♦s ♠❡✉s ♣❛✐s✱ ❆❞ã♦ ❡ ❱❡r❛✳

(5)

❆ ❢é ❡ ❛ r❛③ã♦ ❝♦♥st✐t✉❡♠ ❝♦♠♦ q✉❡ ❛s ❞✉❛s ❛s❛s ♣❡❧❛s q✉❛✐s ♦ ❡s♣ír✐t♦ ❤✉♠❛♥♦ s❡ ❡❧❡✈❛ à ❝♦♥t❡♠♣❧❛çã♦ ❞❛ ✈❡r❞❛❞❡✳

❏♦ã♦ P❛✉❧♦ ■■

(6)

❆❣r❛❞❡❝✐♠❡♥t♦s

❊♠ ♣r✐♠❡✐r♦ ❧✉❣❛r s♦✉ ♠✉✐tíss✐♠♦ ❣r❛t♦ ❛♦s ♠❡✉s ♣❛✐s✱ ❆❞ã♦ ❡ ❱❡r❛✱ ♣❡❧♦ ❡①❡♠♣❧♦✱ ❝❛r✐♥❤♦ ❡ ♠♦t✐✈❛çã♦✱ ✈♦❝ês sã♦ s❡♠ ❞ú✈✐❞❛ ♦s ♠❡✉s ♣r✐♠❡✐r♦s ❡ ❡t❡r♥♦s ♣r♦❢❡ss♦r❡s✱ ❣r❛ç❛s ❛ ✈♦❝ês ❝♦♥s❡❣✉✐ ❝❤❡❣❛r ♦♥❞❡ ❡st♦✉✱ ❡ s❡✐ q✉❡ ♣♦ss♦ ❝♦♥t❛r ❝♦♠ ✈♦❝ês ♣❛r❛ ❝♦♥s❡❣✉✐r ✐r ♠❛✐s ❛❧é♠✳

❆❣r❛❞❡ç♦ à ♠✐♥❤❛ ♦r✐❡♥t❛❞♦r❛✱ ▼❛r❣❛r❡t❤✱ ♣❡❧❛ ♣❛❝✐ê♥❝✐❛✱ ❛♣r❡♥❞✐③❛❞♦ ✈❛❧✐♦s♦✱ ♣❡❧❛s s✉❛s ❝♦rr❡çõ❡s ❡ ✐♥❝❡♥t✐✈♦✳ ❊♥✜♠ ♣❡❧❛ ♣❡ss♦❛ ♠❛r❛✈✐❧❤♦s❛ q✉❡ é✳

❆❣r❛❞❡ç♦ ❛♦s ♠❡✉s ✐r♠ã♦s ❡ ♠❡✉s ❛✈ós✱ ♣❡❧♦ ❝♦♠♣❛♥❤❡✐r✐s♠♦✱ ❢♦rç❛ ❡ ❛❧❡❣r✐❛✳ ❆❣r❛❞❡ç♦ ❞❡ ✉♠❛ ❢♦r♠❛ ❡s♣❡❝✐❛❧ ♠✐♥❤❛ ♥❛♠♦r❛❞❛ q✉❡ s❡♠♣r❡ ❡st❡✈❡ ❛♦ ♠❡✉ ❧❛❞♦ ♠❡ ✐♥❝❡♥t✐✈❛♥❞♦✱ ❞❛♥❞♦ ❛♣♦✐♦✳

❆❣r❛❞❡ç♦ ❛♦s ♠❡✉s ❛♠✐❣♦s ❡ ❝♦❧❡❣❛s ❞❡ ❝✉rs♦ ♣❡❧❛ ❛♠✐③❛❞❡✱ ♠♦♠❡♥t♦s ❞❡ ❞❡s❝♦♥tr❛çã♦ ❡ ❞❡ ❡st✉❞♦s✳ ❱♦❝ês ✜③❡r❛♠ ♣❛rt❡ ❞❛ ♠✐♥❤❛ ❢♦r♠❛çã♦ ❡ ✈ã♦ ❝♦♥t✐♥✉❛r ♣r❡s❡♥t❡s ❡♠ ♠✐♥❤❛ ✈✐❞❛ ❝♦♠ ❝❡rt❡③❛✳

❆♦s ♣r♦❢❡ss♦r❡s ❡ ❢✉♥❝✐♦♥ár✐♦s ❞♦ ❉▼❆✲❯❋❱✱ ♣♦r ❝♦❧❛❜♦r❛r❡♠ ❝♦♠ ❛ ♠✐♥❤❛ ❢♦r♠❛çã♦ ❡ ♣❡❧♦s ❡✜❝✐❡♥t❡s s❡r✈✐ç♦s ♣r❡st❛❞♦s✳

❆❣r❛❞❡ç♦ ❛ t♦❞♦s q✉❡ ❞❡ ❛❧❣✉♠❛ ❢♦r♠❛ ❝♦♥tr✐❜✉ír❛♠ ♣❛r❛ ❛ r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

❋✐♥❛❧♠❡♥t❡✱ ❛❣r❛❞❡ç♦ à ❈❆P❊❙ ♣❡❧♦ ❛♣♦✐♦ ✜♥❛♥❝❡✐r♦ ✐♥❞✐s♣❡♥sá✈❡❧ ♣❛r❛ ❛ r❡❛❧✐③❛çã♦ ❞❡st❡ tr❛❜❛❧❤♦✳

(7)

❙✉♠ár✐♦

❘❡s✉♠♦ ✈✐✐

❆❜str❛❝t ✈✐✐✐

■♥tr♦❞✉çã♦ ✐①

✶ Pr❡❧✐♠✐♥❛r❡s ✶

✶✳✶ ❆♥á❧✐s❡ ❋✉♥❝✐♦♥❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✶✳✷ ❊s♣❛ç♦s ❢✉♥❝✐♦♥❛✐s ❡ ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✸ ❙❡♠✐❣r✉♣♦s ❞❡ ❝❧❛ss❡ C0 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵

✶✳✹ ❊s♣❛ç♦s Lp(0, T;X) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✺ ❉✐str✐❜✉✐çõ❡s ✈❡t♦r✐❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✶✳✻ ❊st❛❜✐❧✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽

✷ ❙✐st❡♠❛ ❞❡ ❇r❡ss❡ ✷✵

✷✳✶ ■♥tr♦❞✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✷ ❊①✐stê♥❝✐❛ ❡ ✉♥✐❝✐❞❛❞❡ ❞❡ s♦❧✉çã♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✷✳✷✳✶ ❈♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ❞♦ t✐♣♦ ❉✐r✐❝❤❧❡t✲❉✐r✐❝❤❧❡t✲❉✐r✐❝❤❧❡t ✷✷ ✷✳✷✳✷ ❈♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ❞♦ t✐♣♦ ❉✐r✐❝❤❧❡t✲◆❡✉♠❛♥♥✲◆❡✉♠❛♥♥ ✸✷

✸ ❊st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❞♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ✸✻ ✸✳✶ ❊st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻ ✸✳✷ ❋❛❧t❛ ❞❡ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✼

✹ ❊st❛❜✐❧✐❞❛❞❡ ♣♦❧✐♥♦♠✐❛❧ ❞♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ✻✸ ✹✳✶ ❊st❛❜✐❧✐❞❛❞❡ ♣♦❧✐♥♦♠✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✸

(8)

✺ ❊st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ♣❛r❛ ✉♠ s✐st❡♠❛ ❇r❡ss❡ ❝♦♠ ❝♦♥tr♦❧❡

♥❛ ❢r♦♥t❡✐r❛ ✼✵

✺✳✶ ❊♥❡r❣✐❛ ❛ss♦❝✐❛❞❛ ❛♦ s✐st❡♠❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✶ ✺✳✷ ❊①✐stê♥❝✐❛ ❡ ✉♥✐❝✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✷ ✺✳✸ ❊st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽✶

❈♦♥s✐❞❡r❛çõ❡s ❋✐♥❛✐s ✽✽

❘❡❢❡rê♥❝✐❛s ❇✐❜❧✐♦❣rá✜❝❛s ✽✾

(9)

❘❡s✉♠♦

▼❊❉❊■❘❖❙✱❆✳ ❍✳ ❙✳✱ ▼✳❙❝✳ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❋❡✈❡r❡✐r♦ ❞❡ ✷✵✶✻✳ ❈♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♥tót✐❝♦ ❞❡ s✐st❡♠❛s ❞❡ ❇r❡ss❡ ❝♦♠ ❞✐ss✐♣❛çã♦ ❢r✐❝❝✐♦♥❛❧ ❡ ❞✐ss✐♣❛çã♦ ♥❛ ❢r♦♥t❡✐r❛✳ ❖r✐❡♥t❛❞♦r❛✿ ▼❛r❣❛r❡t❤ ❞❛ ❙✐❧✈❛ ❆❧✈❡s✳ ❈♦♦r✐❡♥t❛❞♦r✿ ❆♥❞❡rs♦♥ ▲✉✐③ ❞❡ ❆❧❜✉q✉❡rq✉❡ ❆r❛✉❥♦✳

◆❡st❡ tr❛❜❛❧❤♦ ❡st✉❞❛r❡♠♦s ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♥tót✐❝♦ ❞❡ s✐st❡♠❛s ❞✐ss✐♣❛t✐✈♦s ❝♦♠ ❛♣❧✐❝❛çõ❡s à ♠♦❞❡❧❛❣❡♠ ❞❡ ♠❛t❡r✐❛✐s ❡❧ást✐❝♦s✳ ▼❛✐s ❡s♣❡❝✐✜❝❛♠❡♥t❡✱ ❡st✉❞❛✲ s❡ ❛ ❡①✐stê♥❝✐❛✱ ✉♥✐❝✐❞❛❞❡ ❡ ❝♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♥tót✐❝♦ ❞❡ ❞♦✐s s✐st❡♠❛s t✐♣♦✲ ❇r❡ss❡✱ ✉♠ ❝♦♠ ❞✐ss✐♣❛çã♦ ❞❛❞❛ ♣❡❧♦ ❛tr✐t♦ ❡ ♦✉tr♦ ❝♦♠ ❡❢❡✐t♦s ❞✐ss✐♣❛t✐✈♦s ♥❛ ❢r♦♥t❡✐r❛✳ ❖ ♦❜❥❡t✐✈♦ é ❡st❛❜❡❧❡❝❡r ❝♦♥❞✐çõ❡s q✉❡ ❛ss❡❣✉r❡♠ ❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❡ ❛ ♣♦❧✐♥♦♠✐❛❧ ❞♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦✳ P❛r❛ ✐ss♦✱ ✉s❛r❡♠♦s ❛ ❛❜♦r❞❛❣❡♠ ❞❛ t❡♦r✐❛ ❞❡ s❡♠✐❣r✉♣♦s ❞❡ ♦♣❡r❛❞♦r❡s ❧✐♥❡❛r❡s ❞❡ ❝❧❛ss❡ C0✱

♣r♦♣r✐❡❞❛❞❡s ❞♦ ❝♦♥❥✉♥t♦ r❡s♦❧✈❡♥t❡ ❡ ❞♦ ♦♣❡r❛❞♦r r❡s♦❧✈❡♥t❡ ❞♦ ❣❡r❛❞♦r ✐♥✜♥✐t❡s✐♠❛❧ ❞❡ ✉♠ C0✲s❡♠✐❣r✉♣♦ ❡ té❝♥✐❝❛s ♠✉❧t✐♣❧✐❝❛t✐✈❛s✳

(10)

❆❜str❛❝t

▼❊❉❊■❘❖❙ ❆✳ ❍✳ ❙✳✱ ▼✳❙❝✳ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❱✐ç♦s❛✱ ❋❡❜r✉❛r②✱ ✷✵✶✻✳ ❆s②♠♣t♦t✐❝ ❜❡❤❛✈✐♦r ♦❢ ❇r❡ss❡ s②st❡♠s ✇✐t❤ ❢r✐❝t✐♦♥❛❧ ❞✐ss✐♣❛t✐♦♥ ❛♥❞ ❞✐ss✐♣❛t✐♦♥ ♦♥ t❤❡ ❜♦r❞❡r✳ ❆❞✐✈✐s❡r✿ ▼❛r❣❛r❡t❤ ❞❛ ❙✐❧✈❛ ❆❧✈❡s✳ ❈♦✲❆❞✈✐s❡r✿ ❆♥❞❡rs♦♥ ▲✉✐③ ❞❡ ❆❧❜✉q✉❡rq✉❡ ❆r❛✉❥♦✳

■♥ t❤✐s ♣❛♣❡r ✇❡ st✉❞② t❤❡ ❛s②♠♣t♦t✐❝ ❜❡❤❛✈✐♦r ♦❢ ❞✐ss✐♣❛t✐✈❡ s②st❡♠s ✇✐t❤ ❛♣♣❧✐❝❛t✐♦♥s t♦ ♠♦❞❡❧✐♥❣ ♦❢ ❡❧❛st✐❝ ♠❛t❡r✐❛❧s✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ✐t ✐s st✉❞✐❡❞ ❡①✐st❡♥❝❡✱ ✉♥✐q✉❡♥❡ss ❛♥❞ ❛s②♠♣t♦t✐❝ ❜❡❤❛✈✐♦r ♦❢ t✇♦ t②♣❡✲❇r❡ss❡ s②st❡♠s✱ ✇✐t❤ ❞✐ss✐♣❛t✐♦♥ ❣✐✈❡♥ ❜② ❢r✐❝t✐♦♥ ❛♥❞ ♦♥❡ ✇✐t❤ ❞✐ss✐♣❛t✐✈❡ ❡✛❡❝ts ❛t t❤❡ ❜♦r❞❡r✳ ❚❤❡ ❣♦❛❧ ✐s ❡st❛❜❧✐s❤ ❝♦♥❞✐t✐♦♥s t❤❛t ❡♥s✉r❡ t❤❡ ❡①♣♦♥❡♥t✐❛❧ st❛❜✐❧✐t② ❛♥❞ ♣♦❧②♥♦♠✐❛❧ t❤❡ s❡♠✐❣r♦✉♣ ❛ss♦❝✐❛t❡❞✳ ❋♦r t❤✐s✱ ✇❡ ✇✐❧❧ ✉s❡ t❤❡ ❛♣♣r♦❛❝❤ ♦❢ s❡♠✐❣r♦✉♣ t❤❡♦r② ♦♣❡r❛t♦rs ❧✐♥❡❛r ❝❧❛ss C0 ✱ r❡s♦❧✈❡♥t s❡t ♣r♦♣❡rt② ❛♥❞ r❡s♦❧✈✐♥❣ ♦♣❡r❛t♦r

✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢ ❛ C0 ✲s❡♠✐❣r✉♣♦ ❛♥❞ t❡❝❤♥✐❝❛❧ ♠✉❧t✐♣❧✐❝❛t✐✈❡✳

(11)

■♥tr♦❞✉çã♦

❖ ❡st✉❞♦ ❞♦s ♠♦❞❡❧♦s ♣❛r❛ ✈✐❣❛s ❝♦♠ ❝❛r❣❛s ❛t✉❛♥t❡s ✐♥t❡r♥❛ ♦✉ ❡①t❡r♥❛♠❡♥t❡ é ❞❡ ❣r❛♥❞❡ ✐♠♣♦rtâ♥❝✐❛ ♣❛r❛ ♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❛ ❛❧t❛ ❡♥❣❡♥❤❛r✐❛✱ ❥á q✉❡ ❛ ✈✐❣❛ é ✉♠ ♠♦❞❡❧♦ ❞❡ ❡str✉t✉r❛ ✢❡①í✈❡❧ ❛♠♣❧❛♠❡♥t❡ ✉t✐❧✐③❛❞♦ ❡♠ ♣r♦❥❡t♦s ❞❡ ❡str✉t✉r❛ ❡ ♠❡❝â♥✐❝♦s✱ t❛✐s ❝♦♠♦ ♣r♦❥❡t♦s ❞❡ ♣♦♥t❡s✱ ❡❞✐❢í❝✐♦s✱ ❛✈✐õ❡s✱ ♣❧❛t❛❢♦r♠❛s ❞❡ ♣❡tró❧❡♦✱ ❞❡♥tr❡ ♦✉tr♦s ❬✶❪✳ ◆❛s ú❧t✐♠❛s ❞é❝❛❞❛s✱ ✐♠♣♦rt❛♥t❡s ♠❡❝❛♥✐s♠♦s ❞✐ss✐♣❛t✐✈♦s ❢♦r❛♠ ✉t✐❧✐③❛❞♦s ♣❛r❛ ❡st❛❜✐❧✐③❛r ♠♦❞❡r♥❛s ❡str✉t✉r❛s ❡♠ ❡♥❣❡♥❤❛r✐❛ q✉❛♥❞♦ s✉❜♠❡t✐❞❛s ❛ ♦s❝✐❧❛çõ❡s ♥ã♦ ❞❡s❡❥á✈❡✐s✳ ❉❡ ♠♦❞♦ q✉❡ ❝♦♥❤❡❝❡r ❡ ❡♥t❡♥❞❡r ♦s ❡❢❡✐t♦s ❞❡ ❛❧❣✉♥s ♠❡❝❛♥✐s♠♦s ❞✐ss✐♣❛t✐✈♦s s❡ t♦r♥❛ ❢✉♥❞❛♠❡♥t❛❧ ♣❛r❛ ❝♦♥tr♦❧❛r ♦ ♠♦✈✐♠❡♥t♦ ❞❡ ❣r❛♥❞❡s ❡str✉t✉r❛s ❝✉❥❛s ♦s❝✐❧❛çõ❡s sã♦ ♠♦❞❡❧❛❞❛s ♣♦r ❡q✉❛çõ❡s ❞✐❢❡r❡♥❝✐❛✐s ♣❛r❝✐❛✐s q✉❡ ❡✈♦❧✉✐ ❝♦♠ ♦ t❡♠♣♦✳

❖ ❡st✉❞♦ ❞♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♥tót✐❝♦ ❞❡ s✐st❡♠❛s ❞✐ss✐♣❛t✐✈♦s é ✉♠ r❛♠♦ ❢ért✐❧ ♣❛r❛ ❛ ♣❡sq✉✐s❛ ❡♠ ❊q✉❛çõ❡s ❉✐❢❡r❡♥❝✐❛✐s P❛r❝✐❛✐s✳ P❛r❛ s❡ ♦❜t❡r ❡ss❡ ❝♦♠♣♦rt❛♠❡♥t♦✱ ❞✐❢❡r❡♥t❡s ♠ét♦❞♦s ❛♥❛❧ít✐❝♦s tê♠ s✐❞♦ ✉t✐❧✐③❛❞♦s ♣♦r ✈ár✐♦s ❛✉t♦r❡s✱ s❡♠♣r❡ ❛❞❡q✉❛❞♦s ❛♦s ♣r♦❜❧❡♠❛s ❡♠ q✉❡stã♦✳ ◆❡st❡ tr❛❜❛❧❤♦✱ ✉s❛r❡♠♦s ♦ ♠ét♦❞♦ q✉❡ ❡①♣❧♦r❛ ❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ❞✐ss✐♣❛t✐✈♦ ✭✈❡r ❬✷✻❪✱ ❬✷✼❪✮✳

❖ ♦❜❥❡t✐✈♦ ❞❡st❡ tr❛❜❛❧❤♦ é ✐♥✈❡st✐❣❛r ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❛ss✐♥tót✐❝♦ ❞❛s s♦❧✉çõ❡s ❞❡ s✐st❡♠❛s ❞❡ ❇r❡ss❡✱ t❛♠❜é♠ ❝♦♥❤❡❝✐❞♦ ❝♦♠♦ ♣r♦❜❧❡♠❛ ❞♦ ❛r❝♦ ❝✐r❝✉❧❛r ✭♣❛r❛ ♠❛✐s ❞❡t❛❧❤❡s ✈❡❥❛ ▲❛❣♥❡s❡ ❡ ♦✉tr♦s ❬✶✺❪✮✳ ❈♦♥s✐❞❡r❛♠♦s ✉♠ ❛r❝♦ ❝✐r❝✉❧❛r ❞❡ r❛✐♦ R ❡ ❝♦♠♣r✐♠❡♥t♦ L ❡♠ s✉❛ ♣♦s✐çã♦ ❞❡ ❡q✉✐❧í❜r✐♦✱ ❝♦♥st✐t✉í❞♦ ❞❡ ♠❛t❡r✐❛❧

❧✐♥❡❛r✱ ✐s♦tró♣✐❝♦ ❡ ❧✐♥❡❛r♠❡♥t❡ ❡❧ást✐❝♦❀ ♦ ♠♦✈✐♠❡♥t♦ ❞❛ ✈✐❣❛ é ♠♦❞❡❧❛❞♦ ♣❡❧❛s s❡❣✉✐♥t❡s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦

ρ1ϕtt−Sx−lN = F1 ❡♠ (0, L)×(0,∞), ρ2ψtt−Mx+S = F2 ❡♠ (0, L)×(0,∞), ρ1wtt−Nx+lS = F3 ❡♠ (0, L)×(0,∞),

✭✶✮

♦♥❞❡ t ❞❡♥♦t❛ ❛ ✈❛r✐á✈❡❧ t❡♠♣♦r❛❧ ❡ x ❛ ✈❛r✐á✈❡❧ ❡s♣❛❝✐❛❧✳ ❆s ❢✉♥çõ❡s ω =

ω(x, t), ϕ = ϕ(x, t) ❡ ψ = ψ(x, t) sã♦✱ r❡s♣❡❝t✐✈❛♠❡♥t❡✱ ♦s ❞❡s❧♦❝❛♠❡♥t♦s

❧♦♥❣✐t✉❞✐♥❛✐s✱ ✈❡rt✐❝❛✐s ❡ ❞♦ â♥❣✉❧♦ ❞❡ ❝✐s❛❧❤❛♠❡♥t♦✳ ❆q✉✐✱

N =k0(ωx−lϕ), S =k(ϕx+ψ+lω) ❛♥❞ M =bψ ✭✷✮ sã♦ ❛s r❡❧❛çõ❡s t❡♥sã♦✲❞❡❢♦r♠❛çã♦ ♣❛r❛ ♦ ❝♦♠♣♦rt❛♠❡♥t♦ ❡❧ást✐❝♦✳ ❆❧é♠ ❞✐ss♦✱

ρ1 = ρA, ρ2 = ρI✱ k = k′GA✱ k0 = E A✱ b = E I✱ l = R−1✱ ρ é ❛ ❞❡♥s✐❞❛❞❡ ❞♦

♠❛t❡r✐❛❧✱ E é ♦ ♠ó❞✉❧♦ ❞❡ ❡❧❛st✐❝✐❞❛❞❡✱ G é ♦ ♠♦❞✉❧♦ ❞❡ ❝✐s❛❧❤❛♠❡♥t♦✱ k′ é ♦

(12)

❢❛t♦r ❞❡ ❝✐s❛❧❤❛♠❡♥t♦✱A é ❛ ár❡❛ ❞❛ s❡çã♦ tr❛♥s✈❡rs❛❧✱ I é ♦ ♠♦♠❡♥t♦ ❞❡ ✐♥ér❝✐❛

❞❛ s❡çã♦ tr❛♥✈❡rs❛❧ ❡ R é ♦ r❛✐♦ ❞❡ ❝✉r✈❛t✉r❛ ✭✜❣✉r❛ ✶✮✳ ❋✐♥❛❧♠❡♥t❡✱ F1✱F2 ❡F3

sã♦ ❢♦rç❛s ❡①t❡r♥❛s✳

❋✐❣✉r❛ ✶✿ P❡❞r♦ ❘♦❜❡rt♦ ❞❡ ❧✐♠❛✱ ❙✐st❡♠❛ ❞❡ ❇r❡ss❡ t❡r♠♦❡❧ást✐❝♦ ♥ã♦ ❧✐♥❡❛r✿ ❊①✐stê♥❝✐❛ ❣❧♦❜❛❧ ❡ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧✱ P●▼❆❈ ✷✵✶✺✳

❙✉❜st✐t✉✐♥❞♦ ✭✷✮ ❡♠ ✭✶✮ ❡♥❝♦♥tr❛♠♦s ♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ❝❧áss✐❝♦

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) = F1 ❡♠ (0, L)×(0,∞),

ρ2ψtt−bψxx+k(ϕx+ψ+lω) = F2 ❡♠ (0, L)×(0,∞),

ρ1wtt−k0(ωx−lϕ)x+lk(ϕx+ψ+lω) = F3 ❡♠ (0, L)×(0,∞). ✭✸✮

❈♦♥s✐❞❡r❛♠♦s ❡st❡ ♠♦❞❡❧♦ ❝♦♠ ❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛s

ϕ(0, t) =ϕ(L, t) =ψ(0, t) =ψ(L, t) =ω(0, t) = ω(L, t) = 0, t(0,), ✭✹✮

♦✉

ϕ(0, t) = ϕ(L, t) = ψx(0, t) =ψx(L, t) =ωx(0, t) =ωx(L, t) = 0, t∈(0,∞), ✭✺✮ ❡ ❝♦♥❞✐çõ❡s ✐♥✐❝✐❛✐s

ϕ(·,0) =ϕ0, ϕt(·,0) =ϕ1, ψ(·,0) =ψ0, ψt(·,0) =ψ1, ω(·,0) =ω0, ωt(·,0) =ω1

✭✻✮ ❙❡❥❛ (ϕ, ψ, ω) ✉♠❛ s♦❧✉çã♦ r❡❣✉❧❛r ❞♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ✭✸✮✲✭✻✮✱ ♣❛r❛

F1 =F2 =F3 = 0✳ ❆ ❡♥❡r❣✐❛ t♦t❛❧ ❛ss♦❝✐❛❞❛ é ❞❛❞❛ ♣♦r

E(t) = 1 2

Z L

0

ρ1|ϕt|2+ρ2|ψt|2+ρ1|ωt|2

dx

+

Z L

0

k|ϕx+ψ+lω|2+b|ψx|2 +k0|ωx−lϕ|2

dx.

❈♦♠ ❛❧❣✉♥s ❝á❧❝✉❧♦s s✐♠♣❧❡s ✈❡♠♦s q✉❡

d

(13)

①✐

■st♦ s✐❣♥✐✜❝❛ q✉❡ ❛ ❡♥❡r❣✐❛ s❡ ♠❛♥té♠ ❝♦♥st❛♥t❡ ❛♦ ❧♦♥❣♦ ❞♦ t❡♠♣♦ ✭♦ s✐st❡♠❛ ✭✶✮ ✲ ✭✻✮ é ❝♦♥s❡r✈❛t✐✈♦✮ ❡✱ ♣♦rt❛♥t♦✱ ❛ s♦❧✉çã♦ ❞♦ s✐st❡♠❛ ♥ã♦ ❞❡❝❛✐✳ ❊♥tr❡t❛♥t♦✱ ❛❝r❡s❝❡♥t❛♥❞♦ t❡r♠♦s ❞✐ss✐♣❛t✐✈♦s ❛♦ s✐st❡♠❛✱ ♣♦❞❡♠♦s ❡♥❝♦♥tr❛r ❛❧❣✉♠ t✐♣♦ ❞❡ ❞❡❝❛✐♠❡♥t♦ ❞❛s s♦❧✉çõ❡s✳ ❯♠❛ q✉❡stã♦ ✐♠♣♦rt❛♥t❡ ♥♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ é ❡♥❝♦♥tr❛r ✉♠❛ ❞✐ss✐♣❛çã♦ ♠í♥✐♠❛✱ ❛tr❛✈és ❞❛ q✉❛❧ ❛s s✉❛s s♦❧✉çõ❡s ❞❡❝❛❡♠ ✉♥✐❢♦r♠❡♠❡♥t❡ ♣❛r❛ ③❡r♦ ❝♦♠ ♦ t❡♠♣♦✳ ❘❡❝❡♥t❡♠❡♥t❡✱ ♣❡sq✉✐s❛❞♦r❡s ❞❛ ár❡❛ tê♠ s❡ ❞❡❞✐❝❛❞♦ ❛ ✐♥✈❡st✐❣❛r ❡ss❡s ♣r♦❜❧❡♠❛s✳

❉✐❢❡r❡♥t❡s t✐♣♦s ❞❡ ❛♠♦rt❡❝✐♠❡♥t♦ ✭❞❛♠♣✐♥❣✮ ❢♦r❛♠ ✐♥tr♦❞✉③✐❞♦s ♥♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ❡ ✈ár✐♦s r❡s✉❧t❛❞♦s ❞❡ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❡ ♣♦❧✐♥♦♠✐❛❧ ❢♦r❛♠ ♦❜t✐❞♦s✳ ◆❛ ♠❛✐♦r✐❛ ❞❡ss❡s tr❛❜❛❧❤♦s✱ q✉❛♥❞♦ s♦♠❡♥t❡ ✉♠❛ ❞✐ss✐♣❛çã♦ é ❡❢❡t✐✈❛ s♦❜r❡ ♦ s✐st❡♠❛✱ ❛ ❝♦♥❝❧✉sã♦ é q✉❡ ❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ é ✈á❧✐❞❛ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ ❛s ✈❡❧♦❝✐❞❛❞❡s ❞❡ ♣r♦♣❛❣❛çã♦ ❞❡ ♦♥❞❛s sã♦ ❛s ♠❡s♠❛s✱ ✐st♦ é✱

k ρ1

= b

ρ2 ❡

k=k0. ✭✼✮

❆ s❡❣✉✐r✱ r❡❝♦r❞❛♠♦s ❛❧❣✉♥s ❞❡ss❡s tr❛❜❛❧❤♦s✳

❊♠ ❋❛t♦r✐ ❡ ❘✐✈❡r❛ ❬✶✻❪✱ ♦s ❛✉t♦r❡s ❛♥❛❧✐s❛r❛♠ ♦ s✐st❡♠❛ t❡r♠♦❡❧ást✐❝♦ ❞❡ ❇r❡ss❡ ❝♦♠ F1 =F2 =F3 = 0 ❡ ❧❡✐s ❝♦♥st✐t✉t✐✈❛s ❞❛❞❛s ♣♦r

S =κ(ϕx+ψ+lw), M =bψx−δθ, N =κ0(wx−lϕ). ✭✽✮ ❊♠ ❛❞✐çã♦✱ ❡❧❡s ✉s❛r❛♠ ❛ ▲❡✐ ❞❡ ❋♦✉r✐❡r ♣❛r❛ ♦ ✢✉①♦ ❞♦ ❝❛❧♦r

q=κθx (q ✢✉①♦✱ θ ❞✐❢❡r❡♥ç❛ ❞❡ t❡♠♣❡r❛t✉r❛) ❡ ❛ ❡q✉❛çã♦ ❞♦ ❜❛❧❛♥ç♦ ❞❛ ❡♥❡r❣✐❛ é ❞❛❞❛ ♣♦r

cθt−kθxx+mψxt= 0. ✭✾✮

❙✉❜st✐t✉✐♥❞♦ ✭✽✮ ❡♠ ✭✶✮ t❡♠♦s ♦ s✐st❡♠❛

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) = 0 ❡♠ (0, L)×(0,∞),

ρ2ψtt−bψxx+k(ϕx+ψ+lω) +γψt = 0 ❡♠ (0, L)×(0,∞),

ρ1wtt−k0(ωx−lϕ)x+lk(ϕx+ψ +lω) = 0 ❡♠ (0, L)×(0,∞),

cθt−kθxx+mψxt = 0 ❡♠ (0, L)×(0,∞), ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✹✮ ❡

θ(0,·) =θ(0,·) = 0, t 0

♦✉ ✭✺✮ ❡

θx(0,·) = θx(0,·) = 0, t ≥0.

(14)

①✐✐

♣r♦♣❛❣❛çã♦ ❞❡ ♦♥❞❛ ❡ ❞❛ r❡❣✉❧❛r✐❞❛❞❡ ❞♦s ❞❛❞♦s ✐♥✐❝✐❛✐s✳ ❆❧é♠ ❞✐ss♦✱ ❡❧❡s ✐♥tr♦❞✉③✐r❛♠ ✉♠❛ ❝♦♥❞✐çã♦ ♥❡❝❡ssár✐❛ ♣❛r❛ q✉❡ ✉♠ s❡♠✐❣r✉♣♦ ❞✐ss✐♣❛t✐✈♦ ❞❡❝❛✐❛ ♣♦❧✐♥♦♠✐❛❧♠❡♥t❡✳ ❊st❡ r❡s✉❧t❛❞♦ ♣❡r♠✐t✐✉✲❧❤❡s ♠♦str❛r ❛❧❣✉♠❛ ♦t✐♠❛❧✐❞❛❞❡ ♣❛r❛ ❛ t❛①❛ ❞❡ ❞❡❝❛✐♠❡♥t♦ ♣♦❧✐♥♦♠✐❛❧✳ ❊st❡ tr❛❜❛❧❤♦ ♠❡❧❤♦r❛ ♦s r❡s✉❧t❛❞♦s ❞❡ ▲✐✉ ❡ ❘❛♦ ❬✶✾❪✳

❖ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ✭✶✮ ❝♦♠ ❞✐ss✐♣❛çã♦ ❞❛❞❛ ♣❡❧♦ ❛tr✐t♦ ❛❣✐♥❞♦ s♦❜r❡ ♦ â♥❣✉❧♦ ❞❡ ❝✐s❛❧❤❛♠❡♥t♦✱ ✐st♦ é✱ q✉❛♥❞♦

S =κ(ϕx+ψ+lw), M =bψx, N =κ0(wx−lϕ),

F1 =F3 = 0 ❡ F2 =γψt, ✭✶✵✮

γ > 0✱ ❢♦✐ ❝♦♥s✐❞❡r❛❞♦ ❡♠ ❆❧❛❜❛✉✲❇♦✉ss♦✉✐r❛ ❬✶✵❪✳ ❙✉❜st✐t✉✐♥❞♦ ✭✶✵✮ ❡♠ ✭✶✮

❡♥❝♦♥tr❛♠♦s ♦ s✐st❡♠❛ ❇r❡ss❡ ❝♦♥s✐❞❡r❛❞♦

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) = 0,

ρ2ψtt−bψxx+k(ϕx+ψ+lω) +γψt = 0,

ρ1wtt−k0(ωx−lϕ)x+lk(ϕx+ψ+lω) = 0,

✭✶✶✮

(x, t) ∈ (0, L)×(0,)✱ s✉❥❡✐t♦ às ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✹✮ ♦✉ ✭✺✮ ❡ ❝♦♥❞✐çõ❡s

✐♥✐❝✐❛✐s ✭✻✮✳ ◆❡st❡ tr❛❜❛❧❤♦✱ ♦s ❛✉t♦r❡s ♠♦str❛r❛♠ q✉❡ ❡ss❡ ♠❡❝❛♥✐s♠♦ ❞✐ss✐♣❛t✐✈♦ é s✉✜❝✐❡♥t❡♠❡♥t❡ ❢♦rt❡ ♣❛r❛ ❡st❛❜✐❧✐③❛r ♦ s✐st❡♠❛ ❞❡s❞❡ q✉❡ ❛ ❝♦♥❞✐çã♦ ✭✼✮ s❡❥❛ ❛ss❡❣✉r❛❞❛✳ ◗✉❛♥❞♦ ✭✼✮ ♥ã♦ é ✈á❧✐❞❛✱ ❡❧❡s ♠♦str❛r❛♠ ❛ ❢❛❧t❛ ❞❡ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❞♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✺✮ ❞♦ t✐♣♦ ❉✐r✐❝❧❡t✲◆❡✉♠❛♥♥✲◆❡✉♠❛♥♥❀ s✉♣♦♥❞♦ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✹✮ ♦✉ ✭✺✮ ❡♥❝♦♥tr❛r❛♠ ❛ t❛①❛ ❞❡ ❞❡❝❛✐♠❡♥t♦ t−6+ǫ ♣❛r❛ ǫ ♣❡q✉❡♥♦ ❡ q✉❡ ❛ t❛①❛ ♣♦❞❡ s❡r ♠❡❧❤♦r❛❞❛ t♦♠❛♥❞♦ ❞❛❞♦s ✐♥✐❝✐❛✐s ♠❛✐s r❡❣✉❧❛r❡s✳ ❖ tr❛❜❛❧❤♦ ❞❡ ❋❛t♦r✐ ❬✾❪ ♠❡❧❤♦r❛ ♦ r❡s✉❧t❛❞♦ ❞❡ ❞❡❝❛✐♠❡♥t♦ ♣♦❧✐♥♦♠✐❛❧ ❡♥❝♦♥tr❛❞♦ ❡♠ ❆❧❛❜❛✉✲❇♦✉ss♦✉✐r❛ ❬✶✵❪✳ ❊♠ ❬✾❪✱ ♦s ❛✉t♦r❡s ♣r♦✈❛r❛♠ q✉❡ ♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ❞❡❝❛✐ ❝♦♠ t❛①❛t−1/2 ♦✉t−1/4✱ ❞❡♣❡♥❞❡♥❞♦ ❞❛ r❡❧❛çã♦ ❡♥tr❡ ♦s ❝♦❡✜❝✐❡♥t❡s✳ ❊♠ ✉♠ ❝❛s♦

♣❛rt✐❝✉❧❛r✱ ❡❧❡s ♠♦str❛r❛♠ q✉❡ ❛ t❛①❛ ❞❡ ❞❡❝❛✐♠❡♥t♦ ♦❜t✐❞❛ é ót✐♠❛✳

◆♦✉♥ ❡ ❲❡❤❜❡ ❬✷✸❪ ❡st❡♥❞❡r❛♠ ♦ tr❛❜❛❧❤♦ ❞❡ ❆❧❛❜❛✉✲❇♦✉ss♦✉✐r❛ ❬✶✵❪ ❡ ❝♦♥s✐❞❡r❛r❛♠ ♦ ✐♠♣♦rt❛♥t❡ ❝❛s♦ ❡♠ q✉❡ ❛ ❞✐ss✐♣❛çã♦ é ❧♦❝❛❧♠❡♥t❡ ❞✐str✐❜✉í❞❛✱ ♦✉ s❡❥❛✱ γ ∈ L∞(0, L)✱ γ(x) ≤ 0 q✳t✳♣✱ ❡ ❡❧❡s ❛ss✉♠✐r❛♠ q✉❡ ❡①✐st❡♠ a, b t❛✐s

q✉❡ 0 ≤ a < b L ❡ γ γ0 > 0 ❡♠ ]a, b[✳ ❖s ❛✉t♦r❡s ❡♥❝♦♥tr❛r❛♠ ♣❛r❛

❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ r❡s✉❧t❛❞♦s ❛♥á❧♦❣♦s ❛♦s ❞❡ ❬✶✵❪✱ ♠❛s ♠❡❧❤♦r❛r❛♠ ❛s t❛①❛s ❞❡ ❞❡❝❛✐♠❡♥t♦ ♣♦❧✐♥♦♠✐❛❧✳ ❊♠ ❬✷✽❪✱ ❙♦r✐❛♥♦ ❡ ♦✉tr♦s ♣r♦✈❛♠ ❛ ❡st❛❜✐❧✐❞❛❞❡ ❞♦ ♠❡s♠♦ s✐st❡♠❛ ♥♦ ❝❛s♦ ❡♠ q✉❡ γ ♣♦❞❡ ♠✉❞❛r ❞❡ s✐♥❛❧ ✭♦ s✐st❡♠❛ ♣♦❞❡ s❡r

♥ã♦✲❞✐ss✐♣❛t✐✈♦✮ ❡ γ = 1

L

RL

0 γ(s)ds > 0✱ ❞❡s❞❡ q✉❡ ❛ ❝♦♥❞✐çã♦ ✭✼✮ s❡❥❛ ✈❡r✐✜❝❛❞❛

❡ ✐♠♣♦♥❞♦ ❛❧❣✉♠❛s ❤✐♣ót❡s❡s s♦❜r❡γ ❡ γ✳

❙❛♥t♦s ❡ ♦✉tr♦s ❬✶✼❪ ❝♦♥s✐❞❡r❛r❛♠ ♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ❝♦♠ ❤✐stór✐❛

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) = 0,

ρ2ψtt−bψxx+

Z ∞

0

g(s)ψxx(t−s)ds+k(ϕx+ψ+lω) = 0,

(15)

①✐✐✐

♣❛r❛ (x, t)∈(0, L)×(0,)✱ ❝♦♠ ♦ ♥ú❝❧❡♦ g s❛t✐s❢❛③❡♥❞♦

g C1(R+)L1(R+), g(t)>0, q0, q1 >0 : q0g(t)g(t)≤ −q1g(t),t0.

❊❧❡s t❛♠❜é♠ ♦❜t✐✈❡r❛♠ ✭✼✮ ❝♦♠♦ ❝♦♥❞✐çã♦ ♥❡❝❡ssár✐❛ ❡ s✉✜❝✐❡♥t❡ ♣❛r❛ ❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❞♦ s❡♠✐❣r✉♣♦ ❝♦rr❡s♣♦♥❞❡♥t❡✳ ❊♠ ❝❛s♦ ❝♦♥trár✐♦✱ ❡❧❡s ♣r♦✈❛r❛♠ q✉❡ ♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ é ♣♦❧✐♥♦♠✐❛❧♠❡♥t❡ ❡stá✈❡❧ ❝♦♠ t❛①❛ ót✐♠❛ ❞❡ ❞❡❝❛✐♠❡♥t♦✳

◆❛❥❞✐ ❡ ❲❡❤❜❡ ❬✷✷❪ ❝♦♥s✐❞❡r❛♠ ♦ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ♥♦ ❝❛s♦ ❡♠ q✉❡ ❛ ❞✐ss✐♣❛çã♦ t❡r♠❛❧ é ❧♦❝❛❧♠❡♥t❡ ❞✐str✐❜✉í❞❛ ♥♦ â♥❣✉❧♦ ❞❡ ✜❧❛♠❡♥t♦✱ ❞❛❞♦ ♣♦r

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) = 0 ❡♠ (0, L)×(0,∞),

ρ2ψtt−bψxx+k(ϕx+ψ+lω) +α(x)θx = 0 ❡♠ (0, L)×(0,∞),

ρ1wtt−k0(ωx−lϕ)x+lk(ϕx+ψ+lω) = 0 ❡♠ (0, L)×(0,∞),

ρ3θt−θxx+T0(αψx)t = 0 ❡♠ (0, L)×(0,∞).

❖s ❛✉t♦r❡s ❣❡♥❡r❛❧✐③❛r❛♠ ♦s r❡s✉❧t❛❞♦s ❞❡ ❋❛t♦r✐ ❡ ❘✐✈❡r❛ ❬✶✻❪✱ ♣♦✐s ♦ ❝♦❡✜❝✐❡♥t❡ ❞❡ ❞❛♠♣✐♥❣ α ♥ã♦ é ❝♦♥st❛♥t❡✱ ♠❛s ❡❧❡ é ✉♠❛ ❢✉♥çã♦ ♣♦s✐t✐✈❛ ❡♠ W2,∞(0, L) ❡

❡str✐t❛♠❡♥t❡ ♣♦s✐t✐✈❛ ♥♦ ✐♥t❡r✈❛❧♦ ]a, b[⊂]0, L[ ✭♦s ❝❛s♦s a = 0 ♦✉ b =L ♥ã♦ sã♦

❡①❝❧✉í❞♦s✮ ❡ t❛♠❜é♠ ♠❡❧❤♦r❛r❛♠ ❛ t❛①❛ ❞❡ ❞❡❝❛✐♠❡♥t♦✳

❘❡❝❡♥t❡♠❡♥t❡✱ ●❛r❜✉❣✐♦ ❬✶✷❪ ❡♠ s✉❛ t❡s❡ ❞❡ ❉♦✉t♦r❛❞♦ ❡st✉❞♦✉ ❛s ♣r♦♣r✐❡❞❛❞❡s q✉❛❧✐t❛t✐✈❛s ❡ ❛ss✐♥tót✐❝❛s ♣❛r❛ s✐st❡♠❛s t❡r♠♦❡❧ást✐❝♦s ❞❡ ❇r❡ss❡✱ ♦♥❞❡ ♦ ✢✉①♦ ❞❡ ❝❛❧♦r s❡❣✉❡ ❛ ❧❡✐ ❞❡ ❋♦✉r✐❡r✱ ❛ ❧❡✐ ❞❡ ❈❛tt❛♥❡♦ ❡ ❛ t❡r♠♦❡❧❛st✐❝✐❞❛❞❡ ❞♦ t✐♣♦ ■■■✳ ◆♦ ❈❛♣ít✉❧♦ ✷ ❞❡ s❡✉ tr❛❜❛❧❤♦✱ ❆ ♠♦❞❡❧❛❣❡♠ ❞❛ ✈✐❣❛ ❞❡ ❇r❡ss❡✱ ❡❧❡ ❛♣r❡s❡♥t❛ ❛ ❞❡❞✉çã♦ ❞❛s ❡q✉❛çõ❡s ❞❡ ♠♦✈✐♠❡♥t♦ ✭✶✮✳ ◆ã♦ ❛♣r❡s❡♥t❛♠♦s ♥❡st❛ ❞✐ss❡rt❛çã♦ ♦ ❡st✉❞♦ ❞❡ss❛ ♠♦❞❡❧❛❣❡♠✱ ♠❛s ♥♦s r❡❢❡r✐♠♦s ❛♦ tr❛❜❛❧❤♦ ❬✶✷❪ ♣❛r❛ ♦s ✐♥t❡r❡ss❛❞♦s✳

P❛r❛ ♠♦❞❡❧♦s ❞❡ s✐st❡♠❛ ❞❡ ❇r❡ss❡ ❝♦♠ ❞✐ss✐♣❛çõ❡s ♥❛ ❢r♦♥t❡✐r❛ só ❝♦♥❤❡❝❡♠♦s ♦ tr❛❜❛❧❤♦ ❞❡ ❆❧✈❡s ❡t ❛❧❧ ❬✷✵❪ ✱ ♥♦ q✉❛❧ ♦s ❛✉t♦r❡s ♠♦str❛r❛♠ ❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❞♦ s✐st❡♠❛

ρ1ϕtt−k(ϕx+ψ+lw)x−lk0(wx−lϕ) +kθx = 0,

ρ2ψtt−bψxx+k(ϕx+ψ+lω) = 0,

ρ1wtt−k0(ωx−lϕ)x+lk(ϕx+ψ+lω) = 0,

✭✶✷✮

(x, t)∈(0, L)×(0,∞)✱ ❝♦♠ ❝♦♥❞✐çõ❡s ✐♥✐❝✐❛✐s ✭✻✮ ❡ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛

k(ϕx+ψ+lω)(0, t) = γ1 ϕt(0, t), t∈(0,∞),

bψx(0, t) =γ2 ψt(0, t), t ∈(0,∞),

k0(ωx−lϕ)(0, t) =γ3 ωt(0, t), t∈(0,∞),

✭✶✸✮

♦♥❞❡ γi >0✱ ♣❛r❛i= 1,2❡ 3✱ ❡

ϕ(L, t) = ψ(L, t) =ω(L, t) = 0, t (0,). ✭✶✹✮

(16)

①✐✈

❖ ♣r✐♥❝✐♣❛❧ ♦❜❥❡t✐✈♦ ❞❡st❛ ❞✐ss❡rt❛çã♦ é ❡st✉❞❛r ❛ ❜♦❛ ❝♦❧♦❝❛çã♦ ❡ ♦❜t❡r ❛s ♣r♦♣r✐❡❞❛❞❡s ❛ss✐♥tót✐❝❛s ✭❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❡ ❡st❛❜✐❧✐❞❛❞❡ ♣♦❧✐♥♦♠✐❛❧✮ ♣❛r❛ ♦s ♠♦❞❡❧♦s ❡st✉❞❛❞♦s ❡♠ ❆❧❛❜❛✉✲❇♦✉ss♦✉✐r❛ ❬✶✵❪✱ ❋❛t♦r✐ ❬✾❪ ❡ ❆❧✈❡s ❡t ❛❧❧ ❬✷✵❪✳

❊st❡ tr❛❜❛❧❤♦ ❡stá ♦r❣❛♥✐③❛❞♦ ❡♠ ❝✐♥❝♦ ❝❛♣ít✉❧♦s✳ ◆♦ ❈❛♣ít✉❧♦ ✶ ❛♣r❡s❡♥t❛♠♦s ❛s ♣r✐♥❝✐♣❛✐s ❢❡rr❛♠❡♥t❛s ❞❛ t❡♦r✐❛ ❞❛ ❆♥á❧✐s❡ ❋✉♥❝✐♦♥❛❧✱ ❞❡ ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ ♥❛ r❡t❛✱ ❞❡ s❡♠✐❣r✉♣♦s ❞❡ ❝❧❛ss❡ C0 ❡ r❡s✉❧t❛❞♦s s♦❜r❡ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧ ❡

❡st❛❜✐❧✐❞❛❞❡ ♣♦❧✐♥♦♠✐❛❧✳ ❊st❡s r❡s✉❧t❛❞♦s s❡rã♦ ✉t✐❧✐③❛❞♦s ❡♠ t♦❞♦ ♦ tr❛❜❛❧❤♦✳ ◆♦ ❈❛♣ít✉❧♦ ✷ ♣r♦✈❛♠♦s ❛ ❡①✐stê♥❝✐❛ ❡ ✉♥✐❝✐❞❛❞❡ ❞❡ s♦❧✉çã♦ ♣❛r❛ ♦ s✐st❡♠❛ ✭✶✶✮ ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ❞♦ t✐♣♦ ✭✹✮ ♦✉ ❞♦ t✐♣♦ ✭✺✮ ❡ ❝♦♥❞✐çõ❡s ✐♥✐❝✐❛✐s ✭✻✮✳ ◆♦ss❛ ♣r✐♥❝✐♣❛❧ ❢❡rr❛♠❡♥t❛ é ❛ t❡♦r✐❛ ❞❡ s❡♠✐❣r✉♣♦s ❧✐♥❡❛r❡s ❞❡ ❝❧❛ss❡ C0✱

❡s♣❡❝✐✜❝❛♠❡♥t❡ ♦ ❚❡♦r❡♠❛ ✶✳✺✻ ✭▲✉♠♠❡r✲P❤✐❧❧✐♣s✮ ❡ ♦ ❚❡♦r❡♠❛ ✶✳✺✽✳

◆♦ ❈❛♣ít✉❧♦ ✸ ♠♦str❛♠♦s q✉❡ ♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ✭✶✶✮ ❝♦♠ ❛s ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✹✮ ♦✉ ✭✺✮ é ❡①♣♦♥❡♥❝✐❛❧♠❡♥t❡ ❡stá✈❡❧ q✉❛♥❞♦ ❛ ❤✐♣ót❡s❡ ✭✼✮ é ✈á❧✐❞❛✳ ▼♦str❛♠♦s t❛♠❜é♠ q✉❡ ♣❛r❛ ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ✭✺✮ ❞♦ t✐♣♦ ❉✐r✐❝❤❧❡t✲ ◆❡✉♠❛♥♥✲◆❡✉♠❛♥♥ ❛ ❝♦♥❞✐çã♦ ✭✼✮ é s✉✜❝✐❡♥t❡ ♣❛r❛ ❣❛r❛♥t✐r ❛ ❡st❛❜✐❧✐❞❛❞❡ ❡①♣♦♥❡♥❝✐❛❧✳ ❱❛❧❡ r❡ss❛❧t❛r q✉❡ ❛ ♣r✐♥❝✐♣❛❧ ❢❡rr❛♠❡♥t❛ ✉s❛❞❛ ♥❡st❡ ❝❛♣ít✉❧♦ é ♦ ❚❡♦r❡♠❛ ✶✳✻✺ ❞❡✈✐❞♦ à Prüss ❬✷✻❪✳

◆♦ ❈❛♣ít✉❧♦ ✹ ♠♦str❛♠♦s q✉❡ ♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ✭✶✶✮ ❝♦♠ ❛s ❝♦♥❞✐çõ❡s ❞❡ ❢r♦♥t❡✐r❛ ❞♦ t✐♣♦ ❉✐r✐❝❤❧❡t✲◆❡✉♠❛♥♥✲◆❡✉♠❛♥♥ é ♣♦❧✐♥♦♠✐❛❧♠❡♥t❡ ❡stá✈❡❧ q✉❛♥❞♦ ❛ ❝♦♥❞✐çã♦ ✭✼✮ ♥ã♦ é ✈á❧✐❞❛✱ ♦✉ s❡❥❛✱ k

ρ1 6= b

ρ2 ♦✉ k 6=k0✳ ◗✉❛♥❞♦ k

ρ1 6= b

ρ2 ❡ k = k0 ❡♥❝♦♥tr❛♠♦s ❛ t❛①❛ ❞❡ ❞❡❝❛✐♠❡♥t♦ t

−1/2 ❡ q✉❛♥❞♦ k 6= k0

❡♥❝♦♥tr❛♠♦s ❛ t❛①❛ t−1/4✳ ❆ ♣r✐♥❝✐♣❛❧ ❢❡rr❛♠❡♥t❛ ✉s❛❞❛ ♥❡st❡ ❝❛♣ít✉❧♦ é ♦

❚❡♦r❡♠❛ ✶✳✻✼ ❞❡✈✐❞♦ à ❇♦r✐❝❤❡✈ ❡ ❚♦♠✐❧♦✈ ❬✹❪✳

◆♦ ❈❛♣ít✉❧♦ ✺ ♠♦str❛♠♦s q✉❡ ♦ s❡♠✐❣r✉♣♦ ❛ss♦❝✐❛❞♦ ❛♦ s✐st❡♠❛ ✭✶✷✮✲✭✶✹✮ ❝♦♠ ❛s ❝♦♥❞✐çõ❡s ✐♥✐❝✐❛✐s ✭✻✮ é ❡①♣♦♥❡♥❝✐❛❧♠❡♥t❡ ❡stá✈❡❧✳ ◆♦✈❛♠❡♥t❡ ❛ ♣r✐♥❝✐♣❛❧ ❢❡rr❛♠❡♥t❛ ✉t✐❧✐③❛❞❛ é ♦ ❚❡♦r❡♠❛ ✶✳✻✺ ❞❡✈✐❞♦ à Prüss ❬✷✻❪✳

❋✐♥❛❧♠❡♥t❡✱ ♦❜s❡r✈❛♠♦s q✉❡ ❡♠ t♦❞❛ ❛ ❞✐ss❡rt❛çã♦✱ C r❡♣r❡s❡♥t❛ ✉♠❛

(17)

❈❛♣ít✉❧♦ ✶

Pr❡❧✐♠✐♥❛r❡s

◆❡st❡ ❝❛♣ít✉❧♦ ✈❛♠♦s r❡✈❡r ❛❧❣✉♥s ❝♦♥❝❡✐t♦s ❡ r❡s✉❧t❛❞♦s ✐♠♣♦rt❛♥t❡s ♣❛r❛ ♦ ❡st✉❞♦ ❞♦s ❝❛♣ít✉❧♦s s❡❣✉✐♥t❡s✳

✶✳✶ ❆♥á❧✐s❡ ❋✉♥❝✐♦♥❛❧

◆❡st❛ s❡çã♦ ✈❛♠♦s ❞❡✜♥✐r ❡ ❛♣r❡s❡♥t❛r ❛❧❣✉♥s r❡s✉❧t❛❞♦s ❞❡ ❆♥á❧✐s❡ ❋✉♥❝✐♦♥❛❧✳ P❛r❛ ♠❛✐♦r❡s ❞❡t❛❧❤❡s✱ ❝♦♥s✉❧t❛r ❈❛✈❛❧❝❛♥t✐ ❬✽❪✱ ❇r❡③✐s ❬✻❪ ❡ ❖❧✐✈❡✐r❛ ❬✷✹❪✳

❉❡✜♥✐çã♦ ✶✳✶✳ ❯♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ X q✉❡ é t❛♠❜é♠ ✉♠ ❡s♣❛ç♦ ♠étr✐❝♦

❝♦♠♣❧❡t♦ ❝♦♠ ❛ ♠étr✐❝❛ ✐♥❞✉③✐❞❛ ♣❡❧❛ ♥♦r♠❛ é ❝❤❛♠❛❞♦ ❞❡ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✳ ❉❡✜♥✐çã♦ ✶✳✷ ✭❋♦r♠❛ ❙❡sq✉✐❧✐♥❡❛r✮✳ ❙❡❥❛ V ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ❝♦♠♣❧❡①♦✳ ❯♠❛

❢♦r♠❛ s❡sq✉✐❧✐♥❡❛r ❞❡ V✱ é ✉♠❛ ❛♣❧✐❝❛çã♦ a : V ×V C✱ (u, v) a(u, v)

q✉❡ s❛t✐s❢❛③ ❛s s❡❣✉✐♥t❡s ❝♦♥❞✐çõ❡s✿

✭✐✮ a(u+v, w) =a(u, w) +a(v, w) ♣❛r❛ t♦❞♦ u✱ v✱ w∈V✳

✭✐✐✮ a(λu, w) = λa(u, w) ♣❛r❛ t♦❞♦ u✱ v V ❡ λC✳

✭✐✐✐✮ a(u, v+w) =a(u, v) +a(u, w) ♣❛r❛ t♦❞♦ u✱ v ❡ wV✳

✭✐✈✮ a(u, λw) = λa(u, w) ♣❛r❛ t♦❞♦ u✱ wV ❡ λC✳

❉❡✜♥✐çã♦ ✶✳✸✳ ❯♠❛ ❢♦r♠❛ s❡sq✉✐❧✐♥❡❛r s♦❜r❡ ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ N✱ a(·,·)✱ é

❞❡♥♦♠✐♥❞❛ ❧✐♠✐t❛❞❛ ♦✉ ❝♦♥tí♥✉❛ s❡ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ C >0 t❛❧ q✉❡

|a(u, v)| ≤CkukNkvkN, ♣❛r❛ t♦❞♦ u, v ∈ N.

❉❡✜♥✐çã♦ ✶✳✹✳ ❯♠❛ ❢♦r♠❛ s❡sq✉✐❧✐♥❡❛r s♦❜r❡ ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ N✱ a(·,·)✱ é

❞✐t❛ ❝♦❡r❝✐✈❛ s❡ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ β >0 t❛❧ q✉❡

|a(v, v)| ≥βkvk2N, ♣❛r❛ t♦❞♦ v ∈ N.

(18)

✷ ✶✳✶✳ ❆◆➪▲■❙❊ ❋❯◆❈■❖◆❆▲

❉❡✜♥✐çã♦ ✶✳✺✳ ❙❡❥❛ V ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ❝♦♠♣❧❡①♦✳ ❯♠ ❢✉♥❝✐♦♥❛❧ T :V C

é ❞✐t♦ ❧✐♥❡❛r s❡

✭✐✮ T(u+v) = T(u) +T(v) ♣❛r❛ t♦❞♦u ❡ v V✳

✭✐✐✮ T(λu) =λT(u) ♣❛r❛ t♦❞♦ uV ❡ λC✳

❡ é ❞✐t♦ ❛♥t✐❧✐♥❡❛r s❡

✭✐✮ T(u+v) = T(u) +T(v) ♣❛r❛ t♦❞♦u ❡ v V✳

✭✐✐✮ T(λu) =λT(u) ♣❛r❛ t♦❞♦ uV ❡ λC✳

❉❡✜♥✐çã♦ ✶✳✻✳ ❯♠ ❢✉♥❝✐♦♥❛❧ T :N →C✱ s♦❜r❡ ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ N✱ é ❞✐t♦

❧✐♠✐t❛❞♦ s❡ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ C >0 t❛❧ q✉❡

|T(u)| ≤CkukN, ♣❛r❛ t♦❞♦ u∈ N.

❚❡♦r❡♠❛ ✶✳✼✳ ❙❡ N é ✉♠ ❡s♣❛ç♦ ♥♦r♠❛❞♦ ❡ X ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✱ ❡♥tã♦

L(N, X) = {f : N → X; ❢ é ✉♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r ❧✐♠✐t❛❞♦} ❝♦♠ ❛ ♥♦r♠❛ ||f||L(N,X)= sup{|f(x)| ; ||x||N = 1} é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❖❧✐✈❡✐r❛ ❬✷✹❪✱ ♣✳ ✷✼✳

❉❡✜♥✐çã♦ ✶✳✽✳ ❙❡ N é ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ♥♦r♠❛❞♦✱ ❡♥tã♦ ♦ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ L(N,C) s❡rá ❞❡♥♦t❛❞♦ ♣♦r N′ ❡ ❝❤❛♠❛❞♦ ❞❡ ❡s♣❛ç♦ ❞✉❛❧ t♦♣♦❧ó❣✐❝♦ ❞❡ N

❚❡♦r❡♠❛ ✶✳✾ ✭❍❛❤♥✲❇❛♥❛❝❤✮✳ ❙❡❥❛♠ V ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧ ❝♦♠♣❧❡①♦ ❡ ✉♠❛

❛♣❧✐❝❛çã♦ p:V [0,) s❛t✐s❢❛③❡♥❞♦

p(u+v) p(u) +p(v), u, v V, p(αu) = |α|p(u), uV, αC.

❙❡ f : Z C é ✉♠ ❢✉♥❝✐♦♥❛❧ ❧✐♥❡❛r ❞❡✜♥✐❞♦ ♥♦ s✉❜❡s♣❛ç♦ Z V ❝♦♠ |f(w)| ≤ p(w)✱ ❡♥tã♦ f ♣♦ss✉✐ ✉♠❛ ❡①t❡♥sã♦ ❧✐♥❡❛r F :V C ❞♦♠✐♥❛❞❛ ♣♦r p

♦✉ s❡❥❛✱

|F(u)| ≤p(u), uV.

F é ❝❤❛♠❛❞❛ ❞❡ ❡①t❡♥sã♦ ❞❡ ❍❛❤♥✲❇❛♥❛❝❤ ❞❡ f✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❇♦t❡❧❤♦ ❡t ❛❧✳ ❬✺❪✱ ♣✳ ✺✽✳

❚❡♦r❡♠❛ ✶✳✶✵ ✭▲❛①✲▼✐❧❣r❛♥✮✳ ❙❡❥❛♠H é ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt ❡a:H×H C

✉♠❛ ❢♦r♠❛ s❡sq✉✐❧✐♥❡❛r ❧✐♠✐t❛❞❛ ❡ ❝♦❡r❝✐✈❛✳ ❊♥tã♦✱ ♣❛r❛ t♦❞♦ ❢✉♥❝✐♦♥❛❧ T :H

C ❛♥t✐❧✐♥❡❛r ❧✐♠✐t❛❞♦ ❡①✐st❡ ✉♠ ú♥✐❝♦ uH t❛❧ q✉❡

a(u, v) =T(v) ♣❛r❛ t♦❞♦v H.

(19)

✸ ✶✳✶✳ ❆◆➪▲■❙❊ ❋❯◆❈■❖◆❆▲

Pr♦♣♦s✐çã♦ ✶✳✶✶✳ ❙❡❥❛♠ ♥ú♠❡r♦s r❡❛✐s a, b0 ❡ p1✳ ❊♥tã♦ (a+b)p 2p(ap+bp).

❉❡♠♦♥str❛çã♦✳ ❯s❛♥❞♦ ❛s ♣r♦♣r✐❡❞❛❞❡s ❞♦ ♠á①✐♠♦ ♦❜t❡♠♦s

(a+b)p ≤ (2 max{a, b})p = 2pmax{ap, bp}

≤ 2p(ap+bp).

Pr♦♣♦s✐çã♦ ✶✳✶✷ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣✮✳ ❙❡ a, b 0 ❡ p, q > 1 sã♦ t❛✐s q✉❡ 1

p+

1

q = 1 ❡♥tã♦

ab≤ a p

p + bq

q.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❘✳●✳ ❇❛rt❧❡ ❬✸❪✱ ♣✳ ✺✻✳

❯♠❛ ✈❛r✐❛çã♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣ q✉❡ s❡rá ♠✉✐t♦ ✉t✐❧✐③❛❞♦ ♥❡st❡ tr❛❜❛❧❤♦ é ❞❛❞❛ ♣❡❧♦ s❡❣✉✐♥t❡ ❝♦r♦❧ár✐♦✳

❈♦r♦❧ár✐♦ ✶✳✶✸✳ ❙❡❥❛♠ a, b 0 ❡ p, q > 1 t❛✐s q✉❡ 1

p +

1

q = 1✳ P❛r❛ t♦❞♦ ε > 0

t❡♠✲s❡

abc(ε)ap+εbq.

❉❡♠♦♥str❛çã♦✳ ❚❡♠♦s

ab = (qε)1q 1

(qε)1q

ab

= a

(qε)1q

!

(qε)1qb

.

❆♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣ s❡❣✉❡ q✉❡

ab 1 p

a

(qε)1q

!p

+1

q

(qε)1qb

q

= 1

p(qε)pq

ap +εbq ε >0.

❚♦♠❛♥❞♦ c(ε) = 1

p(qε)pq

t❡♠♦s✱

(20)

✹ ✶✳✶✳ ❆◆➪▲■❙❊ ❋❯◆❈■❖◆❆▲

❚❡♦r❡♠❛ ✶✳✶✹ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❈❛✉❝❤②✲❙❝❤✇❛r③✮✳ ❙❡❥❛ V ✉♠ ❡s♣❛ç♦ ✈❡t♦r✐❛❧

❝♦♠ ♣r♦❞✉t♦ ✐♥t❡r♥♦ h·,·iV✳ ❊♥tã♦ ♣❛r❛ t♦❞♦s u✱ v ∈V t❡♠♦s |hu, viV| ≤ kukVkvkV;

❛ ✐❣✉❛❧❞❛❞❡ ♦❝♦rr❡ s❡✱ ❡ s♦♠❡♥t❡ s❡✱ {u, v} é ❧✐♥❡❛r♠❡♥t❡ ❞❡♣❡♥❞❡♥t❡✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❖❧✐✈❡✐r❛ ❬✷✹❪✱ ♣✳ ✶✷✶✳

❚❡♦r❡♠❛ ✶✳✶✺✳ ❙❡ M é ✉♠ s✉❜❡s♣❛ç♦ ❢❡❝❤❛❞♦ ❞♦ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt H✱ ❡♥tã♦ H =MM⊥✱ ✐st♦ é✱ ❝❛❞❛ uH ❛❞♠✐t❡ ✉♠❛ ú♥✐❝❛ r❡♣r❡s❡♥t❛çã♦ ♥❛ ❢♦r♠❛

u=p+q ❝♦♠ pM ❡ q M⊥,

♦♥❞❡ M⊥ ={q H :hp, qiH = 0 ♣❛r❛ t♦❞♦p∈M }✳ ❉❡♠♦♥str❛çã♦✳ ❱❡r ❇♦t❡❧❤♦ ❡t ❛❧✳ ❬✺❪✱ ♣✳ ✶✶✶✳

❉❡✜♥✐çã♦ ✶✳✶✻ ✭❘❡s♦❧✈❡♥t❡✮✳ ❙❡❥❛♠ X ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❡ A : D(A)

X X✳ ❉✐③❡♠♦s q✉❡ λ C ❡stá ♥♦ ❝♦♥❥✉♥t♦ r❡s♦❧✈❡♥t❡ ❞❡ A✱ ♦ q✉❛❧ s❡rá

❞❡♥♦t❛❞♦ ♣♦r ̺(A)✱ s❡ ♦ ♦♣❡r❛❞♦r

R(λ,A) = (λI− A)−1

❡①✐st❡✱ ❡stá ❜❡♠ ❞❡✜♥✐❞♦ ❡♠ X ❡ é ❧✐♠✐t❛❞♦✳ ❊♠ ♦✉tr❛s ♣❛❧❛✈r❛s✱

̺(A) ={λC; (λI− A)−1❡①✐st❡, D (λI− A)−1é ❞❡♥s♦ ❡♠ ❳ ❡

(λI− A)−1é ❧✐♠✐t❛❞♦}.

◆❡st❡ ❝❛s♦✱ R(λ,A) ❞❡♥♦♠✐♥❛✲s❡ ♦ ♦♣❡r❛❞♦r r❡s♦❧✈❡♥t❡ ❞❡ A✳ ❉❡✜♥✐çã♦ ✶✳✶✼ ✭❊s♣❡❝tr♦✮✳ ❖ ❡s♣❡❝tr♦ ❞❡ A é ♦ ❝♦♥❥✉♥t♦

σ(A) =C\̺(A)

❢♦r♠❛❞♦ ♣♦r três s✉❜❝♦♥❥✉♥t♦s ❞✐s❥✉♥t♦s

✭✐✮ ❖ ❡s♣❡❝tr♦ ♣♦♥t✉❛❧ ❞❡ A é ♦ ❝♦♥❥✉♥t♦ ❞❡ s❡✉s ❛✉t♦✈❛❧♦r❡s✱ ❞❡♥♦t❛❞♦ ♣♦r

σp(A)❀

✭✐✐✮ ❖ ❡s♣❡❝tr♦ ❝♦♥tí♥✉♦ ❞❡ A✱ ❞❡♥♦t❛❞♦ ♣♦r σc(A)✱ é ♦ ❝♦♥❥✉♥t♦ ❞♦s λ ∈ C t❛✐s q✉❡ λI − A é ✉♠ ♦♣❡r❛❞♦r ✐♥❥❡t✐✈♦✱ t❡♠ ✐♠❛❣❡♠ ❞❡♥s❛ ❡♠ X✱ ♠❛s

(λI− A)−1 :R(λI − A)X é ♥ã♦ ❧✐♠✐t❛❞♦❀

✭✐✐✐✮ ❖ ❡s♣❡❝tr♦ r❡s✐❞✉❛❧ ❞❡ A✱ ❞❡♥♦t❛❞♦ ♣♦r σr(A)✱ é ♦ ❝♦♥❥✉♥t♦ ❞♦s λ ∈ C t❛✐s q✉❡ λI − A é ✉♠ ♦♣❡r❛❞♦r ✐♥❥❡t✐✈♦ ♠❛s s✉❛ ✐♠❛❣❡♠ ♥ã♦ é ❞❡♥s❛ ❡♠ X✳

❉❡✜♥✐çã♦ ✶✳✶✽✳ ❯♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r T : D(T) ⊂ N1 → N2 é ❢❡❝❤❛❞♦ s❡ ♣❛r❛

(21)

✺ ✶✳✷✳ ❊❙P❆➬❖❙ ❋❯◆❈■❖◆❆■❙ ❊ ❊❙P❆➬❖❙ ❉❊ ❙❖❇❖▲❊❱

▲❡♠❛ ✶✳✶✾✳ ❙❡❥❛♠ X é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❡ S :X X ✉♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r

❝♦♥tí♥✉♦ ❝♦♠ ✐♥✈❡rs♦ ❝♦♥tí♥✉♦✳ ❙❡ B L(X) s❛t✐s❢❛③

kBkL(X) <

1

kS−1kL (X)

,

❡♥tã♦ S+B é ✉♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r ✐♥✈❡rsí✈❡❧✱ ❝♦♠ ✐♥✈❡rs❛ ❝♦♥tí♥✉❛✳

❉❡♠♦♥str❛çã♦✳ ❚❡♠♦s q✉❡ S+B é ❜✐❥❡t✐✈♦✳ ❉❡ ❢❛t♦✱ s❡❥❛ w X ❡ ❞❡♥♦t❡♠♦s

♣♦r P ♦ ♦♣❡r❛❞♦r

P(x) =S−1(w)S−1B(x).

◆♦t❡ q✉❡ P é ✉♠❛ ❝♦♥tr❛çã♦✱ ♣♦✐s

kP(x)−P(y)kX = k −S−1B(x) +S−1B(y)kX ≤ kS−1kL(X)kBkL(X)kx−ykX ≤ kx−ykX.

P❡❧♦ ❚❡♦r❡♠❛ ❞♦ P♦♥t♦ ❋✐①♦ ❞❡ ❇❛♥❛❝❤✱ s❡❣✉❡ q✉❡ ❡①✐st❡ ✉♠ ú♥✐❝♦ z X t❛❧

q✉❡ P(z) = z✱ ♦✉ s❡❥❛✱ ❡①✐st❡ ✉♠ ú♥✐❝♦ z X ❞❡ ♠♦❞♦ q✉❡ z =S−1(w)−S−1B(z) ⇔ (S+B) (z) =w.

▲♦❣♦✱ t❡♠♦s q✉❡ S+B é ✉♠ ♦♣❡r❛❞♦r ❜✐❥❡t✐✈♦ ❡✱ ❝♦♥s❡q✉❡♥t❡♠❡♥t❡✱ ✐♥✈❡rsí✈❡❧✳

P♦r ♦✉tr♦ ❧❛❞♦✱ ❝♦♠♦ S+B é ✉♠ ♦♣❡r❛❞♦r ❝♦♥tí♥✉♦✱ s❡❣✉❡✱ ♣❡❧♦ ❚❡♦r❡♠❛ ❞♦

●rá✜❝♦ ❋❡❝❤❛❞♦✱ q✉❡ (S+B)−1 t❛♠❜é♠ é ✉♠ ♦♣❡r❛❞♦r ❝♦♥tí♥✉♦✳

❚❡♦r❡♠❛ ✶✳✷✵✳ ❙❡❥❛ A ✉♠ ♦♣❡r❛❞♦r ❧✐♥❡❛r ❢❡❝❤❛❞♦ ❡♠ ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt H t❛❧ q✉❡ ♦ ♦♣❡r❛❞♦r r❡s♦❧✈❡♥t❡ (λ0I − A)−1 ❡①✐st❡ ❡ é ❝♦♠♣❛❝t♦ ♣❛r❛ ❛❧❣✉♠ λ0✳

❊♥tã♦ ♦ ❡s♣❡❝tr♦ σ(A) = C\ρ(A) é ❝♦♥st✐t✉í❞♦ ❛♣❡♥❛s ❞❡ ❛✉t♦✈❛❧♦r❡s ❞❡ A ❝♦♠

♠✉❧t✐♣❧✐❝✐❞❛❞❡ ✜♥✐t❛✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❑❛t♦ ❚✱ ❬✸✶❪✱ ♣✳ ✶✽✼✳

✶✳✷ ❊s♣❛ç♦s ❢✉♥❝✐♦♥❛✐s ❡ ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈

◆❡st❛ s❡çã♦ ✈❛♠♦s ❞❡s❝r❡✈❡r ❛s ♥♦t❛çõ❡s ❡ ❞❡✜♥✐çõ❡s ❞❡ ❡s♣❛ç♦s ❢✉♥❝✐♦♥❛✐s q✉❡ s❡rã♦ ✉s❛❞♦s ❛♦ ❧♦♥❣♦ ❞❡st❡ tr❛❜❛❧❤♦✳ P❛r❛ ♠❛✐s ❞❡t❛❧❤❡s ❝♦♥s✉❧t❛r ❇ré③✐s ❬✻❪✳

❉❡✜♥✐r❡♠♦s ❛ s❡❣✉✐r ♦s ❡s♣❛ç♦s ❢✉♥❝✐♦♥❛✐s ♥❡❝❡ssár✐♦s ♣❛r❛ ♦ ❞❡s❡♥✈♦❧✈✐♠❡♥t♦ ❞❡st❡ tr❛❜❛❧❤♦✳ ◆❡st❛s ❞❡✜♥✐çõ❡s✱ ΩRn é ✉♠ ❝♦♥❥✉♥t♦ ❛❜❡rt♦✳

❉❡✜♥✐çã♦ ✶✳✷✶✳ ❙❡❥❛u:ΩR❝♦♥tí♥✉❛✳ ❖ s✉♣♦rt❡ ❞❡u✱ q✉❡ s❡rá ❞❡♥♦t❛❞♦ ♣♦r

(22)

✻ ✶✳✷✳ ❊❙P❆➬❖❙ ❋❯◆❈■❖◆❆■❙ ❊ ❊❙P❆➬❖❙ ❉❊ ❙❖❇❖▲❊❱

❢♦r ✉♠ ❝♦♠♣❛❝t♦ ❞♦ Ω ❡♥tã♦ ❞✐③❡♠♦s q✉❡ u♣♦ss✉✐ s✉♣♦rt❡ ❝♦♠♣❛❝t♦✳ ❉❡♥♦t❛♠♦s

♣♦r C0(Ω) ❛♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s ❝♦♥tí♥✉❛s ❡♠ Ω ❝♦♠ s✉♣♦rt❡ ❝♦♠♣❛❝t♦✳

❉❡✜♥✐çã♦ ✶✳✷✷✳ Cm(Ω) é ♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s ❝♦♠ t♦❞❛s ❛s ❞❡r✐✈❛❞❛s ♣❛r❝✐❛✐s

❞❡ ♦r❞❡♠ ≤ m ❝♦♥tí♥✉❛s ❡♠ Ω ✭m ✐♥t❡✐r♦ ♥ã♦✲♥❡❣❛t✐✈♦ ♦✉ m = ∞✮✳ ❉❡♥♦t❛r❡♠♦s ♣♦r C0(Ω) = C(Ω).

❉❡✜♥✐çã♦ ✶✳✷✸✳ ❖ ❝♦♥❥✉♥t♦ ❞❛s ❢✉♥çõ❡s ϕ : Ω → R q✉❡ ♣♦ss✉❡♠ t♦❞❛s ❛s

❞❡r✐✈❛❞❛s ❛té ❛ ♦r❞❡♠m ❝♦♥tí♥✉❛s ❡♠Ω ❡ q✉❡ tê♠ s✉♣♦rt❡ ❝♦♠♣❛❝t♦✱ s❡♥❞♦ q✉❡

❡ss❡ s✉♣♦rt❡ ❞❡♣❡♥❞❡ ❞❡ ϕ✱ é ❞❡♥♦t❛❞♦ ♣♦r C0m(Ω) ✭♦✉ C0∞ s❡ m=✮✳

❉❡✜♥✐çã♦ ✶✳✷✹✳ ❯♠❛ s✉❝❡ssã♦ (ϕν)ν∈N ❞❡ ❢✉♥çõ❡s ❞❡ C0∞(Ω) ❝♦♥✈❡r❣❡ ♣❛r❛ ③❡r♦

q✉❛♥❞♦ ❡①✐st❡ K Ω ❝♦♠♣❛❝t♦ t❛❧ q✉❡✿

∗ suppϕν ⊂K, ∀ ν∈N;

∗ P❛r❛ ❝❛❞❛ αNn

Dαϕν →0 ✉♥✐❢♦r♠❡♠❡♥t❡ ❡♠ K, ♦♥❞❡ Dα ❞❡♥♦t❛ ♦ ♦♣❡r❛❞♦r ❞❡r✐✈❛çã♦ ❞❡ ♦r❞❡♠ α ❞❡✜♥✐❞♦ ♣♦r

∂|α| ∂xα1

1 ∂x

α2

2 ...∂xαnn

,

❝♦♠ α= (α1, α2, ..., αn)∈Nn ❡ |α|=α1+α2+...+αn✳

❉❡✜♥✐çã♦ ✶✳✷✺✳ ❖ ❡s♣❛ç♦ ✈❡t♦r✐❛❧C0∞(Ω)❝♦♠ ❛ ♥♦çã♦ ❞❡ ❝♦♥✈❡r❣ê♥❝✐❛ ❞❡✜♥✐❞❛

❛❝✐♠❛ é r❡♣r❡s❡♥t❛❞♦ ♣♦r D(Ω) ❡ ❞❡♥♦♠✐♥❛❞♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s t❡st❡s ❡♠ Ω.

❉❡✜♥✐çã♦ ✶✳✷✻✳ ❙❡❥❛ 1≤ p≤+∞. ❉❡♥♦t❛♠♦s ♣♦r Lp(Ω) ♦ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤

❞❛s ✭❝❧❛ss❡s ❞❡✮ ❢✉♥çõ❡s ❞❡✜♥✐❞❛s ❡♠ Ω ❝♦♠ ✈❛❧♦r❡s ❡♠ R, t❛✐s q✉❡ |u|p é ✐♥t❡❣rá✈❡❧ ♥♦ s❡♥t✐❞♦ ❞❡ ▲❡❜❡s❣✉❡ ❡♠ Ω ❝♦♠ ♥♦r♠❛

||u||Lp =

Z

Ω|

u(x)|pdx

1 p

♣❛r❛ 1p < +.

P❛r❛ p=✱ ❞❡♥♦t❛♠♦s ♣♦rL∞(Ω)♦ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❞❛s ✭❝❧❛ss❡s ❞❡✮ ❢✉♥çõ❡s

♠❡♥s✉rá✈❡s ❞❡ u ❞❡✜♥✐❞❛s s♦❜r❡ Ω q✉❡ sã♦ ❡ss❡❝✐❛❧♠❡♥t❡ ❧✐♠✐t❛❞❛s ❝♦♠ ❛ ♥♦r♠❛

❞❛❞❛ ♣♦r

||u||L∞ = sup ess

x∈Ω |

u(x)|= inf{C ∈R;|u(x)| ≤C q✳t✳♣✳ ❡♠ }.

❉❡✜♥✐çã♦ ✶✳✷✼✳ ❙❡❥❛♠ 1 p < ✳ ❉✐r❡♠♦s q✉❡ f : Ω R é ❧♦❝❛❧♠❡♥t❡

✐♥t❡❣rá✈❡❧ ❡♠ Lp()✱ ❡ ❞❡♥♦t❛r❡♠♦s ♣♦r f Lp

loc(Ω)✱ s❡ f ❢♦r ✉♠❛ ❢✉♥çã♦ ♠❡♥s✉rá✈❡❧ ❡ ♣❛r❛ q✉❛❧q✉❡r ❝♦♥❥✉♥t♦ ❝♦♠♣❛❝t♦ K Ω t✐✈❡r♠♦s

Z

K|

(23)

✼ ✶✳✷✳ ❊❙P❆➬❖❙ ❋❯◆❈■❖◆❆■❙ ❊ ❊❙P❆➬❖❙ ❉❊ ❙❖❇❖▲❊❱

❚❡♦r❡♠❛ ✶✳✷✽ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✮✳ ❙❡❥❛♠ f1 ∈ Lp1(Ω), f2 ∈ Lp2(),· · · , f

n ∈ Lpn(Ω)✱ n ∈ N✱ ❝♦♠ p1,· · · , pn > 1 ❡

1

p1

+· · ·+ 1

pn

= 1✳

❊♥tã♦ f1·...·fn∈L1(Ω) ❡

Z

Ω|

f1·...·fn|dx≤ ||f1||Lp1 ·...· ||fn||Lpn.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇ré③✐s ❬✻❪✱ ♣✳ ✾✷✳

❚❡♦r❡♠❛ ✶✳✷✾✳ ❙❡❥❛♠ I = (a, b)✱ −∞ ≤a < b≤ ∞ ❡ s❡❥❛ uL1loc(I) t❛❧ q✉❡

Z

I

uϕxdx= 0 ∀ϕ ∈C01(I).

❊♥tã♦ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ C t❛❧ q✉❡ u=C ❡♠ q✉❛s❡ t♦❞♦ ♣♦♥t♦ ❞❡ I✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✵✺✳

❉❡✜♥✐çã♦ ✶✳✸✵✳ ❙❡❥❛♠ I = (a, b)✱ −∞ ≤a < b≤ ∞✱ ❡ p R ❝♦♠ 1p≤ ∞

❖ ❡s♣❛ç♦ ❞❡ ❙♦❜♦❧❡✈ W1,p(I) é ❞❡✜♥✐❞♦ ❝♦♠♦ s❡♥❞♦ ♦ ❝♦♥❥✉♥t♦

W1,p(I) =

uLp(I); ux∈Lp(I) ❝♦♠

Z b a

uϕxdx=−

Z b a

uxϕdx ∀ϕ∈C01(I)

❖ ❡s♣❛ç♦ W1,p(I) é ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❝♦♠ ❛ ♥♦r♠❛ kukW1,p = (kuk

p

Lp+kuxk p Lp)

1 p .

◗✉❛♥❞♦ p = 2✱ ❞❡♥♦t❛♠♦s H1(I) = W1,2(I)✳ ❖ ❡s♣❛ç♦ H1(I) é ✉♠ ❡s♣❛ç♦ ❞❡

❍✐❧❜❡rt ❡q✉✐♣❛❞♦ ❝♦♠ ♦ ♣r♦❞✉t♦ ✐♥t❡r♥♦

hu, viH1 =hu, viL2 +hux, vxiL2 =

Z b a

(uv+uxvx) dx.

❚❡♦r❡♠❛ ✶✳✸✶✳ ❙❡❥❛uW1,p(I)❝♦♠ 1p≤ ∞ ❡I R❧✐♠✐t❛❞♦ ♦✉ ✐❧✐♠✐t❛❞♦✳

❊♥tã♦ ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ euC(I) t❛❧ q✉❡

u=ue q.t.p. ❡♠(0, L) ❡

e

u(y)−ue(x) =

Z y x

ux(t)dt ∀x, y ∈I.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✵✹✳

Pr♦♣♦s✐çã♦ ✶✳✸✷✳ ❖ ❡s♣❛ç♦ W1,p(I)é r❡✢❡①✐✈♦ ♣❛r❛ 1< p <∞ ❡ s❡♣❛rá✈❡❧ ♣❛r❛

1≤p <

(24)

✽ ✶✳✷✳ ❊❙P❆➬❖❙ ❋❯◆❈■❖◆❆■❙ ❊ ❊❙P❆➬❖❙ ❉❊ ❙❖❇❖▲❊❱

❉❡✜♥✐çã♦ ✶✳✸✸✳ ❉❛❞♦ ✉♠ ✐♥t❡✐r♦m 2❡ ✉♠ ♥ú♠❡r♦ r❡❛❧1≤p≤ ∞❞❡✜♥✐♠♦s✱

♣♦r r❡❝♦rrê♥❝✐❛✱ ♦ ❡s♣❛ç♦

Wm,p(I) = uWm−1,p(I);D1uWm−1,p(I) ,

❝♦♠ ❛ ♥♦t❛çã♦ D1u=ux✱ ❡q✉✐♣❛❞♦ ❝♦♠ ❛ ♥♦r♠❛

kukWm,p =kukLp + m

X

i=1

kDiukLp.

❊ t❛♠❜é♠ ❞❡✜♥✐♠♦s

Hm(I) =Wm,2(I),

❡q✉✐♣❛❞♦ ❝♦♠ ♦ ♣r♦❞✉t♦ ❡s❝❛❧❛r

hu, viH2 =hu, viL2 + m

X

i=1

hDiu, DiviL2 =

Z b a

uvdx+

m

X

i=1

Z b a

DiuDivdx.

❆ s❡❣✉✐r ❡stã♦ ❛❧❣✉♥s r❡s✉❧t❛❞♦s✱ ❞❡♥tr❡ ❡❧❡s ♦s ❞❡ ✐♠❡rsõ❡s✱ q✉❡ s❡rã♦ ✉s❛❞♦s ♥♦s ❞❡♠❛✐s ❝❛♣ít✉❧♦s✳ ❉❡ ♠♦❞♦ ❣❡r❛❧✱ ♥ã♦ ❛♣r❡s❡♥t❛r❡♠♦s ❛s ❞❡♠♦♥str❛çõ❡s✱ ♠❛s s❡rã♦ ✐♥❞✐❝❛❞❛s ❛s r❡s♣❡❝t✐✈❛s r❡❢❡rê♥❝✐❛s ❜✐❜❧✐♦❣rá✜❝❛s✳

❚❡♦r❡♠❛ ✶✳✸✹✳ ❊①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ ♣♦s✐t✐✈❛ C ✭q✉❡ ❞❡♣❡♥❞❡ s♦♠❡♥t❡ ❞❡

|I| ≤ ∞✮ t❛❧ q✉❡

kukL∞ ≤CkukW1,p, ∀u∈W1,p(I), ∀1≤p≤ ∞.

❊♠ ♦✉tr❛s ♣❛❧❛✈r❛s✱ W1,p(I) ֒ L(I) ❝♦♠ ❛ ✐♠❡rsã♦ ❝♦♥tí♥✉❛ ♣❛r❛ t♦❞♦

1p≤ ∞

❆❧é♠ ❞✐ss♦✱ s❡ I é ✉♠ ✐♥t❡r✈❛❧♦ ❧✐♠✐t❛❞♦ ❡♥tã♦

❆ ✐♠❡rsã♦ W1,p(I)֒C(I) é ❝♦♠♣❛❝t❛ ♣❛r❛ t♦❞♦1< p ≤ ∞ ❆ ✐♠❡rsã♦ W1,1(I)֒Lq(I) é ❝♦♠♣❛❝t❛ ♣❛r❛ t♦❞♦ 1q <

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✷✳

❈♦r♦❧ár✐♦ ✶✳✸✺✳ ❙✉♣♦♥❤❛ q✉❡ I s❡❥❛ ✉♠ ✐♥t❡r✈❛❧♦ ✐❧✐♠✐t❛❞♦ ❡ uW1,p(I)✱ ❝♦♠

1≤p <✳ ❊♥tã♦

lim

x∈I

|x|7→∞

u(x) = 0.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✹✳

(25)

✾ ✶✳✷✳ ❊❙P❆➬❖❙ ❋❯◆❈■❖◆❆■❙ ❊ ❊❙P❆➬❖❙ ❉❊ ❙❖❇❖▲❊❱

(uv)x = uxv + u vx.

❆❞❡♠❛✐s✱ ✈❛❧❡ ❛ ❢♦r♠✉❧❛ ❞❡ ✐♥t❡❣r❛çã♦ ♣♦r ♣❛rt❡s

Z z y

uxvdx=u(z)v(z)−u(y)v(y)−

Z z y

uvxdx, ∀x, y ∈I.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✺✳

❈♦r♦❧ár✐♦ ✶✳✸✼✳ ❙❡❥❛ G C1(R) t❛❧ q✉❡ G(0) = 0✱ ❡ s❡❥❛ u W1,p(I) ❝♦♠

1≤p≤ ∞✳ ❊♥tã♦

GuW1,p(I) ❡ (Gu)x = (Gx◦u)ux. ❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✺✳

❉❡✜♥✐çã♦ ✶✳✸✽✳ ❉❛❞♦ 1p < ✱ ❞❡♥♦t❛♠♦s ♣♦r W01,p(I) ♦ ❢❡❝❤♦ ❞❡ C01(I) ❡♠

W1,p(I)✱ ❡q✉✐♣❛❞♦ ❝♦♠ ❛ ♥♦r♠❛ ❞❡ W1,p(I)

❖ ❡s♣❛ç♦ H01(I) =W01,2(I) é ❡q✉✐♣❛❞♦ ❝♦♠ ♦ ♣r♦❞✉t♦ ❡s❝❛❧❛r ❞❡ H1(I)✳

❚❡♦r❡♠❛ ✶✳✸✾✳ ❙❡❥❛ uW1,p(I)✳ ❊♥tã♦ uW01,p(I) s❡✱ s♦♠❡♥t❡ s❡✱ u= 0 ❡♠

∂I✳

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✼✳

❚❡♦r❡♠❛ ✶✳✹✵ ✭❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ P♦✐♥❝❛ré✮✳ ❙✉♣♦♥❤❛♠♦s I ✉♠ ✐♥t❡r✈❛❧♦

❧✐♠✐t❛❞♦✳ ❊♥tã♦ ❡①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ Cp ≥ 0✱ q✉❡ ❞❡♣❡♥❞❡ ❛♣❡♥❛s ❞♦ ❝♦♠♣r✐♠❡♥t♦ ❞♦ ✐♥t❡r✈❛❧♦ I✱ t❛❧ q✉❡

kukW1,p ≤CpkuxkLp ∀u∈W

1,p

0 (I).

❊♠ ♦✉tr❛s ♣❛❧❛✈r❛s✱ ❡♠ W01,p(I)✱ kuxkLp é ✉♠❛ ♥♦r♠❛ ❡q✉✐✈❛❧❡♥t❡ à ♥♦r♠❛ ❞❡

W1,p(I)

❉❡♠♦♥str❛çã♦✳ ❱❡r ❍✳ ❇r❡③✐s ❬✻❪✱ ♣✳ ✷✶✽✳

❙❡❥❛ Ω ✉♠ ❛❜❡rt♦ ❞♦ RN✳ P❛r❛ m N ❡ 1 p ≤ ∞Wm,p(Ω) é ❞❡✜♥✐❞♦

❝♦♠♦ ♦ ❡s♣❛ç♦ ❞❛s ❢✉♥çõ❡s uLp(Ω)❝✉❥❛s ❞❡r✐✈❛❞❛s ❞✐str✐❜✉❝✐♦♥❛✐s ❛té ❛ ♦r❞❡♠

m t❛♠❜é♠ ❡stã♦ ❡♠ Lp(Ω)✳ ➱ ❜❡♠ ❝♦♥❤❡❝✐❞♦✱ ✈❡r ❍✳ ❇r❡③✐s ❬✻❪✱ q✉❡ Wm,p(Ω) é

✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❝♦♠ ❛ ♥♦r♠❛

kukWm,p(Ω) =

X

|α|≤m

kDαukpLp(Ω)

1/p

,

♦♥❞❡ α = (α1,· · ·, αn) ∈ Nn✱ |α| = α1 +· · ·+αn✱ Dαu = ∂

α1 +···+αn ∂xα1

1 ···∂x αn n

u. ◗✉❛♥❞♦ p= 2✱ ✉s✉❛❧♠❡♥t❡ ❞❡♥♦t❛♠♦s Wm,p(Ω) ♣♦rHm(Ω) ❡ ❡st❡ é ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt

(26)

✶✵ ✶✳✸✳ ❙❊▼■●❘❯P❖❙ ❉❊ ❈▲❆❙❙❊ C0

Pr♦♣♦s✐çã♦ ✶✳✹✶✳ ❙❡❥❛ Ω ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ ❞♦ RN ❝♦♠ ❢r♦♥t❡✐r❛ ∂Ω ❞❡

❝❧❛ss❡ C1✳ ❊①✐st❡ ✉♠❛ ❝♦♥st❛♥t❡ ♣♦s✐t✐✈❛ C ❞❡♣❡♥❞❡♥❞♦ ❛♣❡♥❛s ❞❡ Ω ❡ Nt❛❧ q✉❡

♣❛r❛ t♦❞♦ uH1(Ω) t❡♠✲s❡

kukL2(Ω) ≤C

k∇ukL2(Ω)+

Z

Ω u dx

❉❡♠♦♥str❛çã♦✳ ❱❡r ▲✐✉ ❡ ❩❤❡♥❣ ❬✸✸❪✱ ♣✳ ✶✶✳

✶✳✸ ❙❡♠✐❣r✉♣♦s ❞❡ ❝❧❛ss❡

C

0

◆❡st❛ s❡çã♦ ✈❛♠♦s ❞❡s❝r❡✈❡r ❛s ♥♦t❛çõ❡s✱ ❞❡✜♥✐çõ❡s ❡ ❛❧❣✉♥s t❡♦r❡♠❛s s♦❜r❡ s❡♠✐❣r✉♣♦ ❞❡ ❝❧❛ss❡C0 q✉❡ s❡rã♦ ✉s❛❞♦s ❛♦ ❧♦♥❣♦ ❞♦ tr❛❜❛❧❤♦✳ P❛r❛ ♠❛✐s ❞❡t❛❧❤❡s

❝♦♥s✉❧t❛r ●♦♠❡s ❬✶✸❪ ♦✉ P❛③② ❬✷✺❪✳

❉❡✜♥✐çã♦ ✶✳✹✷ ✭❙❡♠✐❣r✉♣♦✮✳ ❙❡❥❛X ✉♠ ❡s♣❛ç♦ ❞❡ ❇❛♥❛❝❤ ❡L(X)❛ á❧❣❡❜r❛ ❞♦s ♦♣❡r❛❞♦r❡s ❧✐♥❡❛r❡s ❧✐♠✐t❛❞♦s ❞❡ X✳ ❉✐③✲s❡ q✉❡ ✉♠❛ ❛♣❧✐❝❛çã♦ S :R+ L(X) é ✉♠ s❡♠✐❣r✉♣♦ ❞❡ ♦♣❡r❛❞♦r❡s ❧✐♥❡❛r❡s ❧✐♠✐t❛❞♦s ❞❡ X s❡✿

■✮ S(0) =I✱ ♦♥❞❡ I é ♦ ♦♣❡r❛❞♦r ✐❞❡♥t✐❞❛❞❡ ❞❡ L(X)✳ ■■✮ S(t+s) =S(t)S(s)✱ t✱ sR+✳

❉✐③✲s❡ q✉❡ ♦ s❡♠✐❣r✉♣♦ S é ❞❡ ❝❧❛ss❡ C0 s❡

■■■✮ lim

t→0+k(S(t)−I)xkX = 0✱ ∀x∈X✳

❉❡✜♥✐çã♦ ✶✳✹✸ ✭●❡r❛❞♦r ■♥✜♥✐t❡s✐♠❛❧✮✳ ❈♦♥s✐❞❡r❡

D(A) ={xX ; lim

h→0

S(h)I

h x ❡①✐st❡}.

❖ ♦♣❡r❛❞♦r A ❞❡✜♥✐❞♦ ♣♦r

Ax= lim

h→0

S(h)−I

h x, ∀x∈D(A)

é ❞✐t♦ ❣❡r❛❞♦r ✐♥✜♥✐t❡s✐♠❛❧ ❞♦ s❡♠✐❣r✉♣♦ S✳

Pr♦♣♦s✐çã♦ ✶✳✹✹✳ ❙❡❥❛ {S(t)}t≥0 ✉♠ s❡♠✐❣r✉♣♦ ❞❡ ❝❧❛ss❡ C0 ❝♦♠ ❣❡r❛❞♦r

✐♥✜♥✐t❡s✐♠❛❧ A✳

✐✮ ❙❡ xD(A)✱ ❡♥tã♦ S(t)xD(A) t0 ❡ d

Referências

Documentos relacionados

O indicador de intensidade embutido no Radii Xpert, permite que a intensidade da luz seja monitorada com facilidade, sem a necessidade de adquirir um equipamento portátil adicional

PEQUENOS E POUCO EXPRESSNOS, DEMONSTRANOO SEREM RéTRAlDOS QUANTO AS EMCX;oES.. JÁ QUE NO DESENUO DE\IEMOS BUSCAR AS M4/S DIFERENTES CARACTERIZAt;oES POSSlVEIS..

Gra…camente, veri…ca-se uma deslocação da função oferta agregada para a direita em resultado da diminuição da taxa de mark–up (vide

Tendo em mente essa perspectiva é que, a experiência de trabalho com a disciplina de diversidade, direitos e cidadania optou-se pela construção de um projeto

Torre desarrollada para atender cargas altas, especialmente en obras pesadas de infraestructura y obras industriales.. Além disso, o sistema conta ainda com diagonais horizontais

Πεδίο αυτής της πολιτιστικής αντιπαράθεσης αποτέλεσε και η Ελλάδα του '50 με τη σύγκρουση των ρεαλιστών (και οπαδών του σοσιαλιστικού ρεαλισμού) με την

Provavelmente essas espécies competem por um mesmo recurso, variável entre os pontos de amostragem, explicando assim o aumento de biomassa de uma e redução de outra para mesmo

Vários trabalhos têm demonstrado que a mortali- dade por síndrome ascítica é maior nos machos do que nas fêmeas, acreditando-se que este fato esteja relacionado com a maior