• Nenhum resultado encontrado

Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light

N/A
N/A
Protected

Academic year: 2021

Share "Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light"

Copied!
12
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Prototype

composite

membranes

of

partially

reduced

graphene

oxide/TiO

2

for

photocatalytic

ultrafiltration

water

treatment

under

visible

light

Chrysoula

P.

Athanasekou

a

,

Sergio

Morales-Torres

b

,

Vlassis

Likodimos

a,c

,

George

Em.

Romanos

a,∗

,

Luisa

M.

Pastrana-Martinez

b

,

Polycarpos

Falaras

a

,

Dionysios

D.

Dionysiou

d

,

Joaquim

L.

Faria

b

,

José

L.

Figueiredo

b

,

Adrián

M.T.

Silva

b,∗∗

aDivisionofPhysicalChemistry,InstituteofAdvancedMaterials,PhysicochemicalProcesses,NanotechnologyandMicrosystems(IAMPPNM),

NCSRDemokritos,AghiaParaskevi,Attikis,15310Athens,Greece

bLCM—LaboratoryofCatalysisandMaterials—AssociateLaboratoryLSRE/LCM,FaculdadedeEngenharia,UniversidadedoPorto,

RuaDr.RobertoFrias,4200-465Porto,Portugal

cDepartmentofSolidStatePhysics,UniversityofAthens,Panepistimioupolis,GR-15784Athens,Greece dEnvironmentalEngineeringandScienceProgram,UniversityofCincinnati,Cincinnati,Ohio45221-0012,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16January2014

Receivedinrevisedform4April2014 Accepted7April2014

Availableonline19April2014 Keywords: Ultrafiltrationmembranes Titaniumdioxide Grapheneoxide Photocatalysis Cleanwater

a

b

s

t

r

a

c

t

Ahighlyefficienthybridphotocatalytic/ultrafiltrationprocessisdemonstratedforwaterpurification usingvisiblelight.Theprocessreliesonthedevelopmentofpartiallyreducedgrapheneoxide/TiO2

com-positemembranesandtheirincorporationintoaninnovativewaterpurificationdevicethatcombines membranefiltrationwithsemiconductorphotocatalysis.Compositesconsistingofgrapheneoxidesheets decoratedwithTiO2nanoparticlesweredepositedandstabilizedintotheporesofultrafiltration

mono-channelmonolithsusingthedip-coatingtechnique.Cross-flowanddead-endfiltrationexperimentswere sequentiallyconductedindark,underUVandvisiblelight.Themembranesurfacewasirradiatedforthe eliminationoftwosyntheticazo-dyes,methylorangeandmethyleneblue,fromwatersolutions.The synergeticeffectsofgrapheneoxideonpollutantadsorptionandphotocatalyticdegradationcapacity ofTiO2werethoroughlystudied,whiletheinfluenceoftheporesizeofthemonolithicsubstrateonthe

depositionmorphologieswasalsoelucidated.Moreover,theperformanceofthenovelhybridprocesswas comparedwiththatofstandardnanofiltrationwithrespecttopollutantremovalefficiencyandenergy consumption,providingfirmevidenceforitseconomicfeasibilityandefficiency.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Photocatalyticmembranesexhibitingthesimultaneousaction ofpollutantrejectionandphotocatalyticdegradationhavereceived muchattention[1–7],duetothesimplicityoftheoverallwater treatmentprocessandthebeneficialeffectsarisingfromthe pres-enceof the photocatalyst onthe membrane surface and pores (anti-biofouling, cleaner permeate, higher flux) and vice versa (increasedpollutantconcentrationinthevicinityofthe photocat-alyst,turbulentflowandefficientmixingduetotheasymmetric

∗ Correspondingauthorat:NCSRDemokritos,AghiaParaskeviAttikis,15310 Athens,Greece.Tel.:+302106503972-3.

∗∗ Correspondingauthorat:UniversidadedoPorto,RuaDr.RobertoFrias,4200-465 Porto,Portugal.Tel:351220414908.

E-mailaddresses:groman@chem.demokritos.gr(G.Em.Romanos),

adrian@fe.up.pt(A.M.T.Silva).

pore structure of the membrane). Moreover, hybrid photocat-alyticmembraneprocesseshavethepotentialtoeliminateamajor drawbackofmembraneseparationtechnology,whichisthe gen-erationoftoxiccondensates.SincethepioneerworkofBarnietal., whodescribedthePHOTOPERM®process[8],andthesucceeding synthesisofcompositeTiO2/Al2O3 membraneswithhierarchical mesoporousmultilayerstructure[9,10],there havebeen persis-tent efforts toward the development of efficientphotocatalytic membraneswithconcurrent water filtrationandphotocatalytic degradationproperties.Polymerbased[11],free-standing[12]or ceramic[13]basedphotocatalyticmembraneshavealreadybeen successfullypreparedandtheiranti-fouling,highflux, photodegra-dationandfiltrationefficiencyhasalreadybeenproved.Despite theirrelativelyhighcostcomparedtothepolymericcandidates, ceramicporousfiltersarethesubstratesofchoicefordeveloping photocatalyticmembranes.Ceramicfiltersexhibitexcellent ther-mal,chemical, and mechanicalproperties, whileretaining their http://dx.doi.org/10.1016/j.apcatb.2014.04.012

(2)

capacitytobereusedaftercalcination.Thesecharacteristicsensure theintegrityofthesubstrateduringthedeposition,stabilization andactivationofthephotocatalyst[14,15]aswellasduringthe watertreatmentprocessunderUVirradiationandtheconcomitant attackbythehydroxylradicalsgeneratedonthephotocatalyst.The mostcommonwaytodevelopthephotocatalyticallyactive mem-branelayerisbymeansofsequentialdip-coatingofthesubstrate intoappropriate solscomposedofdifferentprecursormaterials, thatgenerateultrathinlayersconsistingofnanocrystalliteswith decreasingsize, aswemoveaway fromthesubstrate’ssurface. Thepurposeofthismulti-coatingprocedureistomasksupport’s defects[16,17]thatunderminetheintegrityoftheactivetoplayer. Asamoreversatiletechnique,CVDofvariousmetal–organic pre-cursorscaneffectivelycontroltheporesizebydepositingeither activemetal–oxidenanocrystalline layersonthepore mouthof theroughsubstrateoruniformnanoparticles,whichcanbesmaller thanthoseusuallyformedbythesol–gelroutes.

In former studies of our group, CVD derived double sided activephotocatalyticceramicultrafiltration(UF)membraneswere employedfororganicdyeremovalfromwastewater[18–21].The innovativehybridphotocatalytic/UFprocessinvolvedthefiltration ofpollutedwaterinthecross-flowordead-endmembrane con-figuration,withUVirradiationappliedonbothphotocatalytically activesurfacesofthemembranes.Theoverallconceptandmethod ofimplementationintoanefficientwaterpurificationdeviceare alreadyprotectedbyaEuropeanpatent[22].Whencomparedto thestandard nanofiltration (NF) with ceramic membranes, the hybridphotocatalytic/UFprocessachievedfivetimeshigher pol-lutantremovalefficiencywhileperformingwiththesamewater recovery[21].Mostimportant,due tothelowtrans-membrane pressure,theenergyexpense(kWh/m3)ofthepumpfeedingthe waterstreaminthemembranemodulewasalmosthalftheenergy usuallyspentinNF.However,properevaluationoftheeconomic feasibilityoftheproposedhybridphotocatalytic/UFwater treat-mentrequirestakingalsointoaccounttheenergyconsumedfor poweringtheUVsources.TheconcernisclearlydepictedinFig.1, wheretheenergyconsumptionofa CVDderived photocatalytic ceramicmembrane [21]is comparedwiththestandard NF and reverseosmosis(RO)processes.WhenapplyingthreeormoreUVA lightsourcesof8Weach,withthepurposetoachievesufficient irradiationdensityonthephotocatalyticallyactivemembrane sur-face,thetotalenergyconsumedfortreatingthesameamountof waterexceedsthatrequiredinatypicalNFprocess,andinsome casesitisequaltothatofthemostenergydemandingRO.

Inthiscontext,theexploitationofcost-freesolarenergyinstead ofUVlightsourcesishighlyappealing.Followingthespreadingof visible-light-activematerialsandtechnologiesusingsolar radia-tion,likephotovoltaicsandopticalfibers,attemptstoextendthe photoresponseofTiO2intothevisibleregionandexploitationof solarlightdrivenapplicationshasbecomeatopicofgreat inter-est.SurfacemodificationofTiO2byanionormetaldoping[23–26], orthedevelopmentofcompositeswithcarbonmaterialslike car-bonnanotubes(CNTs),fullerenes,graphene,nanodiamonds and othernanocarbonsmainlyofgraphitictype,haveledtosignificant enhancementof theirphotocatalyticactivity undervisible light [27–29].

EspeciallythetopicofCNTs-TiO2andgrapheneoxide–TiO2 com-positeshaslatelyattractedmuchattentionbyourgroup[30,31] duetochargetransfereffectsforeseenwhenthegraphiticsurface iscoupledwiththesurfaceofthephotocatalyst.

In thepresent study,partially reduced grapheneoxide/TiO2 composite membranes were developed for a photocatalytic/UF water treatmentprocessactivated byvisible light. Tothis aim, ceramicmembraneswerecoatedwithpartiallyreducedgraphene oxide/TiO2 composites (GOT) and tested in the photocatalytic removal of organic dyes from synthetic wastewater, under

continuous flow conditions. Nanofiltration and ultrafiltration ceramicmonochannelmonolithswereusedassubstrateswiththe purposetounveiltheeffectoftheporesizeonthestabilityand pollutantremovalefficiencyofthedevelopedGOTphotocatalytic membranes.Inaddition,aTiO2membranehadbeendevelopedby usingthesamedippingsolbutwithoutdispersingGO,inorderto haveareferencematerialtocomparewiththeGOTmembranesand toelucidatetheeffectofpartiallyreducedgrapheneoxide(GO)on thephotodegradationandadsorptioncapacity.

2. Experimental

2.1. Materialsandreagents

Ammoniumhexafluorotitanate(IV)(>99.99%),boricacid(>99%), sulfuric acid(>95%),methylorange - MO(99%) and methylene blue-MB(99%)wereobtainedfromSigma-Aldrich.Thesubstrates appliedfor thedevelopmentoftheGOTmembranesweresilica NFsinglechannelmonolithswithnominalporesizeof1nmand molecularweightcutoff(MWCOT)of0.45kDand␥-aluminaUF singlechannelmonolithswithnominalporesizeof5and10nm andrespectiveMWCOTof7.5kDand50kD.TheNForUF sepa-rationlayer(1.5␮minthickness)waslocatedontheshellsideof themonolith,whichhad alengthof15cm,IDandODof7and 10mm,respectively,andglazedendsof1.5cmlength.Therestof thetubularmembranefromtheshelltothelumensideconsisted oftwointermediate␥-aluminalayersandaroughmacroporous ␣-aluminasupport.Detailsontheporesizeandvolumeoftheseveral layerscanbefoundelsewhere[32].

Naturalgraphite(99.9995%purity,20␮m,fromSigma-Aldrich) wasusedasprecursorofGO.First,graphiteoxidewasprepared throughthemodifiedHummersmethod[33,34].Then,the result-ingmaterialwasdispersedinagivenvolumeofwaterandsonicated withanultrasonicprocessor(UP400S,24kHz)for1h.The result-ingsonicateddispersionwascentrifugedfor20minat3000rpmto obtainasuspensionofGO.

Then, the GOT composite was synthesized with these dis-persions by theliquid phase deposition(LPD) method atroom temperature,asdescribedelsewhere[33].Briefly,ammonium hex-afluorotitanate(IV),(NH4)2TiF6(0.1mol/L),andboricacid,H3BO3 (0.3mol/L),wereaddedtoacertainamountoftheGOdispersion heatedat60◦Cfor2hundervigorousstirring.Thematerialwas sep-aratedbyfiltration,washedwithwateranddriedat100◦Cunder vacuumfor2h.Thecarbonloading(4wt.%)wasselectedtaking intoaccountthehighestphotocatalyticactivityobtainedwiththis GOTcompositeinourpreviouswork[33].BareTiO2wasalso pre-paredandtreatedbythesamemethod,withouttheadditionofany carbonmaterial.

2.2. Membranedevelopment

Anaqueousdispersion(50g/L) containingthecorresponding photocatalyst(GOTorbareTiO2)wasusedtodepositthe mate-rialonthedifferentceramicmembranesbydip-coating(down/up velocityof 50mm/minand diptimeof 30s).Threelayerswere appliedonthemembranesandaftereachcoatinglayerthe mem-branewasdriedat120◦C inanovenfor30min.Afterthat,the coated membranes weretreated at 200◦C, witha heating and cooling rate of 1◦C/min and under a N2 atmosphere. The lat-ter treatment resulted in the enhancement of the composite’s photocatalyticactivitybytheimprovementofTiO2 nanoparticle crystallinityandthepartialreductionoftheGOsheetsthat fur-therenhanceschargetransferbetweenthecompositeconstituents [33].Finally,theceramicmembranesweresoftlyflushedwith com-pressedairinordertoremovetheparticlesnotwell-adheredbefore beingusedinreaction.Themembranesdevelopedonthemonoliths

(3)

0 20 40 60 80 100 120 NF 1 nm without irradiation RO CVD photocatalytic membrane UVA 40W CVD photocatalytic membrane UVA 36W CVD photocatalytic membrane UVA 30W CVD photocatalytic membrane UVA 24W CVD photocatalytic membrane UVA 20W E ne rg y con s umpt ion ( kW h/ 1 00 m 3)

Energy (light source)

Energy (pump)

Fig.1. Barchartpresentingacomparisonoftheenergyconsumptionbetweenastandardmembranetechnologyandtheproposedhybridphotocatalytic/ultrafiltration process.Thebarswithtwocolorsareforthephotocatalytic/ultrafiltration.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

withporesizeof1,5,and10nmusingtheGOTaqueous suspen-sionarereferredasGOT-1,GOT-5andGOT-10,respectively,while themembranedevelopedonthemonolithwithporesizeof10nm usingtheTiO2aqueoussuspensionisreferredasreference mem-brane.

2.3. Physicochemicalandperformancecharacterization 2.3.1. Physicochemicalcharacterization

Micro-Ramanspectroscopymeasurementswereperformedin backscatteringconfigurationonaRenishawinViaReflex spectrom-eterusinganAr+ionlaser(=514.5nm,2.41eV)andahighpower nearinfrared(NIR)diodelaser(=785nm,1.58eV)asexcitation sources.Thelaserbeamwasfocusedontothespecimensbymeans ofa50×(NA=0.75)objective,whileanalysisofthescatteredbeam wasperformedona250mmfocallengthspectrometeralongwitha 1800lines/mmdiffractiongratingandahigh-sensitivityCCD detec-tor.Ramanmappingonthemembranesurfaceswasimplemented onamotorizedfeedback-controlledXYZmappingspecimenstage. The morphology of the GOT composite was determined by scanning electron microscopy (SEM) in a FEI Quanta 400FEG ESEM/EDAXGenesis X4M instrument.The point zeroof charge (pHPZC)ofthepowdermaterialswasdeterminedfollowingapH drifttestdescribedelsewhere[35,36].Solutionswithvaryinginitial pH(2–12)werepreparedusingHCl(0.1mol/L)orNaOH(0.1mol/L) and50mLofNaCl(0.01mol/L) aselectrolyte.Eachsolutionwas contactedwith0.15gofthematerial(GOTorTiO2)andthefinalpH wasmeasuredafter24hofcontinuousstirringatroom tempera-ture.ThePZCvalueofthematerialwasdeterminedbyintercepting theobtainedfinal-pHvs. initial-pHcurvewiththestraight line final-pH=initial-pH.

2.3.2. Performanceevaluation

Thehybridphotocatalytic/membranefiltrationprocessestook place in a photocatalytic purification device, which has been describedindetailelsewhere[21].Inbrief,thepurificationdevice allowedtodeterminetheperformanceofphotocatalytictestsinthe cross-flowanddead-endfiltrationmodewithirradiationapplied

ontheshellsidesurfaceofthesinglechannelmonolith.Near-UV radiation(315–380nm)withapeakat365nmwasappliedatalight intensityof2.1mW/cm2.Thisirradiationdensitywasachievedby fourUVlampsof9W(Phillips-UVA(PUVA)PL-S/PL-L)placedata distanceof3cmfromtheouterPlexiglascellofthemembrane reac-torandsleevedbyacylinderofthickaluminumfoil.Fourvislamps of9W(OsramDULUXS9W/21-840G23LUMILUXCoolWhite), placedatthesamedistanceof3cmfromthePlexiglascell,were usedtoachieveavislightirradiationdensityof7.2mW/cm2.

The total flow of polluted water feeding the reactor was 1.5mL/minfortheGOT-5,GOT-10andreferencemembranes,and thefiltrationwasperformedinthedead-end mode.The GOT-1 membranewasexaminedinthetangentialflow(cross-flow)mode withatotalpollutedwaterfeedof0.3mL/min.Theconcentrations of MOand MBin thefeedsolutionwere4.4×10−3mg/mL and 1.8×10−3mg/mL,respectively.

The concentrations (C) of MO and MB collected from the retentateandpermeatesideofthemembrane,andthe concentra-tion(C0)ofthefeed,weredeterminedbymeasuringthevisible light absorbance at 466nm and 664nm,respectively. The total amountsofremovedpollutantwereobtainedfromthemass bal-ancebetweenthefeed,retentateandpermeatesideoftheGOT-1 membraneandbetweenthefeedandpermeatesideoftheGOT-5, GOT-10andreferencemembranes.

3. Resultsanddiscussion

3.1. TheeffectofGOontheadsorptionandphotocatalytic performanceofthemembranes

Comparative performance evaluation of the GOT modified photocatalytic membrane(GOT-10) and that modified withthe respectiveTiO2phase(reference)wasperformedinordertounveil theoccurrenceornotofsynergeticchargetransferandadsorption effectsofGOonthephotocatalyticactivityofTiO2.

ThecapacityofthetwomembranestoremoveMOandMBfrom theiraqueoussolutionswasexaminedinthedead-endfiltration modewithafeedflowof1.5mL/min.Filtrationexperimentswere

(4)

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0 0.5 1 1.5 2 mas s of po llutant re mo ve d ( mg /c m 2)

mass of pollutant introduced in the

reactor (mg) GOT-10 MO reference MO GOT-10 MB reference MB

(a)

0 5 10 15 20 25 30 35 40 0 125 250 375 Pe rme a n ce (L/m 2/h/ ba r)

Filtraon me (min) GOT-10 MO reference MO GOT-10 MB reference MB

(b)

Fig.2.(a)Pollutantadsorptionand/orrejectionefficiencyoftheGOT-10andthereferencemembranesforMBandMOinthedark.(b)Therespectiveevolutionofpermeance duringthefiltrationexperimentsindark.

sequentiallyperformed,startingwithoutirradiation(indark)and continuingwithUVandvisirradiationappliedontheshellside sur-faceofeachmembrane.Theflowdirectionoftheaqueoussolution wasfromtheshelltothelumenside,andthephotocatalytically activesurfaceofeachmembranewasapproximately25cm2.

Fig.2a presents theretainedamount ofpollutant (adsorbed and/orrejected)persquarecentimeterofmembranesurfacevs.the totalamountfedinthereactorunderdarkconditions.Theretained amountwascalculatedfromthemassbalancebetweenthefeed andpermeatesideofthemembrane,andnormalizedovertheactive membrane’ssurface.

No significanteffects due toenhanced adsorption of MB or MOontheGOsurfacecouldbeidentified(Fig.2a).Inaprevious studyoftheauthors[36],ithasbeenshownthatthetotalpore volume(Vp)andBET surfacearea(SBET)are comparableforthe GOTcomposite(0.17cm3/gand110m2/g,respectively)andTiO

2 (0.11cm3/gand120m2/g,respectively),bothbeinghigherthanfor GO(0.0027cm3/gand21m2/g,respectively)becauseaggregation ofGOsheetsoccurswhenthesuspensionofGOisdriedtoperform N2adsorptionanalysis.Becauseofthehigherporosity,a benefi-cialeffectonthephotocatalyticactivityoftheGOT-10membrane couldbeexpectedduetoincreasedconcentrationofthepollutant moleculesinthevicinityofthephotocatalyst.However,therewas nodifferenceontheadsorptionperformanceofGOT-10compared tothereferencemembrane(Fig.2a)whichmightjustifyapossible significantenhancementofthephotodegradationefficiency.

Inorder toelucidatethereasons behindthesimilar adsorp-tioncapacityofGOT-10andthereferencemembranes,thepHPZC ofthe GOTcomposite and thepossiblecharge of thepollutant moleculeswereexaminedinrelationtothepHof theinvolved solutions.ThepHPZC≈3.2ofGOTtreatedat200◦Crevealsastrongly acidiccharacter.Thus,atthepHconditionsoftheusedMOsolution (pH=6.0ataconcentrationof4.4mg/L)thesurfaceofthe compos-iteisnegativelychargedandthesameholdsforMO,whichhas lostitsamphotericcharacterduetodeprotonationatthe N N bridgebetweentherings.Thesameeffectoccursinthecaseofthe referencemembrane,becauseTiO2 alsopresentsanacidic char-acter(pHPZC≈3.5)due totheprecursorusedinthepreparation

ofthisTiO2materialbytheLPDmethod.Concerningthecationic MB dye,both membranes exhibited a 4-foldhigher adsorption capacity compared toMO, asexpected due tothe electrostatic attractionbetweentheirnegativelychargedsurfaces(thepHofthe MBsolutionis7.2)andpositivelychargedions(Fig.2a).Likewise, theGOT-10membraneexhibitssimilaradsorptioncapacityasthe reference,sincetheemployedGOTandTiO2materialshavequite similarSBETandpHPZC.Ontheotherhand,thedepositionoftheGOT compositeexertedanegativeeffectonthefluxcapacityofthe GOT-10 membrane.Fig.2b showsthat GOT-10’spermeancereached steadystateafter4honstreamandwasconsiderablylowerthan thatofthereferencemembrane.ThelowerpermeanceofGOT-10 couldbeattributedtopore-blockingeffectsinducedbythe intro-ductionorattachmentoftheGOTcompositeintothe10nmpores ofthesupport.Theporesizeof10nmwassufficienttohostthe GO–TiO2composites,ensuringthestabilityofthederivedGOT-10 membrane,incontrasttothesupportsofsmallerporesize(see Section3.2).

Althoughhighfluxisadesirablepropertyofmembrane tech-nology,itshouldbenotedthatthe30–35%reductioninthewater permeanceofGOT-10comparedtothereferencemembranewas notsosevereandcouldbeeffectivelycompensatedbythe advan-tageofhigherstability.

Itisalsoimportanttonotethecontinuousdeclineofthe per-meanceforbothmembranesduringfiltrationindark(Fig.2b).This istheresultoflimitationstothepassageofwater,posedbythe adsorption(stacking)ofMOorMBmoleculesontheactivesites ofthemembrane’ssurface.Thesameeffectoccurswiththe ref-erence membrane as evidenced in Fig.3a and b where optical imagesoftheshellsidesurfaceofthereferencemembraneafterthe MOfiltrationexperimentsindarkandunderUV,respectively,are compared.

Moreover,theobservedpermeancedeclinecannotberelated tothemembranes’fouling,whichusuallyresultsfromthe adsorp-tionoflargerorganicmoleculessuchashumicandfulvicacidsthat blocktheporeentrances.Thiseffectcanberatherrelatedtochanges ofthemembrane’ssurfacechemistryandchargeuponadsorption ofMOandMB.Thepermeancelevelsoffwhenallactivesitesare

(5)

Fig.3.Photosshowingtheshellsidesurfaceofthereferencemembraneafterthe filtrationexperimentswithMO.(a)Filtrationexperimentindark.(b)Filtration experimentunderUV.

occupied,andfromthispointonwardthefluxpropertiesofthe membranesreachasteadystate(Fig.2b).

Uponcompletionofthefiltrationexperimentindark,theUV sourceslocatedaroundthereactorcellwereswitchedonandthe experimentunderUVirradiationcommenced.

Experimentswereperformedinthissequenceinordertoenable thedistinction betweentheeffectofphotocatalyticdegradation andthetransientadsorptiononafullyfreshsurface.Asconcluded from theresults presented in Fig.2a, the amountof pollutant adsorbedontheunsaturatedmembranesurfaceishighandcould haveasignificantadditiveeffectontheestimatedphotocatalytic membraneperformance.Inthiscontext,ourprimarypurposewas toallowadsorptionequilibrium tobereachedandthentostart theirradiationexperimentsinordertofocusourstudysolelyon thecomparisonofthephotocatalyticefficiencybetweenthetwo membranes.

The results obtained under UV irradiation are presented in Fig.4aandb.Thefirstsignificantaspectisthetemporalevolution ofthemembranespermeanceunderUV(Fig.4b).Atthebeginning oftheirradiationexperiment,thepermeanceincreasesasa con-sequenceofthephotodegradationofthepre-adsorbedpollutant molecules.InthecaseofGOT-10,thepermeancelevelsoffafter 2.0–2.5honstreamandremainsstableforthenext3.0hofthe fil-trationexperimentunderUV.Thestabilityisduetothecontinuous degradationofthepollutantmoleculesthatarenewlyadsorbedon thephotocatalyst.

Ontheotherhand,thepermeanceofthereferencemembrane levelsoffmuchlaterandmoreimportantly,itssteadystatevalue is10–13%higherthanthatobtainedattheinitialstagesofthe fil-trationexperimentindark(Fig.2b).Thisfactrevealsenhancement ofthehydrophiliccharacterofthedepositedTiO2 during irradi-ation.Thebeneficialeffectsofphotoinducedhydrophilicityhave alreadybeenmentionedinpreviousstudiesoftheauthors con-cerningTiO2 photocatalysts[37]andphotocatalyticmembranes. Veryrecently,athoroughinvestigationwasconductedinorderto corroboratetheeffectofUVirradiationonthefluxpropertiesof photocatalyticceramicmembranes.Thisstudyconfirmedthatthe observedenhancementofthepermeanceisnotduetowarmingup ofthefiltrationfluidbutratherduetotheinherentpropertyofTiO2 toincrease thepopulationofsurfacehydroxylswhenirradiated withUV[23].InthecaseoftheGOT-10membranesuchaneffect wasnotevident,indicatingthatGOpreventsthehighhydrophilic characterofirradiatedTiO2.

Furthermore,asuddendropinthepermeanceofboth mem-braneswasobservedatabout1hafterswitchingfromUVtovislight irradiation(Fig.4d).DuringMBfiltration,thepermeanceofthe ref-erencemembranedroppedwellbelowthevalueof30L/m2/h/bar (theinitialpermeancevalue),indicating thatthereferenceTiO2 materialexhibitsmoderateefficiencyforthephotocatalytic degra-dationof MB undervisible light. Asa result, adsorptionof MB moleculescausesasignificantdecreaseofthewaterflux.Onthe contrary,thesteadystatepermeancevalueoftheGOT-10 mem-braneunder visible light wasalmostidentical tothat obtained duringtheinitialstageoffiltrationindark(Fig.2b),afactunveiling continuousdegradationofthenewlyadsorbedpollutantmolecules

undervislightirradiation.TheplotsofMOandMBremovalvs.the amountfed(Fig.4aandc)revealthehigherphotocatalytic activ-ityofGOT-10comparedtothereferencemembrane.Theenhancing effectofGOissignificantandbycomparingtheslopesoftheplots,a 2-foldhigherpollutantremovalefficiencyisconcludedforGOT-10. Asalready shown,theadsorptioncapacity ofthetwo mem-branes was similar. Therefore, electron sinking effects are concludedbythefactthatGOT-10ismuchmoreefficientthanthe referencemembraneinthedegradationofMBunderUV.

Moreover,themuchhigheractivityofGOT-10undervislightcan beattributedtothefactthatGO(4wt.%)actsassensitizer(electron donor)ofTiO2 undervislight,asalreadyprovedinourprevious publicationwherethismaterial,preparedbytheLPDmethod,was testedintheformofpowder[33,38].Infact,thisGOTcomposite, independentlyofitsmodeofapplication,eitherfreelydispersed inwater[33],immobilizedintohollowfibers[36]orstabilizedinto theporesofUFmembranes(asshowninthepresentwork),exhibits remarkablephotocatalyticactivityundervis-light.

Finally,weshouldnotethatwhenthetargetistocomparethe photocatalyticefficiencyofdifferentmembranes,afiltration exper-imentofprolongedperiodunderdarkmustprecedethefiltration under irradiation. Indeed, when examining a freshly prepared sample,unoccupiedadsorptionsitesareavailablebothonthe pho-tocatalyticandnon-photocatalyticpartoftheentiremembrane. Inthatcase,differencesintheadsorptioncapacitycanleadto mis-leadingconclusionsrelevanttotherankingofthephotocatalytic efficiency, since adsorption on photocatalytically inactive sites andphotocatalyticdegradationmayoccursimultaneously.Thisis clearlydepictedinFig.5,wherewepresentthepollutantremoval efficiencyofthemembranesforthecaseswhenfiltrationindark precededornottheirradiationexperiments.Itcanbeseenthatthe referencemembranepresentedsimilar(forMB)orslightlybetter (forMO)performancecomparedtoGOT-10whentheirradiation wasappliedfromthebeginningofthefiltrationexperiment.

However,asthefiltrationproceedsanduponoccupationofall activesiteswithadsorbedmoleculestheslopesoftheplots(Fig.5) decline,especiallythosecorrespondingtothereferencemembrane (comparebetweenFig.5aandb)andthesteadystateperformance highlightsGOT-10asthemostefficientphotocatalyst.

3.2. EffectofthesubstrateporesizeontheGOTmembranes morphologyandperformance

Todeterminetheoptimumporesizeoftheceramicsupportfor thedevelopmentofanefficientandstablemembranehosting par-tiallyreducedgrapheneoxide/TiO2composites,GOT-10,GOT-5and GOT-1membraneswerecomparativelyevaluatedfortheremoval ofbothMOandMBunderdarkandUVlightconditions.BoththeUV photocatalyticefficiencyandadsorptioncapacityindarkofGOT-5 differedmarkedlyfromthoseofGOT-10andthereference mem-branes (Fig.6a andb),indicativeof significantvariationsin the depositionefficiencyofGOTonmembranesofdifferentporesizes bydipcoating.

ThephotocatalyticefficiencyofGOT-5wasmarkedlyreduced forboth MOandMB pollutants,implyingadrasticreductionof theamountofphotocatalystdepositedonthe5nmsubstrate.As evidencedbythecorrespondingmicro-Ramananalysis(described below), a relatively smaller fraction of the GOT composite is introducedandstabilized intothe5nm pores,whilea substan-tialamountofGOTisrejectedandleachedoutofthemembrane’s surface.

ThephotocatalyticefficiencyofGOT-5ismuchlowerthanthat ofGOT-10andreferencemembranes(Fig.6b),confirmingthatless GOTwasstabilizedintotheporesandsurfaceofGOT-5in compar-isontotheGOT-10membrane.

(6)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 1 2 3 m ass of p o ll u ta nt re m ov ed ( m g / cm 2)

mass of pollutant introduced in the

reactor (mg)

UV

GOT-10 MO reference MO GOT-10 MB reference MB

(a)

0 5 10 15 20 25 30 35 40 45 0 125 250 375 Pe rm e an ce ( L / m 2/h / b a r)

Filtraon me (min)

UV

GOT-10 MO reference MO GOT-10 MB reference MB

(b)

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0 1 2 ma ss of p ol lu ta nt r e mo ved (m g/ cm 2)

mass of pollutant introduced in the reactor (mg)

Vis

GOT-10 MO reference MO GOT-10 MB reference MB

(c)

0 5 10 15 20 25 30 35 40 0 125 250 375 Pe rm e an ce ( L / m 2/h / b a r)

Filtraon me (min)

Vis

GOT-10 MO reference MO GOT-10 MB reference MB

(d)

Fig.4.(a)PollutantremovalefficiencyoftheGOT-10andreferencemembranesduringfiltrationunderUV.(b)EvolutionoftheGOT-10andreferencemembranepermeance duringfiltrationoftheMBandMOsolutionswiththeapplicationofUV.(c)PollutantremovalefficiencyoftheGOT-10andreferencemembranesduringfiltrationundervis. (d)EvolutionoftheGOT-10andreferencemembranepermeanceduringfiltrationoftheMOandMBsolutionswiththeapplicationofvis.

Onthecontrary,GOT-5exhibitedsignificantlyhigher adsorp-tionefficiencyin darkcompared toboth thereferenceand the GOT-10membranes.Thiscanbeexplainedintermsofthelarger fractionofthe␥-aluminasurfaceindirectcontactwiththesolution. AtthepHconditionsinvolved,␥-alumina,withapHPZCofabout9.1, ispositivelychargedandcanstronglyattracttheMOmolecules. Indeed,asshowninFig.6a,GOT-5presentedabout1.5foldhigher adsorptionefficiencyforMBand3foldhigheradsorptionforMO comparedtothereferenceandGOT-10membranes.

Besidesthephotocatalyticefficiencyandadsorptioncapacity, thepermeancepropertiesofGOT-5reflectedtheloweramountof thephotocatalyststabilizedintothemembraneporescomparedto GOT-10.

DuringfiltrationindarkandsubsequentlyunderUV,the perme-anceofGOT-5(Fig.6candd)waslowerthanthatofthereference andhigherthanthatofGOT-10indicatingthatthephasestabilized intothe5nmporesdidnotprovokeintenseporeblockingaswas thecasefortheGOT-10membrane.Therefore,thestabilizedphase wasinferredtobelessbulkyand/or,morelikely,theporesofthe ␥-aluminalayerfailedtohostmostoftheGOTcompositestructures intheGOT-5membrane.

Moreover,theGOT-5membraneperformsthefiltration exper-imentwithoutanysignificantchangeinitspermeanceuponUV irradiation(Fig.6d),incontrasttotheothertwomembranes,where thepermeanceincreasescontinuouslyduetothehigheramountof TiO2thatphotodegradesthepre-adsorbedpollutants.

(7)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 1 2 3 ma ss of po ll utant rem ov ed (mg /c m 2)

mass of pollutant introduced in the reactor (mg) UV GOT-10 MO reference MO GOT-10 MB reference MB

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0 0.5 1 1.5 2 mass of po ll utant r emo v ed (mg /c m 2)

mass of pollutant introduced in the reactor (mg) UV GOT-10 MO reference MO GOT-10 MB reference MB

(b)

0.000 0.001 0.002 0.003 0.004 0 0.2 0.4 0.6 0.8 m ass of po ll utant r em ov ed (mg /cm 2)

mass of pollutant introduced in the reactor (mg) Vis GOT-10 MB reference MB GOT-10 MB reference MB

(c)

Fig.5.(a)ExperimentsperformedwiththeUVirradiationappliedafterhavingreachedpollutantadsorptionequilibriumindark.(b)ExperimentsperformedwiththeUV irradiationappliedatthebeginningofthefiltrationexperiment.(c)MBdegradationundervislight.Circlesymbols:irradiationappliedafteradsorptionequilibrium.Diamond symbols:Irradiationappliedatthebeginningofthefiltrationexperiment.

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 1 2 3 4 m ass of poll ut a nt rem ov ed (m g/ cm 2)

mass of pollutant introduced in the reactor (mg)

dark

GOT-5 MB GOT-10 MB reference MB GOT-5 MO GOT-10 MO reference MO

(a)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 1 2 3 mass of p oll ut a nt rem o ved ( mg /c m 2)

mass of pollutant introduced in the reactor (mg)

UV

GOT-5 MB GOT-10 MB reference MB GOT-5 MO GOT-10 MO reference MO

(b)

0 5 10 15 20 25 30 35 40 0 100 200 300 400 P erme an ce (L /m 2/h/b a r)

Filtraon me (min)

dark

GOT-5 MB GOT-10 MB reference MB GOT-5 MO GOT-10 MO reference MO

(c)

0 5 10 15 20 25 30 35 40 45 0 200 400 600 P erme an ce (L /m 2/h /ba r)

Filtraon me (min)

UV

GOT-5 MB GOT-10 MB reference MB GOT-5 MO GOT-10 MO reference MO

(d)

Fig.6.PollutantsremovalefficiencyandpermeanceevolutionofthethreemembranesdevelopedonUFsubstrates.(a)AdsorptionduringfiltrationwithMBandMOindark. (b)MOandMBremovalefficiencyduringfiltrationunderUV.(c)Permeanceevolutionduringfiltrationindark.(d)PermeanceevolutionduringfiltrationunderUV.

(8)

Fig.7.Micro-RamanspectraonthesurfaceoftheGOTandreferencemembranesincomparisonwiththeGOTpowderat(a)514.5and(b)785nmlaserexcitations.Optical imagesandcorrespondingRamanspectraonthesurfaceofGOT-5membraneat(c)514.5and(d)785nm.

ThedegreeofsurfacemodificationfortheGOTmembraneswas directlyinvestigatedbymicro-Ramanspectroscopyunder514.5 and785nmlaserexcitations(Fig.7aandb).

TheGOT-10membraneexhibitedastableRamanspectrumover itssurface,comprisingtherelativelybroadanataseTiO2 Raman modesatlowerfrequencies(100–700cm−1)arisingfromthesmall TiO2nanoparticlesgrownbytheLPDmethod(ca.4nm).In addi-tion,thebroadgraphiticGandthedefectactivatedDbandswere observedathigherfrequencies(1300–1700cm−1),characteristicof theGOflakes[33].InthecaseofGOT-10,therelativeintensityof themostintenseTiO2modeat∼156cm−1withrespecttothatof theGO-derivedGorDbandswassimilartothoseobtainedforGOT inpowderformatboth514.5and785nmexcitationwavelengths (Fig.7aandb).ThisconfirmedthattheGOTsheetswere homoge-neouslydepositedandstabilizedinthe10nmporesoftheUFlayer ofthemembranesupport,retainingtheirstructuralintegrity. Like-wise,thebroadanataseTiO2modesweredetectedonthesurface ofthereferencemembrane withsimilarspectralcharacteristics tothoseforGOT[33],confirmingthehomogeneousdepositionof small(4–5nm)anatasenanoparticlesinthe10nmUFmembrane layer.

Ontheotherhand,astheporesizeofthemembrane’sfiltration layerdecreasedforGOT-5andGOT-1,asystematicincreaseofthe TiO2modeRamanintensityrelativetothatoftheGand/orDbands wasobservedatbothlaserexcitations,indicatinginhomogeneous depositionandlossoftheGOTcomposite’sintegrityonthe mem-branesurface.ThiswasmostprominentinthecaseofGOT-5,where thepresenceofdarkcoloredspatialregionswasadditionally iden-tifiedonthemembranesurface(Fig.7candd).Inthesedarkregions, onlyaweakRamanspectrumfromanatasenanoparticlescouldbe tracedtogetherwithtwoweakmodesat379and418cm−1 due

to␣-Al2O3.ThissuggestsalowamountofTiO2depositionmaking visibletheinner␣-Al2O3membranelayers[39].Ontheotherhand, theGandDbandsweresuppressedinthedarkregions,confirming theabsenceofGOsheets.Areductionoftheoverallphotocatalyst loadingontheGOT-5membraneaswellasleachingofa substan-tialfractionofGOTsheetsleadingtoaninhomogeneouscoverage ofthemembranesurfacecouldbethusevidenced.ForGOT-1a spa-tiallyconstantRamansignaloveritssurfaceisobtained,comprising arelativelyweakerGORamanspectrumwithrelativelyenhanced TiO2 modes,mostlikelyarisingfromTiO2 nanoparticlesthatare notjointedwithGOsheets.Thisindicatesahomogeneousthough sparsesurfacedepositionofthephotocatalystontheNFfiltration layer.

AcomparisonoftheperformancebetweenGOT-1andGOT-10 membranesispresentedinFig.8.Whentheefficiencyisevaluated intermsoftheeffectivereductionofthepollutantconcentrationat thepermeateeffluent(Fig.8a),thenGOT-1canbeclassifiedasthe bestamongstallthedevelopedmembranes.Indeed,GOT-1 mem-branehasthecapacitytohinderthepassageofthedyemolecules tothepermeatesiderejectingthemtotheretentateeffluent.

On theotherhand,whenthe targetis todegrade(e.g. pho-tocatalytically)thepollutantfrombotheffluents(permeate and retentate),thenGOT-1andGOT-10membranesdisplaysimilar per-formance(Fig.8c).

Itis importanttonotethat thereweremajordifferences on theimplementationofthephotocatalyticfiltrationexperiments betweenGOT-1andGOT-10thatmaycreatetheimpressionof sim-ilarperformance.Inparticular,duetolimitationsatthemaximum operatingpressureofthephotocatalyticmembranereactor(a Plex-iglascellwasinvolvedtomakepossibletheirradiationontheshell surfaceofthemembrane),trans-membranepressurescouldnot

(9)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 500 1000 1500 C/ C o me (min)

Experiment under UV

perme

ate si

de

GOT-10 MB GOT-1 MB GOT-10 MO GOT-1 MO

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 500 1000 1500 C/ Co me (min)

Experiment under UV

feed side

GOT-1 MB GOT-1 MO

(b)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ma ss of po ll u ta nt r em o ved (m g/c m 2)

mass of pollutant introduced in the reactor (mg)

UV

GOT-10 MB GOT-1 MB GOT-10 MO GOT-1 MO

(c)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 0.5 1 1.5 2 m ass of po llut a nt re mo ve d ( mg /cm 2)

mass of pollutant introduced in the reactor (mg)

dark

GOT-1 MB GOT-10 MB GOT-1 MO GOT-10 MO

(d)

Fig.8. (a)Concentrationofthepollutantinthepermeateeffluent(C)normalizedbytheconcentrationinthefeedstream(C0).(b)Concentrationofthepollutantintheretentate

effluent(C)normalizedbytheconcentrationinthefeedstream(C0).(c)PollutantsremovalefficiencyofGOT-1andGOT-10duringfiltrationunderUV.(d)Pollutantsremoval

efficiencyofGOT-1andGOT-10duringfiltrationindark.

exceed20bar.Thepressurelimitationincombinationwiththevery lowpermeanceoftheGOT-1membrane(NFregime),necessitated itsexaminationinthecross-flow(tangentialflow)filtrationmode ataverylowtotalflowrateof0.3mL/min.Undertheseconditions thewaterrecoveryachievedwas27and32%fortheMBandMO experiments,respectively.Onthecontrary,theGOT-10membrane wastestedinthedead-endfiltrationmodeatatotalflowrateof 1.5mL/minandwaterrecoveryof100%.Itcanbeconcludedthatin thecaseofGOT-1,thecontacttimeofthesolutionwiththe pho-tocatalyticallyactivesurfaceswasaboutfivetimeshigherthanthe respectiveonewithGOT-10.Notably,thelargedifferenceinthe contacttimeonlypartiallyexplainswhyGOT-1,whilebearingless amountofphotocatalyst,exhibitssimilarpollutantremoval effi-ciencytoGOT-10.Thetruereasonwasthefailuretofullysaturate theactivesitesofGOT-1duringthefiltrationexperimentindark, which precededtheexperiment under UV.Indeed, asobserved inFig.8d,theMBadsorptioncurvewasstilllinearwhentheUV experimentstarted.

Itis alsoimportanttoexaminetheevolutionof the concen-trationofpollutantsattheretentateeffluentduringthefiltration

experimentsunderUV(Fig.8b).Asmentionedabove,atthe begin-ningoftheUVfiltrationwiththeMBsolution,theshellsidesurface ofGOT-1stillpossessedahighpopulationofactivesites,where MBmolecules couldbeeasilyadsorbed.Thus,contrarytowhat wouldbeexpectedduetosizeexclusion,adsorptiononthe sur-faceledtoasignificantattenuationoftheMBconcentrationinthe retentateeffluent.Thereductionoftheconcentrationcouldnotbe attributedtotheenhancedphotodegradationefficiencyoftheshell sidesurfaceofthemembrane,which,asconcludedfromtheRaman analysis,bearsarelativelylowerquantityofthephotocatalyst.

InthecaseofMO,andjustbeforestartingtheirradiation exper-imentwithUV,theGOT-1surfacehadalreadybeensaturatedwith thepollutantmolecules(Fig.8d).WiththeapplicationofUV,the smallamountofthestabilizedphotocatalystwasnotsufficientto photodegradetheMOmoleculesandmoreover,due tothesize exclusioneffectfromthe1nmpores,theretentateeffluentbecame progressivelymoreconcentratedthanthefeedstream.

Anotherinterestingfeature(Fig.8d)isthehigherMOandMB adsorptioncapacityofGOT-1comparedtotheGOT-10membrane. ThehigheradsorptioncapacitywasduetothesilicaNFlayerof

(10)

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 En e rg y s p e nt (k W h )

amount of pollutant removed (mg/cm2)

GOT-1

0

MB- dark MB-UV MB-Vis MO-dark MO-UV MO-Vis

(a)

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 0 0.001 0.002 0.003 0.004 0.005 En er gy sp e n t (kW h)

amount of pollutant removed (mg/cm2)

MB-UV GOT-10 pump energy MO-UV GOT-10 pump energy MB-UV GOT-1 pump energy MO-UV GOT-1 pump energy MO-UV GOT-10 pump+UV energy MB-UV GOT-10 pump+UV energy

(b)

Fig.9. (a)EffectofirradiationontheenergyexpenseandefficiencyoftheGOT-10membrane.(b)ComparisonbetweentheperformanceoftheGOT-10andGOT-1membranes.

themonoliththatwasusedassubstrateforthedevelopmentof GOT-1.AsconcludedfromtheRamananalysis,photocatalyst par-ticleswereonlysparselydepositedontheexternalsilicasurfaceof GOT-1,allowingforthedirectinteractionofmostofthesilicalayer withthepollutantmolecules.Inthiscontext,theGOT-1membrane

mainlyconsistsofthesilicaNFmonolith(pHPZC≈2.5)and,thus,at thepHoftheexperiments(6.0–7.2)themembraneisnegatively charged,whileMBispositivelycharged(pKalessthan1andinthe cationicformabovethisvalue[40]andMOisnegativelycharged above4.2[41]).Evenso,forlowmassofpollutantsloadedintothe

Table1

Flowandpressureconditionsappliedduringthephotocatalyticfiltrationexperimentsandperformancecharacteristicsofthedevelopedmembranes.Inallcasesthefeed flowratewas1.5mL/minexceptfromthemembranedevelopedonthesupportwiththeporesizeof1nm(GOT-1)wheretheflowratewas0.3mL/min.

Pressure(bar) Membranesurface area(m2)

Removalefficiency 104×(mg/min)

C/C0permeate Energyconsumptionbythe

pump(kWh/100m3)

ReferenceMBUV 1.34 25.1 2.2 0.86 3.7

ReferenceMBvis 1.42 27.2 1.5 0.88 3.9

ReferenceMOUV 1.15 24.7 4.6 0.95 3.2

ReferenceMOvis 1.14 26.5 1.9 0.98 3.2

GOT-10MBdark 1.70 29.6 N/A 4.7

GOT-10MBUV 1.52 30.4 7.9 0.65 4.2

GOT-10MBvis 1.50 31.5 4.8 0.77 4.2

GOT-10MOdark 2.30 29.3 N/A 6.3

GOT-10MOUV 1.55 32.8 4.9 0.92 4.3 GOT-10MOvis 1.83 31.5 3.5 0.94 5.1 GOT-5MBUV 1.32 20.4 2.7 0.91 3.6 GOT-5MOUV 1.63 22.9 1.1 0.99 4.5 GOT-1MBUV 18.5 33.0 0.9 0.20 51 GOT-1MOUV 19.1 33.0 1.4 0.48 53

(11)

reactor,Fig.8dshowsthattheremovalofthesepollutants(indark) isquitesimilarwhentheGOT-1membraneisemployed.Inthecase oftheGOT-10membrane,itconsistsofa␥-aluminaUFmonolith (pHPZC≈9.1)[42].AluminaispositivelychargedattheoperatingpH conditionsand,thus,theadsorptionofMB(positive)isexpectedto bequitelowandthatofMO(negative)quitehighinabarealumina membrane.However,theadsorptionofMBissignificantlyhigher thanthatofMO,demonstratingthatGOTwasreallydepositedon thismembrane;i.e.sincethepHPZCoftheGOTcompositeisnear3.2, theGOT-10membraneisnegativelychargedatthepHofthe exper-iments(6.0–7.2)andMBispreferentiallyadsorbedincomparison withMO.

3.3. Comparisonoftheperformanceintermsofpollutant removalefficiencyandenergyefficiencyoftheprocess

Table1presentstheoperationparametersandefficiencyofthe photocatalyticfiltrationprocessforeachofthemembranes devel-opedinthiswork.TheperformanceresultsindicatethatGOT-10 wasthebestamongstthedevelopedmembranes.

WiththeGOT-10membrane, thehybridprocessexhibited a 4–8fold higherpollutantremovalefficiency(4-foldforMOand 8-foldfor MB) compared to GOT-1, while simultaneously con-sumingabout 13 times less energy for thepump that delivers pollutedwatertothereactor.Havingevidenced thattheGOT-1 membranefailedtoretainsignificantamountsoftheGOT compos-ite,therespectiveperformanceresultscanberegardedasthose ofastandardNFmembranewith1nmnominalporesize.Inthis context,iftheefficiencyofthemembranesisevaluatedin accor-dancetotheircapacitytoreducethedyesconcentration(C/C0)at thepermeateeffluent,thenGOT-1is2–4timesmoreefficientthan GOT-10.Despitethisdifference,itcanbeestimatedthatthe GOT-10membranecouldachieveidenticalperformancetoGOT-1under vis-light(performanceexpressedintermsofpollutant concentra-tionreductionatthepermeate)viarecycling5and10timesofthe MBandMOpermeateeffluents,respectively.Thisistranslatedto 5and10timeshigherenergyconsumption,which,nevertheless,is stilllowerthantheenergyconsumptionofGOT-1.

Fig.9ademonstratesthebeneficialeffectofirradiationonthe energyexpenseofthephotocatalyticultrafiltrationprocess focus-ingontheresultsobtainedforGOT-10.

Theordinateintheplotcorrespondstotheenergyconsumedby thepumpthatdeliveredthefluidtothereactorwhiletheabscissais theamountofpollutantremovedbyGOT-10uptoacertainenergy expense.Itcanbeseenthatduringfiltrationindark,theenergy consumedincreasesexponentially,atrendthatisconsistentwith thecontinuousdeclineofthemembrane’spermeancecausedby theadsorptionofthepollutantmoleculesonitssurface.

Ontheotherhand,thedataofthefiltrationexperimentsunder UVfitwelltoalogarithmicfunction,abehaviorthatcanberelated tothesuddenincreaseofthepermeanceat theinitialstagesof theexperimentunderUV(photocatalyticdegradationofthe pre-adsorbedpollutantmolecules,Fig.4b).Furthermore,theplotsof energyexpensevs.theamountofpollutantremovedundervis irra-diationarealmostlinear.Theunderlyingreasonisthatthevis-light experiment started immediately after thefiltration experiment underUV.Thus,duetothevis-lightphotocatalyticactivityofthe GOT-10membrane,thepopulationofsurfaceadsorbedmolecules remainedunchangedandasaconsequencetherewasnot signifi-cantalterationonthefluxcapacityofthemembrane.

Fig.9bcomparestheefficiencyandenergyconsumptionof GOT-10 and GOT-1membranes,taking alsointoaccount theenergy expenseoftheUVsourcethatirradiatedtheGOT-10surface.In particular,theenergyconsumedbyfourUVsourcesof9Weach wasaddedtothatconsumedbythepumpduringtheentire exper-imental period. Thepresented plots are very illustrative ofthe

importancetoachievethedevelopmentofvis-lightactive photo-catalyticceramicmembranesandthechallengetodesignahybrid photocatalytic/ultrafiltrationprocess,wheresolarirradiationwill beexploitedatthemaximumpossiblelevel.

Althoughthepresentedresultswereobtainedinalaboratory scalereactor,wherethesmallsizeoftheinvolvedmembrane sur-face(onemonolithof30cm2)doesnotprovidetheflexibilityfor appropriateprocessdesignandoptimizationoftheirradiation den-sity,itcanbeconcludedthatinahybridphotocatalysis/UFprocess themostenergyconsumingcomponentisthelightsource.Thus, besidesthemanyotherbenefitsofferedbyphotocatalytic/UF(less fouling ofthe membranes,highflux,notoxic condensates) the economicsustainabilityandpotentialindustrialapplicationofthe processwilldependontheefficientdevelopmentofvis-lighthighly activemembranesthatusesolarirradiation.

4. Conclusions

Partiallyreducedgrapheneoxide/TiO2membraneswere devel-opedbythedepositionofGOTcompositesonceramicUFandNF monolithsviadipcoating.Theporesizeofthemonolithwas cru-cialfortheamountoftheGOTcompositestabilizedonthesubstrate andforthevis-lightphotocatalyticefficiencyofthedevelopedGOT membranes.Ithasbeenconcludedthatonlythemembrane devel-opedontheUFmonolithwith10nmporesizeexhibitedenhanced photocatalyticperformanceundervisiblelight.Thiswasattributed tothecapacity ofthe10nmporestohosttheGOTcomposites, whereasasparsedepositionofTiO2,theactivephotocatalyst,was achievedinthemembranesdevelopedonthemonolithswithpore sizesof1and5nm.

Theperformanceofahybridphotocatalysis/UFprocess involv-ingtheGOT-10membranewasimprovedcomparedtothatofa standardNFprocessinregardtotheoveralldyeremovalcapacity andtothedyeconcentrationreductioninthepermeateeffluent.

TheliquidphasedepositionmethodinvolvedtodeveloptheGOT compositesandtheirfurtherstabilizationontoceramicmonoliths viadipcoatingareeasilyupscalableandthehybrid photocatal-ysis/UF process can be easily transferredto an industrial scale application for theremoval of azo-dyesfrom water, utilizing a multitude ofmonoliths withhigherlength.It canbeestimated thataphotocatalyticmembranereactormoduleaccommodating 30monolithsof1mlengthissufficienttoproduce1m3ofwater perdayatanenergyexpenseof4–5kWh/100m3whichisabout 20timeslowercomparedtoastandardNF process.Prerequisite forthis isthatsolarlightisusedastheonlyirradiationsource, somethingthatcouldbeachievedwiththegrapheneoxide/TiO2 membranesdevelopedinthiswork.

Acknowledgments

Financial support for this work was provided by project PTDC/AAC-AMB/122312/2010,co-financedbyFCT(Fundac¸ãopara aCiênciaeaTecnologia)andFEDERthroughProgrammeCOMPETE (FCOMP-01-0124-FEDER-019503).Thisworkwasalsoco-financed by FCT and FEDER through project PEst-C/EQB/LA0020/2013 (COMPETE),andbyQREN,ON2andFEDERthroughproject NORTE-07-0162-FEDER-000050. SMT and LMPM acknowledgefinancial supportfromSFRH/BPD/74239/2010andSFRH/BPD/88964/2012, respectively.A.M.T.SilvaacknowledgestheFCTInvestigator2013 Programme (IF/01501/2013),withfinancing fromthe European Social Fund and the Human Potential OperationalProgramme. TheauthorsalsoacknowledgefinancialsupportbytheEuropean Commission(CleanWater—GrantAgreementno.227017).Partof thisresearchhasbeenco-financedbytheEuropeanUnion (Euro-peanSocialFundA-ESF)andGreeknationalfundsthroughthe

(12)

Operational Program “Education and Lifelong Learning” of the NationalStrategicReferenceFramework(NSRF)-ResearchFunding Program:Thales“AOP-NanoMat”(MIS379409).

References

[1]H.Bai,Z.Liu,D.DelaiSun,Chem.Commun.46(2010)6542–6544.

[2]L.Liu,Z.Liu,H.Bai,D.DelaiSun,WaterRes.46(2012)1101–1112.

[3]X.Zhang,D.K.Wang,D.R.S.Lopez,J.C.DinizdaCosta,Chem.Eng.J.236(2014) 314–322.

[4]V. Tajer-Kajinebaf,H. Sarpoolaky, T. Mohammadi,Ceram. Int. 40 (2014) 1747–1757.

[5]G.Q.Shao,Adv.Mat.Res.781–784(2013)2124–2128.

[6]M.Li,G.Huang,Y.Qiao,J.Wang,Z.Liu,X.Liu,Y.Mei,Nanotechnology24(2013) (Arnumber305706),(8pp).

[7]J.Mendret,M.Hatat-Fraile,M.Rivallin,S.Brosillon,Sep.Purif.Technol.111 (2013)9–19.

[8]B.Barni,A.Cavicchioli,E.Riva,L.Zanoni,F.Bignoli,I.R.Bellobono,F.Gianturco,A. DeGiorgi,H.Muntau,L.Montanarella,S.Facchetti,L.Castellano,Chemosphere 30(1995)1861–1874.

[9]H.Choi,E.Stathatos,D.D.Dionysiou,Appl.Catal.,B:Environ.63(2006)60–67.

[10]H.Choi,A.C.Sofranko,D.D.Dionysiou,Adv.Funct.Mater.16(2006)1067–1074.

[11]S.S.Madaeni,N.Ghaemi,J.Membr.Sci.303(2007)221–233.

[12]S.P.Albu,A.Ghicov,J.M.Macak,R.Hahn,P.Schmuki,NanoLett.7(2007) 1286–1289.

[13]Z.Zhou,W.-G.Wang,W.Huang,W.-H.Jing,W.-H.Xing,Adv.Mat.Res.79-82 (2009)791–794.

[14]Y.S.Lin,Sep.Purif.Technol.25(2001)39–55.

[15]L.G.A.vandeWater,T.Maschmeyer,Top.Catal.29(2004)67–77.

[16]A.J.Burggraaf,L.Cot,Generaloverview,trendsandprospects,in:A.J.Burggraaf, L.Cot(Eds.),FundamentalsofInorganicMembraneScienceandTechnology, Elsevier,Amsterdam,TheNetherlands,1996,pp.1–20.

[17]A.Alem,H.Sarpoolaky,M.Keshmiri,J.Eur.Ceram.Soc.29(2009)629–635.

[18]G. EmRomanos,C.P. Athanasekou,F.K. Katsaros,N.K. Kanellopoulos,D.D. Dionysiou,V.Likodimos,P.Falaras,J.Hazard.Mater.211–212(2012)304–316.

[19]S.K.Papageorgiou,F.K.Katsaros,E.P.Favvas,G.EmRomanos,C.P.Athanasekou, K.G.Beltsios,O.I.Tzialla,P.Falaras,WaterRes.46(2012)1858–1872.

[20]G.E.Romanos,C.P.Athanasekou,V.Likodimos,P.Aloupogiannis,P.Falaras,Ind. Eng.Chem.Res.52(2013)13938–13947.

[21]C.P.Athanasekou,G.E.Romanos,F.K.Katsaros,K.Kordatos,V.Likodimos,P. Falaras,J.Membr.Sci.392(2012)192–203.

[22]P.Falaras,G.Romanos,P.Aloupogiannis,PhotocatalyticPurificationDevice, EuropeanPatent,EP2409954(A1)—2012-01-25,NationalCenterforScientific ResearchDemokritos,InnovativeResearch&TechnologyLTD.

[23]N.G.Moustakas,F.K.Katsaros,A.G.Kontos,G.EmRomanos,D.D.Dionysiou,P. Falaras,Catal.Today224(2014)56–69.

[24]M.Pelaez,N.T.Nolan,S.C.Pillai,M.K.Seery,P.Falaras,A.G.Kontos,P.S.M. Dun-lop,J.W.J.Hamilton,J.A.Byrne,K.O’Shea,M.H.Entezari,D.D.Dionysiou,Appl. Catal.,B:Environ.125(2012)331–349.

[25]C.Han,M.Pelaez,V.Likodimos,A.G.Kontos,P.Falaras,K.O’Shea,D.D.Dionysiou, ApplCatal.,B:Environ.107(2011)77–87.

[26]N.G.Moustakas,A.G.Kontos,V.Likodimos,F.Katsaros,Appl.Catal.,B:Environ. 130(2013)14–24.

[27]R.Leary,A.Westwood,Carbon49(2011)741–772.

[28]Y.Zhang,Zi-R.Tang,X.Fu,Yi-J.Xu,ACSNano4(2010)7303–7314.

[29]L.M.Pastrana-Martínez,S.Morales-Torres,S.A.Carabineiro,J.G.Buijnsters,J.L. Faria,J.L.Figueiredo,A.M.T.Silva,ChemPlusChem78(2013)801–807.

[30]S.Morales-Torres,L.M.Pastrana-Martínez,J.L.Figueiredo,J.L.Faria,A.M.T.Silva, Appl.Surf.Sci.275(2013)361–368.

[31]S.Morales-Torres,L.M.Pastrana-Martínez,J.L.Figueiredo,J.L.Faria,A.M.T.Silva, Environ.Sci.Pollut.Res.19(2012)3676–3687.

[32]O.C.Vangeli,G.E.Romanos,K.G.Beltsios,D.Fokas,C.P.Athanasekou,N.K. Kanel-lopoulos,J.Membr.Sci.365(2010)366–377.

[33]L.M.Pastrana-Martínez,S.Morales-Torres,V.Likodimos,J.L.Figueiredo,J.L. Faria,P.Falaras,A.M.T.Silva,Appl.Catal.,B:Environ.123(2012)241–256.

[34]W.S.Hummers,R.E.Offeman,J.Am.Chem.Soc.80(1958)1339.

[35]G.Newcombe,R.Hayes,M.Drikas,ColloidsSurf.,A:Physicochem.Eng.Aspects 78(1993)65–71.

[36]L.M.Pastrana-Martínez,S.Morales-Torres,S.K.Papageorgiou,F.K.Katsaros, G.E.Romanos,J.L.Figueiredo,J.L.Faria,P.Falaras,A.M.T.Silva,Appl.Catal.,B: Environ.142(2013)101–111.

[37]A.G.Kontos,M.Pelaez,V.Likodimos,N.Vaenas,D.D.Dionysiou,P.Falaras, Photochem.Photobiol.Sci.10(2011)350–354.

[38]L. Pastrana-Martínez,S.Morales-Torres,A.G.Kontos,J.L.Faria,J.M.Do ˜ na-Rodríguez,P.Falaras,A.M.T.Silva,Chem.Eng.J.224(2013)17–23.

[39]A. Labropoulos,G.Em.Romanos,E.Kouvelos,P.Falaras, V.Likodimos,M. Francisco,M.C.Kroon,B.Iliev,G.Adamova,ThomasJ.S.Schubert,J.Phys.Chem. C117(2013)10114–10127.

[40]N.Zaghbani,A.Hafiane,M.Dhahbi,Sep.Purif.Technol.55(2007)117–124.

[41]R.E.deAraujo,A.S.L.Gomes,CidB.deAraújo,Chem.Phys.Lett.330(2000) 347–353.

Referências

Documentos relacionados

Nesta secção apresenta-se, primeiramente, um cenário global de capacitação no âmbito da Educação em Ciências em contexto de cooperação internacional, tendo como base

may have turned the synthesis of difficult control of particle size. Consequently, the control of crystallite size and particle morphology becomes difficult. In fact, when comparing

photocatalytic process, phenol is used as another colorless target pollutant to test the photocatalytic activity of BiFeO 3 microspheres and 16CN/BFO sample under simulated

Assim sendo, foi conduzido um experimento em casa de vegetação para avaliar as respostas das mudas de café à aplicação de Zn em dois solos importantes da região cafeeira e

The ability of the putative QS inhibitors to influence either biofilm development and aspects related with their formation, such as initial cell adhesion, and structure, was

(P5), “foi como uma bomba, um choque”, “Que quem passa por isto ou passou por isto não sente uma determinada angústia de se sentir um bocadinho preso condicionado no dia-a-dia

Uma vez que este projeto de intervenção tinha dois percursos paralelos (o Coro de Pais e as aulas de Formação Musical onde estavam inscritos os filhos dos elementos do coro), houve