• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
5
0
0

Texto

(1)

Note on BEC in Nonextensive Statistial Mehanis

Kwok Sau Fa 1

and E.K. Lenzi 2

1

Departamentode Fsia, UniversidadeEstadualde Maringa,

Av. Colombo5790,87020-900Maringa-PR,Brazil

2

CentroBrasileirodePesquisas Fsias,R.XavierSigaud150,

22290-180RiodeJaneiro,Brazil

Reeivedon17Otober,2000. Revisedversionreeivedon8January,2001

ThegeneralizedBose-Einsteindistribution,withinthe dilutegasassumption, inthenonextensive

Tsallisstatistisisworkedwithoutapproximationfor theBose-Einsteinondensation(BEC).The

resultsobtained areomparedwiththereentresults presentedinInt. J.Mod. Phys. B14,405

(2000)byL.Salasnih. Furthermore,inorderto promoteaompleteanalysis fortheBEC inthe

nonextensivesenariowealsondexatexpressionwithinthenormalizedonstraintsinaharmoni

trap.

I Introdution

Inthislast deade,wehavewitnessed agrowing

inter-est intheTsallisstatistis[1,2℄. Thestartingpointof

Tsallis statistisis basedon the nonextensiveentropy

S

q =k(1

P

W

i=1 p

q

i

)=(q 1),wherekisapositive

on-stantandq2R .Inthelimitq!1theusual

Boltzman-Gibbsentropyisreovered. Ithasbeenappliedinmany

situationssuhas,Levy-typeanomaloussuperdiusion

[3℄,Eulerturbulene[4℄,self-gravitatingandorrelated

systems [5℄, anomalous relaxation through

eletron-phonon interation [6℄, ferrouid-likesystems [7℄, and

among others[8℄. Inpartiular,theBose-Einsteinand

Fermi-Dira distributions have been extensively

ana-lyzedintheTsallisframework[6,9-16℄.Further,wean

mentionthespeiheatobtainedfor 4

He[17℄whihis

in agreementwiththeexperimentalresultsreportedin

[18℄. Forthemostoftheseasestheanalysesinvolving

thesegeneralizedBose-EisnteinandFermi-Dira

distri-bution have been restrited for free systems, i.e., the

interation between the partiles is absent. However,

important questions about the omplete solution for

the Bose-Einstein distributionandits impliations for

thethermodynamis ofthesephysial systemsarestill

presentin this formalism. In this ontext, it may not

be outof plae to mention herethe generalized

Bose-Einstein distributionin thedilutegasassumption[13℄,

givenby,

hn()i

q =

1

1=(q 1)

; (1)

anditsexpansionatrstorderin (q 1)

hn()i

q =

1

e

( )

1 +

1

2 (q 1)

2

( )

2

e

( )

e

( )

1

2 :

(2)

Theequation (2)hasbeenapplied widely in the

liter-ature[6, 12,13,14,15℄(see[8℄andreferenestherein)

forobtainingthermodynamialquantitiesthat emerge

from it. In this way, a omplete solution

involv-ing Eq.(1) an be useful for quantitative and

qual-itative analysis of systems in the nonextensive

on-text. Furthermore, the development based on Eq.(1)

an also be useful in the desription of the systems

with(multi)fratalstruture(similar situationin

met-als[19℄has been analyzedin [16℄), systemswith

long-timememories,andamong others. Anotherimportant

pointisabouttheonstraintsandtherelationbetween

theLagrangeparameter andtemperatureinthe

for-mulationsofTsallisstatistis[2℄.

Thus,wepropose,inthisworktondtheomplete

solutionforthe BECtransition temperature

onsider-ingD dimension and q >0, within thedilute gas

as-sumption. Then,weompareit withtheapproximate

resultspresentedintheliterature,andinpartiularthe

Salasnih'swork[12℄,byvaryingthevaluesofqandD,

and as a onsequeneto hek the validity of the

ap-proximation(2). Inaddition,weshowthattheresults

obtainedbyusingEq.(2)arenotaurateformost

situ-ationswhenomparedwithourones. Also,topromote

afuture disussioninvolvingtheonstraints,Lagrange

(2)

ob-tain the Bose-Einstein distribution by taking into

a-ountthenormalizedonstraints[2℄.

Inordertofailitateouranalysis,letusreallsome

results evaluated in [12℄ with Eq.(2). The quantities

evaluated in [12℄ are: the BEC transition

tempera-ture, theondensedfrationand theenergyper

parti-letothehomogeneousgas,thegasinaharmonitrap

andtherelativistihomogeneousgasin D-dimensional

spae. Fornon-interatingbosons,thetotalnumberof

partileisevaluatedbythefollowingexpression

N= Z

1

0

d()hn()i

q

; (3)

where () is the density of states. In a D-dimensional box of volume V, the densities of states for

homoge-neousgas and gas in harmoni trapare given respetivelyby () =f(V=)[m=(2~ 2

)℄ D=2

g= (D=2) and () =

f[=(~!)℄ D

g=( (D)),where ! isthegeometriaverageofthetrapfrequeniesand (x)isthegammafuntion.

Toalulate theBEC transition temperature T

q

, with = 0,wesubstitute Eq.(2) and () into (3), and we

obtain

kT

q =

2~ 2

m

(N=V) 2=D

=[(D=2)℄ 2=D

h

1+ q 1

2

(D=2+2)(D=2+1)

(D=2)(D=2) i

2=D

; (4)

forthehomogeneousgas,and

kT

q =

~!N 1=D

[(D)℄ 1=D

h

1+ q 1

2

(D+2)(D+1)

(D)(D) i

1=D

; (5)

foragasinaharmonitrap. (x)istheRiemann-funtion. Theenergyisalulatedbythefollowingexpression

E= Z

1

0

d()hn()i

q

: (6)

Theresultsare

E

kT

q =

VD

2

mkT

q

2~ 2

D=2

(D=2+1)

1+ q 1

2

(D=2+3)(D=2+2)

(D=2+1)(D=2+1)

; (7)

forthehomogeneousgas,and

E

kT

q =

kT

q

~!

D

D(D+1)

1+ q 1

2

(D+3)(D+2)

(D+1)(D+1)

; (8)

foragasin aharmonitrap.

Fortherelativistigas,thetotalnumberofpartilesisnotonservedduetotheprodutionofantipartiles,but

thedierenebetweenthenumberNofpartilesandthenumberN ofantipartilesisonserved,i.e.,Q=N N =

R

1

0

d()[hn()i

q

hn()i

q

℄ ; wherehn()i

q

isobtainedfromhn()i

q

byreplaing! . Thedensityofstates

for the relativisti gas is given by () = (V2 D=2

)=(2~ 2

) D

(D=2)) 2

m 2

4

(D 2)=2

. For ultrarelativisti

regionkT >>m 2

,theritialtemperatureatwhih BECours orrespondstojj=m 2

. ExpandingQat rst

orderin yields

kT

q =

(2~) D

(D=2)jQj

4V D=2

(D)(D 1)m

2

1=(D 1)

1+ q 1

2

(D 1)D(D)

(D 1)

1=(D 1)

: (9)

TheEqs.(4),(5),(6),(7)and(9)aretheresultsobtainedin[12℄,byusingEq.(2). Similarresultsforfreepartiles

were also obtainedin [15℄. Now, wealulate again thequantities abovebyusing thedistribution (1), insteadof

(2). Todoso,wenotethat thedistribution(1)anbewrittenasasum,i.e.,

hn()i

q =

1

[1+(q 1)( )℄ 1

q 1

1

= 1

X

[1+(q 1)( )℄

n=(q 1)

(3)

Substituting () and Eq.(10) into (3) and taking into aount the ut-o [2℄ for q < 1, we obtain the ritial

temperatureas

mkT

q

2~ 2

= 8

>

>

>

<

>

>

>

:

V

N P

1

n=1 (1 q)

D =2

( n

1 q +1)

( n

1 q +1+

D

2 )

2

D

; 0<q<1

V

N P

1

n=1 (q 1)

D =2

( n

q 1 D

2 )

( n

q 1 )

2

D

; q>1

(11)

forthehomogeneousgas,and

kT

q

=(~!)N 1=D

"

1

X

n=1 D

Y

l=1 1

n+(1 q)l #

1=D

q>0; (12)

for agasin aharmonitrap. Note that Eq. (12)is validfor(q 1)<1=D. Inaddition, theenergyisalsoeasily

obtainedfromEq.(6)

E=V

kT

q =

8

>

<

>

: P

1

n=1

((1 q)mk T

q )

D =2+1

D

( n

1 q +1)

2mk T

q (2~

2

) D =2

( n

1 q +2+

D

2 )

; 0<q<1

P

1

n=1

((q 1)mk Tq) D =2+1

D

( n

q 1 D

2 1)

2mk Tq(2~ 2

) D =2

( n

q 1 )

; q>1

(13)

forthehomogeneousgas,and

E

kT

q =D

kT

q

~!

D 1

X

n=1 D+1

Y

l=1 1

n+(1 q)l

q>0; (14)

d

foragasin aharmonitrap. TheEq. (14)isvalid for

(q 1) < 1=(1+D). We note that our results dier

from those obtainedby using thedistribution(2). To

see that losely, we quote T

q

with dierent values of

D, forq =1:1 (see Table1). Wealso plotthe ritial

temperatureinfuntionofq. Forhomogeneousgasthe

onvergeneoftheseriesofEq. (11)isslowforD=3.

Foronveniene,weplotT

q

infuntionofq,forD=4

(Fig. 1). For agas in aharmonitrap, we plotT

q in

funtionofq,forD=3(Fig. 2). Asweanseethe

val-uesquoted in Table1,andthetwogures(Figs.1and

2)showlearlythattheritialtemperaturesobtained

byusing(2)arenotauratewhenomparedwithour

results. Evenfor agas in aharmonitrap withsmall

deviation in the nonextensive parameter q = 1:1 and

D = 3, the divergene between our result and

Salas-nih's result [12℄ is remarkable. This is not surprise

beause the expansion made in (2), in the parameter

(q 1); hasinludedthe fator. Thislast fator is

notneessarilysmallso theexpansionofthe

exponen-tialfuntionat rstorder of(q 1) annotbegoodin

general,espeially whenj1 qj andD are inreased.

WeshouldalsostressthatthehangesintheBEC

tran-sitiontemperature(forq>1),fromtheextensiveBose

statistis,aregreaterthanthoseobtainedbyusingthe

distribution (2). For therelativisti gas, in the

ultra-relativistiregionkT m 2

, theritial temperature

byexpandingQatrstorder in isgivenby

kT

q = ~!N

1=D

D=3 D=4 D=5 D=6 D=7 D=8 D=9

Salasnih 0.8144 0.8288 0.8284 0.8266 0.8258 0.8261 0.8273

ourresults 0.7635 0.7342 0.6837 0.6262 0.5639 0.4954 0.4147

Table1. Resultsforritialtemperatureofagasin aharmonitrapsystemwithq=1:1. Theseondrowshows

(4)

1

kT

q =

(

4V D=2

(D)m 2

jQj(2~) D

(D=2) 1

X

n=1 D 1

Y

l=1 1

n+(1 q)l )

1

D 1

q>0: (15)

Eq.(15)alsodiersfromthatobtainedbyusingthedistribution(2). Forexample: forq=1:1andD=4weobtain

[(4V 2

m 2

)=(j Qj(h) 4

)℄ 1=3

kT

q

=0:420181from Eq. (15)and [(4V 2

m 2

)=(j Qj ( h) 4

)℄ 1=3

kT

q

=0:448173from

Eq. (9).

Forompleteness,weshowbelowq-meanvalueof partilenumberand internal energyin thenormalized

on-straints[2℄ bytakinginto aount=0

h ^

Ni

q

h ^

Ni

1 =

1+(1 q) ~

U

q

(1 q) ~

= (1)

!

D 8

>

>

<

>

>

:

D; 1

1 q +D;h

^

Ni

1

1+(1 q) ~

Uq

(1 q) ~

= (1)

D

(D+1)

(D)

D; 1

1 q ;h

^

Ni

1

1+(1 q) ~

Uq

(1 q) ~

= (1)

D

(D+1)

(D)

9

>

>

=

>

>

;

; (16)

U

q

(1)

Dh ^

Ni

1 =

1+(1 q) ~

U

q

(1 q) ~

= (1)

!

D+1

(D+1)

(D)

D; 2 q

1 q +D;h

^

Ni

1

1+(1 q) ~

Uq

(1 q) ~

= (1)

D

(D+1)

(D)

D; 1

1 q ;h

^

Ni

1

1+(1 q) ~

Uq

(1 q) ~

= (1)

D

(D+1)

(D)

; (17)

d

where(;;z)= P

1

k =0 z

k

=(k! (k+))with;>

0 ~

==Tr q

,h ^

Ni

1 /(1=

(1)

)

D

and (1)

=1=T

1 where

T

1

is theritialtemperature. Moredetails aboutthe

alulationabove anbe found in [20℄, where the free

partileasehasbeenanalyzed.

Figure.1Weshowtheritialtemperatureversusthe

nonex-tensive parameter q for the homogeneous gas, onsidering

D=4. Itshouldbenotedthatwealsoextendthe

approx-Figure. 2Plotsofritialtemperatureversusthe

nonexten-sive parameter q for a gas ina harmoni trap. Here, the

threedimension(D=3)ase isonsidered.

Insummary, we haveobtained the exatstandard

BEC formula by using the generalized Bose-Einstein

distribution,within thedilutegasassumption,in

Tsal-lis statistis. The omparisonbetweenourresultsand

those obtained in [12℄ shows that the approximation

(5)

ondensation[12,14,15℄andamongothers,inthelight

ofourresults,shouldbereanalysed. Theroleofthe

in-terations in theBEC [21,22℄ in Tsallisstatistiswill

be addressed in an other opportunity. Furthermore,

wehavealsofoundtheexpressionsfortheBECwithin

thenormalizedonstraints,in orderto promotea

pos-sible analysis involvingLagrange parameter,

tempera-ture, onstraints and experimental data. Finally, we

believethat this work an beusefulin theanalysesof

future appliations whih involveTsallisstatistisand

BEC,within thedilute gasassumption.

EKLthanksCNPqand PRONEX(Brazilian

agen-ies) fornanialsupport.

Referenes

[1℄ C.Tsallis,J.Stat.Phys.52,479(1988);seealsoChaos,

SolitonsandFratals 6,539(1995);E. M.F.Curado

andC.Tsallis,J.Phys.A 24,L69(1991);Errata: 24,

3187(1991); 25,1019(1992).

[2℄ C.Tsallis,R.S.MendesandA.R.Plastino,PhysiaA

261,534(1998).

[3℄ M.Buiatti,P.Grigolini,andA.Montagnini,Phys.Rev.

Lett.82,3383(1999);seealsoreferenestherein.

[4℄ B.M.Boghosian, Phys.Rev.E53, 4754 (1996).

[5℄ A.R.PlastinoandA.Plastino,Phys.Lett.A174,384

(1993);J.J.Aly,ProeedingsofN-BodyProblemsand

GravitationalDynamis,Aussois,FraneedF.Combes

andE, AthanassoulaPubliationsdel'Observatoire de

Paris,Paris, 1993,p.19; V.H.HamityandD. E.

Bar-rao,Phys.Rev.Lett. 76,4664 (1996).

[6℄ I.Koponen,Phys.Rev. E 55,7759 (1997).

[7℄ P.Jund,S.G.KimandC.Tsallis,Phys.Rev.B52,50

(1995).

[8℄ http://tsallis.at.bpf.br/biblio.htm.

[9℄ A.K.Rajagopal, R.S.MendesandE. K.Lenzi, Phys.

Rev.Lett.80, 3907 (1998); E. K. Lenzi, R. S.Mendes

andA.K.Rajagopal,Phys.Rev.E59,1397(1999).

[10℄ R.A.Treumann,Europhys.Lett.48,8(1999).

[11℄ D.F.Torres,H.Vuethi,A.Plastino,Phys.Rev.Lett.

79,1588(1997).

[12℄ L.Salasnih,Int.J.Mod.Phys.B14,405(2000).

[13℄ F.Buyukkili,D.Demirhanand A.Gule,Phys.Lett.

A197,209(1995).

[14℄ U.Tirnakli,F.BuyukkiliandD.Dermirhan,Physia

A240,657(1997);S.F.Ozerenetal.,Eur.Phys.J.B

2,101(1998); U.Tirnakli, F.BuyukkiliandD.

Der-mirhan,Phys.Lett. A245,62(1998);U. Tirnakliand

D.F.Torres,PhysiaA268,225(1999).

[15℄ D. F. Torres and U. Tirnakli, Physia A 261, 499

(1998).

[16℄ I.S.Oliveira,Eur.Phys.J.B14,43(2000).

[17℄ S.Curilef, A. R. R. Papa, Int. J. Mod. Phys. B 11,

2303(1997).

[18℄ D.S.Grewall,Phys.Rev.B18,2127(1978);Erratum:

Phys.Rev.E21,1329(1978).

[19℄ K.Sekar, G. Kuri,P.V. Satyam, B.Sandaravel,D.P.

MahapatraandB.N.Dev, Sol.St.Com.96,871(1995);

B.X.Liu,Nul.Instr.Met.B:BeamInt.Mat.Atoms59,

475(1991);C.W.Lung, Fra. StrenghSol.,parts1&2

145 (1998); S.Z. Zhang, Zeitshrift, fur Angewandte

MathematikundMehanik70,530(1990).

[20℄ E.K.Lenzi,R.S.MendesandA.K.Rajagopal,

Phys-iaA286,503(2000).

[21℄ A.L.Fetter and,J.D.Waleka,QuantumTheory of

ManyPartile Systems, ( Mgraw-Hill PublishingCo.,

NewYork,1971).

[22℄ A. S. Parkins and D. F. Walls, Phys. Reports 303,

1(1998); F. Dalfovo et. al., Rev.Mod. Phys.71, 463

Referências

Documentos relacionados

Figura 32 – Fotomicrografia com NX com a mineralogia da lâmina IA02C, com cristais de tamanho fino anédricos e subédricos de quartzo, plagioclásio e microclínio..

Neste trabalho utilizamos como ponto de partida a teoria desenvolvida por Zakharov e Nazarenko para tratar a turbulência de ondas em sistemas com não linearidade fraca em condensados

É importante destacar que as práticas de Gestão do Conhecimento (GC) precisam ser vistas pelos gestores como mecanismos para auxiliá-los a alcançar suas metas

[r]

heat of a Bose gas near the ritial temperature T.. It is essential that the

On the basis of generalized classical kinetic equations, reproducing the stationary distribution of the Tsallis nonextensive thermostatistics, we formulate two generalized Schr

Parametrization of Bose-Einstein Correlations and Reconstruction of the Source Function in Hadronic Z-boson Decays using the L3 DetectorW. Kittel for the

2: (Color online) The Bose-Einstein correlation function R 2 for two-jet events with the result of a fit of (a) the Gaussian and (b) the Edgeworth parametrizations, Eqs.. The