• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número6"

Copied!
7
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Perezone,

from

the

gorgonian

Pseudopterogorgia

rigida

,

induces

oxidative

stress

in

human

leukemia

cells

Paula

A.

Abreu

a,b

,

Diego

V.

Wilke

a

,

Ana

J.

Araujo

a,c

,

José

Delano

B.

Marinho-Filho

a,c

,

Elthon

G.

Ferreira

a

,

Carlos

Margo

R.

Ribeiro

d

,

Leandro

S.

Pinheiro

d

,

Juliana

W.

Amorim

d

,

Alessandra

L.

Valverde

d

,

Rosângela

A.

Epifanio

d,†

,

Letícia

V.

Costa-Lotufo

a,e

,

Paula

C.

Jimenez

a,f,∗

aDepartamentodeFisiologiaeFarmacologia,UniversidadeFederaldoCeará,Fortaleza,CE,Brazil bINSERMU1113,StrasbourgUniversity,Strasbourg,France

cFaculdadedeMedicina,UniversidadeFederaldoPiauí,Parnaíba,PI,Brazil dInstitutodeQuímica,UniversidadeFederalFluminense,Niterói,RJ,Brazil eInstitutodeCiênciasBiomédicas,UniversidadedeSãoPaulo,SãoPaulo,SP,Brazil fDepartamentodeCiênciasdoMar,UniversidadeFederaldeSãoPaulo,Santos,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1May2015

Accepted20July2015

Availableonline4September2015

Keywords:

Gorgoniancoral

Marinenaturalproducts

Cytotoxicity Quinone ROS

a

b

s

t

r

a

c

t

Fourbisabolanes1–4,includingperezone(1)andtriacetylperezone(2),wereisolatedthrougha bioassay-guidedfractionationoftheextractobtainedfromtheCaribbeangorgoniancoralPseudopterogorgiarigida collectedduringanexpeditioncruisetotheBahamas.Allisolatedcompoundsshowedtobecytotoxic towardpaneloffourhumantumorcelllines,asquantifiedbytheMTTassayafter72hincubation. Pere-zone(1),themostactiveone,wasfurtheranalyzed,showingtobecytotoxic,butnotselective,ina12-cell linepanelcomprisingtumorandnon-tumor,aswellashumanandmurinecells.Additionally,1was assayedforcytotoxicityagainstHL-60leukemiccells.Pre-treatmentwithanacutefreeradicalscavenger (l-NAC)beforeexposureofcellstoperezonevirtuallyeliminatedthegenerationofintracellularROSand lesseneditsseverecytotoxicity.Theprotectiveeffectdeliveredbyl-NACevidencesthatthemechanism ofperezone-inducedcytotoxicityispartiallyassociatedtoproductionofROSandaconsequentinduction ofoxidativestress.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Natural or synthetic quinones perform various functions in organisms,as someare tightlyinvolved in the cell’s biochemi-calmechanisms(Asche,2005).Nevertheless,quinoneshavebeen extensively studiedfor their cytotoxicpotential and, currently, areanimportantgroupofanticancerdrugs.Manyquinoid com-pounds,suchastheanthracyclinesdoxorubicinanddaunorubicin and the antibiotic mitomycin, are successfully applied in vari-ouscancerchemotherapyschemes(Asche,2005;Vásquezetal., 2010).

Perezone(1)wasfirstisolatedin 1852fromrootsof Perezia

mangroveplants(renamedAccourtia).Thisquinoneshowed insec-ticideactivityagainstLeptinotarsadecemlineataandMyzuspersicae

∗ Correspondingauthor.

E-mail:pcjimenez@unifesp.br(P.C.Jimenez).

inmemorian.

(Burgue ˜no-Tapiaetal.,2008)andseveralpharmacological activ-ities,suchaslaxativeandanti-parasitic(Rubioetal.,1997).The studybyGarcíaetal.(1995)evaluatedtheeffectsof1on intesti-nalcontractilityofsmoothmuscleofratsand showedthat this quinoneseemstoincreasetheavailabilityofintracellularCa+2. Con-versely,DelaPe ˜naetal.(2001)disclosed1asaninhibitorofplatelet aggregationandsuggestedthatthisfeaturewasassociatedtothe impairmentinCa2+mobilizationofinternalstores.Furthermore,

1wasconsideredtobeahitina96druginvitroscreendirected againstneuroblastomacells,atumorthatremainsincurableinover 60%ofcases(Gheeyaetal.,2009).Morerecently,Sánchez-Torres etal.(2010)evaluatedthecytotoxicpropertiesofperezoneonK562 cellsanddemonstratedthattheapoptoticeffectsmaybedependent orindependentofcaspasesactivation,dependingonconcentration. The present study describes the isolation of 1, along with otherknowncompounds2–4,fromtheCaribbeangorgonian

Pseu-dopterogorgia rigida and the respective cytotoxic activity on a

paneloftumorcelllines.Additionally,weusedHL-60cells(acute promyelocyticleukemia) tocharacterizetherespectivemodeof

http://dx.doi.org/10.1016/j.bjp.2015.07.020

(2)

action,whichlargelyinvolvesthegenerationofreactiveoxygen species.

Materialsandmethods

Generalprocedures

High-performanceliquidchromatographywascarriedoutusing a semipreparative normal phase (silica gel) Dynamax column (15cmlength,i.d.10mm),aWatersM6000pumpandaWaters R401 differentialrefractometer. NMR spectrawere recorded in CDCl3solutiononaVarianUnity500MHzspectrometer.IRspectra wererecordedonaPerkin-Elmermodel1600(FTIR)spectrometer. MassmeasurementswereobtainedonaHP5989Aspectrometer. Vacuumliquidchromatography(VLC)wasperformedwithsilica gelforthinlayerchromatography.Isolationprocedureswere mon-itoredusingthin-layerchromatography(TLC)onpre-coatedsilica gelplates(Merck,Kieselgel60F-254)throughUVinspectionand H2SO4/heat.

Collectionandidentificationofbiologicalmaterial

Fourteen colonies of thegorgonian werecollected by scuba divingat15–20mdepthat SweatingCays,Bahamas, duringan expeditiononboardtheresearchvesselSewardJohnsonin June 1996. The colonies were labeledand air-driedfor 2h. A small amountofeachcolonywasextractedwithCH2Cl2,andtheextracts comparedbyTLCanalysiswerefurtherclassifiedasasinglespecies,

P.rigida,asidentifiedbyDr.FrederickM.Bayer(NationalMuseum

ofNaturalHistory,SmithsonianInstitution,andavoucher speci-men(ATPH/MO/57)hasbeendepositedattheHerbariumofthe DepartmentofPharmacognosyandChemistryofNaturalProducts, UniversityofAthens.

Extracts,fractionsandpurecompoundsfromP.rigida

Gorgonian tissues (300ml, about 25–30g of dry weight) were cut in to small pieces and extracted with a mixture of MeOH–CH2Cl2,1:1(once),andpureCH2Cl2(twice).Theextracts werecombinedand evaporatedunder reducedpressure afford-ingabrownishgum(12g).Thecrudeextractwasfractionatedby vacuumliquidsilicagelchromatography(VLC),employinga gra-dientrangingfrom0to100% ofEtOAcin (CH3)3CCH2CH(CH3)2 (TMP: 2,2,4-trimethylpentane) and MeOH toyield eleven frac-tions (F1–F11). Fraction 5 (2.67g) was purified by successive re-crystallizations using mixtures of hexane and ethyl acetate, yieldingpureperezone(1)(0.64g)asintenseyellowcrystalwith mp102◦C.Fraction7(1.56g)and11(39mg)werefurtherpurified bynormalphasesemi-preparativeHPLCusinghexaneorTMPand ethylacetatemixturestogive,respectively,compound2(10.7mg) andcompounds3(8mg)and4(9mg).

Compound 1 (perezone; (R

)-3-hydroxy-5-methyl-2-(6-methylhept-5-en-2-yl)cyclohexa-2,5-diene-1,4-dione).Mp102◦C, 1HNMR(CDCl

3,300MHz):␦1.19(3H,d,J=7.0Hz),1.53(3H,sl), 1.57(1H,m),1.65(3H,d, J=1.8Hz),1.82(2H,m),1.90(1H,m), 2.06(3H,d,J=1.8Hz),3.05(1H,m),5.07(1H,mt,J=7.2Hz),6.48 (1H,q,J=1.8Hz),7.00(1H,s);13CNMR(CDCl

3,75MHz):␦14.6 (CH3), 17.5(CH3), 18.1(CH3),25.6(CH3), 26.6(CH2), 29.2(CH),

34.0(CH2),124.5(CH),124.5(C),131.3(C),135.5(CH),140.4(C), 150.9(C),184.2(C),187.3(C).

Compound 2 (triacetyl perezone; (R

)-6-methyl-3-(6-methylhept-5-en-2-yl)benzene-1,2,4-triyl triacetate). Colorless oil, 1HNMR (CDCl

3,300MHz):1.20(3H,d, J=7.1Hz),1.54(3H, sl),1.59(2H, m),1.64(3H, d,J=1Hz), 1.87(2H,dd,J=15.0Hz; J=7.5Hz),2.14(3H,d, J=0.7Hz),2.29(3H, s),2.29(3H, s),2.28 (3H,s),2.82(1H,ddq,J=7.2Hz;J=7.2Hz;J=7.2Hz),5.04(1H,tdq, J=7.1Hz;J=1.4Hz,J=1.4Hz),6.82(1H,d,0.7Hz);13CNMR(CDCl

3, 75MHz): ␦ 16.0 (CH3), 17.5(CH3), 18.8(CH3), 20.2 (CH3), 20.3 (CH3),21.0 (CH3), 25.6(CH3), 26.2(CH2),30.9 (CH),35.2(CH2), 124.0(CH), 129.5(C),129.9(C),131.7(C),139.2 (C),141.4(C), 146.3(C),167.6(C),167.8(C),168.9(C).EI-MSm/z376(M+).

Compound 3 (2-((2R

)-5-hydroxy-6-methylhept-6-en-2-yl)-5-methylbenzene-1,4-diol). Yellowish oil. IV (film, CH2Cl2) ␯max 3339, 2958, 1650, 1423, 1191 e 1006cm−1; 1H NMR (CDCl

3, 300MHz):␦1.20(3H,d,J=7.0Hz),1.26(1H,m),1.48–1.59(3H,m), 1.66(3H,s),2.16(3H,s),2.76(1H,sl),3.13(1H,m),4.14(1H,m), 4.81(1H,s),4.94(1H,s),6.58(1H,s)e6.60(1H,s);13CNMR(CDCl

3, 75MHz):␦15.5(CH3),17.6(CH3),21.1(CH3),30.8(CH),31.9(CH2), 34.8(CH2),76.8(CH),110.9(CH2),113.0(CH),118.4(CH),122.1(C), 131.5(C),146.8(C),147.6(C)e147.8(C);HR-ESIMS(positivemode) m/z273.1467[M+Na+](calcdforC

15H21O3,272.1388).

Compound 4 (2-((2R

)-5-hydroxy-6-methylhept-6-en-2-yl)-5-methylbenzene-1,4-diol). Yellowish oil. IV (film, CH2Cl2) ␯max 3334, 2956, 1651, 1442, 12195 e1001cm−1; 1H NMR (CDCl

3, 300MHz):␦1.15(3H,d,J=7.0Hz),1.26(1H,m),1.42–1.55(3H,m), 1.66(3H,s),2.14(3H,s),2.66(1H,sl),3.03(1H,m),4.05(1H,m),4.82 (1H,s),4.93(1H,s)e6.57(2H,s);13CNMR(CDCl

3,75MHz):␦15.6 (CH3),17.9(CH3),21.2(CH3),31.7(CH),32.1(CH2),33.3(CH2),76.2 (CH),110.8(CH2),113.2(CH),118.1(CH),122.1(C),131.5(C),146.7 (C),147.2(C)e147.8(C);HR-ESIMS(positivemode)m/z273.1467 [M+Na+](calcdforC

15H21O3,272.1388).

Cytotoxicityassay

Human tumor cells (HL-60, SF 295, MDA MB435,MDA MB 231andMX1)andthemurinecelllineB16wereobtainedfrom theNationalCancerInstitute,Bethesda,USA.HCT-8celllinewas donatedbytheChildren’sMercyHospital,KansasCity,MO,USA. Non-tumor cells, L929 e J744, were kindly donated by Dr. C.I. Oliveira(CentrodePesquisaGonc¸aloMuniz,Fiocruz,Bahia,Brazil). CellsweremaintainedinRPMI1640mediumsupplementedwith 10%fetalbovineserum,2mMglutamine,100U/mlpenicillin,and 100g/mlstreptomycinat37◦Cwith5%CO

(3)

asthepercentageofthecontrolabsorbanceofthereduceddyeat 595nm.Dataarepresentedasmean±S.E.M.TheIC50valuesand their95%confidenceintervals(CI95%)wereobtainedbynon-linear regressionusingtheGraphPadSoftware4.0(IntuitiveSoftwarefor Science).

Phenotypiccharacterizationofperezoneeffects

Flowcytometrywasusedtofurthercharacterizethe cytotox-icity of perezone on the human promyelocitic cell line HL-60. Perezone(1)wastestedat2,4and8␮M.Doxorubicin0.5␮Mwas usedasthepositivecontrolandDMSO1%,thedilutionvehicleof allsamples,servedasthenegativecontrol.

Celldensityandviability

HL-60cells wereseededin a24-wellplate(3×105cells/ml), culturedfor24htoinitiatecellgrowthandtreated,aspreviously described.Cellswereharvestedafter3,6,12,24,28and72hof exposure, centrifugedand resuspendedin a 5␮g/ml propidium iodide(PI)solution(Sigma–Aldrich).After5minincubationinthe dark,fivethousandeventswereacquiredusingtheGuavaEasyCyte Miniflowcytometer(GuavaTechnologies)andtheGuavaExpress Plussoftwareonagatedregiontoexcludedebrisanddoubletsfrom theanalysis.Concentrationofcellsineachtreatmentand mem-braneintegritywereevaluatedandplottedinanXYgraphusing GraphPadSoftware4.0(IntuitiveSoftwareforScience).

CellcycleandDNAfragmentation

HL-60cells wereseededin a24-wellplate(3×105cells/ml), culturedfor24htoinitiatecellgrowthandtreated,aspreviously described.Afterexposurefor3or24h,cellswereharvested, cen-trifugedandresuspendedinasolutioncontaining5␮g/mlPI,0.1% citrateand0.1%TritonX–100.After30minincubationinthedark, fivethousandeventswereacquiredusingtheGuavaEasyCyteMini flowcytometer(GuavaTechnologies)andtheGuavaExpressPlus softwareonagatedregiontoexcludedebrisanddoubletsfromthe analysis.CellcyclehistogramswereacquiredusingtheFL3channel (excitationatmax488nmandemissionmax620nM)to cap-turetheredfluorescenceemittedfromPI–DNAcomplexes.Thecell cycleprofile(G1/G0–S–G2/M)wasanalyzedinlinearscalewiththe ModFitLT4.0software(VeritySoftwareHouse).Sub-G1cellswere ponderedashavingfragmentedDNA.Thedifferencesbetween neg-ativecontrolandexperimentalgroupsweredeterminedbyanalysis ofvariance (ANOVA)followedbyDunnetpost-testonGraphPad Software4.0(IntuitiveSoftwareforScience).Theminimal signifi-cancelevelwassetatp<0.05.

Analysisofthemechanismsinvolvedinthecytotoxicactivityof

perezone

Furtherexperimentswerecarriedouttoevaluatetheinfluence ofreactiveoxygenspecies(ROS)inthecytotoxicityinducedby1on humanpromyelociticcelllineHL-60.Perezonewastestedat2,4 and8␮M.␤-lapachone2␮Mwasusedasthepositivecontroland DMSO1%,thedilutionvehicleofallsamples,servedasthenegative control.Beforeexposure,cellswerepre-treatedwithl-NAC5␮M during1h.

MorphologicalanalysiswithMay–Grunwald–Giemsastaining

HL-60cellswereseededina24-wellplate(3×105cells/ml), cul-turedfor24htoinitiatecellgrowthandpre-treatedandtreated, aspreviouslydescribed.Afterexposurefor24htoalltreatment types,cellswereharvested, transferredtocytospinslides,fixed

withmethanolfor10sandstainedwithMay–Grunwald–Giemsa (Bioclin,Brazil).Slideswereexaminedformorphologicalchanges

vialightmicroscopy(Olympus,Tokyo,Japan).

Trypanblueexclusion

HL-60cellswereseededina24-wellplate(3×105cells/ml), cul-turedfor24htoinitiatecellgrowthandpre-treatedandtreated, aspreviouslydescribed.Afterexposurefor24htoalltreatment types,cellswereharvested,dyedwithTrypanblueand differen-tiallycountedforviable(notdyed)ornon-viable(dyed)counted in a Neubauer chamber. The differences between groups were determinedbyanalysisofvariance(ANOVA)followedbyStudent Newman–Keulspost-testonGraphPadSoftware4.0(Intuitive Soft-wareforScience).Theminimalsignificancelevelwassetatp<0.05.

Measurementofreactiveoxygenspeciesgeneration

HL-60cellswereseededina24-wellplate(3×105cells/ml), cul-turedfor24htoinitiatecellgrowthandpre-treatedandtreated,as previouslydescribed.Afterexposurefor1htoalltreatmenttypes, cellswereloadedwithH2-DCF-DAandincubatedfor30mininthe darkat37◦C.Cellswerethenharvested,washed,resuspendedin PBSandimmediatelyanalyzed.Fivethousandeventswereacquired usingtheGuavaEasyCyteMiniflowcytometer(Guava Technolo-gies)andtheGuavaExpressPlussoftwareonagatedregionto excludedebrisanddoubletsfrom theanalysis,usingexcitation andemissionwavelengthsof490and530nm,respectively.The differencesbetweengroupsweredeterminedbyanalysisof vari-ance(ANOVA)followedbyStudentNewman–Keuls post-teston GraphPadSoftware4.0(IntuitiveSoftwareforScience).The mini-malsignificancelevelwassetatp<0.05.

Results

Bioassay-guidedfractionationofP.rigida

TheCH2Cl2/MeOHextractofP.rigidaexhibitedastrong cyto-toxicitywithIC50valuesrangingfrom8.8␮g/mlinSF-295cellsto 43.2␮g/mlinMDA-MB-435cells(Table1).Crudeextractwas puri-fiedbyvacuumliquidchromatographyinsilicagelusingagradient ofincreasingpolarityofTMP/EtOAc/MeOH yieldingeleven frac-tions(F1–F11).FractionsF5andF6werethemostactive(Table1) andanalysisbyTLCand1HNMRrevealedthepresenceofanalmost purecompoundthatwhencrystallizedwithhexane/ethylacetate givepureintenseyellowcrystalswithmp102◦C.Spectrometric andspectroscopicdatarevealedthatthiscompoundisperezone(1). FromF8,themajorcomponentwasisolatedbysemi-preparative normalphaseHPLC(EtOAc/hexane),yieldingtriacethylperezone2

asacolorlessoil.IC50forthiscompoundrangedbetween23.1and 49.8␮Macrossafourhumantumorcelllinepanel(Table2).The mostpolarfraction,F11,wasalsopurifiedbynormalphaseHPLC (EtOAc/TMP),yieldingtwopurebisabolanes3and4.1Hand13C NMRdataofthesecompoundsarealmostidentical,andrevealed themtobeepimersatC-10stereochemistry.TheIC50value calcu-latedfor3variedfrom10.8to59.8␮M,while4retainednearlyhalf thecytotoxicitystrengthofhisepimer(Table2).

Cytotoxicityofperezone

(4)

Table1

IC50(CI95%)(␮g/ml)oftotalextractand11fractionsobtainedfromchemicalfractionationofaPseudopterorgiarigidaorganicextractontumorcelllinesinculturedetermined

bytheMTTassayover72hincubation.

Sample HL-60 HCT-8 SF-295 MDA-MB435

P.rigidacrudeextract 14.73 9.87–21.98

9.28 8.46–10.18

8.80 6.45–12.02

43.12 29.76–62.47

P.rigidaF1 11.06

n.d.

11.90 n.d.

13.36 9.87–18.08

12.38 7.93–19.33

P.rigidaF2 >100,0 >100,0 >100,0 >100,0

P.rigidaF3 >100,0 >100,0 >100,0 n.d.

P.rigidaF4 65.41

34.55–123.8

37.32 30.82–45.18

29.62 27.96–31.38

79.83 51.25–124.3

P.rigidaF5 4.81

4.27–5.43

4.85 4.31–5.47

2.09 1.86–2.35

8.31 7.72–8.94

P.rigidaF6 1.75

1.58–1.93

4.12 3.67–4.62

2.03 1.32–3.13

8.91 7.14–11.13

P.rigidaF7 13.10

9.42–18.22

14.49 11.86–17.70

7.12 5.878–8.62

33.49 18.56–60.44

P.rigidaF8 2.28

1.81–2.88

8.43 6.66–10.67

20.35 17.11–24.22

5.96 5.20–6.83

P.rigidaF9 7.53

5.61–10.10

28.25 22.99–34.72

32.63 27.88–38.18

20.89 19.38–22.52

P.rigidaF10 41.37

32.87–52.07

47.20 35.06–63.56

59.38 49.25–71.59

33.86 18.38–62.36

P.rigidaF11 15.91

13.59–18.62

39.39 33.15–46.79

21.00 16.71–26.38

13.98 12.38–15.79

n.d.,notdeterminedornotrated.

Table2

IC50(␮M)and95%confidenceintervalsofcompounds1–4obtainedfromaPseudopterorgiarigidaorganicextractontumorcelllinesinculturedeterminedbytheMTTassay

over72hincubation.TheresultsarepresentedasIC50(␮M)values,with95%confidenceintervals.␤-lapachonewasusedaspositivecontrol.

Celline Histotype IC50(95%CI)␮M

1 2 3 4 ␤-lapachone

HL-60 Promyelocyticleukemia 8.7 7.5–10.2

33.2 n.d.

23.7 4.6–7.7

38.4 30.9–47.8

1.6 1.5–1.8

HCT-8 Colon 17.9

14.5–22.3

23.1 18.8–28.4

59.8 36.5–97.9

89.4 43.1–185.4

0.8 0.7–0.9

SF295 Brain 15.4

13.8–17.1

49.6 34.2–71.7

10.8 8.2–14.2

16.9 12.4–23.2

0.9 0.7–1.1 MDAMB435 Breastcancer 22.0

18.7–25.9

30.6 26.1–35.9

32.4 27.8–37.8

66.9 55.2–81.1

0.2 0.2–0.3 MDAMB231 Breastcancer 13.2

11.3–15.5

n.d. n.d. n.d. n.d.

MX1 Breastcancer 25.2

n.d.

n.d. n.d. n.d. n.d.

B16 Murinemelanoma 24.2

19.1–30.8

n.d. n.d. n.d. n.d.

J774 Murinemacrophage 11.5 9.8–13.5

n.d. n.d. n.d. n.d.

L929 Murinefibroblast 16.32 11.7–22.82

n.d. n.d. n.d. n.d.

n.d.,notdeterminedornotrated.

B).Precisely,duringthefirst24h,culturesexposedto1suffered a rapid decline in cell number and membrane integrity, espe-ciallyunderhigherconcentrations.Alterationsinthecellcycleof perezone-treatedcellswith4and8␮Mweredetectableafter24h, andshowedasignificantandratherstrikingincreaseoftheG2/M

phase,accompaniedbyadecreaseintheSphase(Fig.1C). Inter-nucleosomalfragmentation,however,wasdetectedonlyincells treatedwith1at8␮M(Fig.1D).

InvolvementofROSgenerationincytotoxicityinducedby

perezone

Interestingly, cytotoxic activity of 1 on HL-60 cells proved stronger aftera shorter exposuretime, as IC50 valueincreased a3.5-foldbetween24 and72h. Nevertheless,whenHL-60cells werepre-incubated withl-NAC,those became lesssensitiveto perezone-induced cytotoxicity,as IC50 increased about8 times

after 24htreatment and, after 72h, toxicity was undetectable (Table3).

SubstantialmorphologicalchangeswereobservedinHL-60cells treatedwith1or␤-lapachone,thelaterconsidered,herein,asthe positivecontrol(Fig.2A).In␤-lapachone-treatedcells,vacuolesin thecytoplasmcouldbeobserved,along withfurther character-isticsofapoptosis,suchasreducedvolume,membraneblebbing and nuclearfragmentation.Additionally, aconsiderablenumber cellsresemblingnecrosis,werealsoobservedafter24htreatment. Perezone-treatedcellsshowedvolumereductionandsomecellular aggregation.LittleDNAfragmentationandsomemembrane rup-tureweredetected.Moreover,picnoticcellswerewidespreadin slides.Suchcharacteristicsseamedtoretainconcentration depen-dency.Cellspre-treatedwithl-NACpriortoexposureto1showed fewersignsoftoxicity,especiallythoserelatedtoapoptosis,atall testedconcentrations.

(5)

8 4 2 (+) (–) 0 10 20 30 40 50

a

a b

Perezone (µM)

DNA fragmentation (%)

3 h 24 h

47%

45% 8%

(–)

44%

43% 13%

Perezone 2 µM

(+)

* 80% * 14%

* 6%

Perezone 8 µM

* 21% *

48% * 31% 49%

Perezone 4 µM

* 30%

* 21%

G0/G1

G2/M

S

D

72 48

24 0

0 20 40 60 80 100

Hours

Membrane integrity (%)

Doxorubicin 0.5 µM Control

Perezone 2.0 µM Perezone 4.0 µM Perezone 8.0 µM

B

72 48

24 0

0 10 20 30

Hours

Cell density

(X10

5cells/ml)

A

C

Doxorubicin 0.5 µM Control

Perezone 2.0 µM Perezone 4.0 µM Perezone 8.0 µM

Fig.1.Characterizationofperezone(1)cytotoxicityonHL-60cells.(A)Depictstheeffectsoncellgrowthafter3,6,12,24,48and72hexposure;(B)theeffectsonmembrane

integrityafter3,6,12,24,48and72h;(C)theeffectsoncellcycleafter24hexposure;and(D)theeffectsoninternucleossomalfragmentationafter3and24hexposure.

CellswereeithertreatedwithDMSO1%(−),0.5␮Mdoxorubicin(+),orwith1at2,4or8␮M,andanalyzedbyflowcytometryafterstainingwithPI.Dataarepresentedas

meanvalues±standarderrorofthemean(S.E.M.)fromthreeindependentexperiments,eachconductedintriplicate.Fivethousandeventswereacquiredforeachreplicate

andcomparedwiththerespectivecontrolsbyANOVAandfollowedbyDunnett’scomparisontest.In(C),*indicatesstatisticallysignificantlydifferentfrom(−)(p<0.05).In

(D),a,indicatesstatisticallysignificantlydifferentfrom(−)at24h(p<0.05);andb,indicatesstatisticallysignificantlydifferentfrom(−)at3h(p<0.05).

Table3

CytotoxicityofperezoneevaluatedbytheMTTassayinHL-60cellsafter24or

72hexposure,pre-treatedornotpre-treatedfor1hwithl-NAC.Theresultsare

presentedasIC50(␮M)values,withconfidenceinterval95%.

Treatment 24h 72h

Perezone 2.45 2.01–2.98 8.747.46–10.18 Perezone+NAC 20.3313.29–30.6 >25

increased the number of non-viable ones in a concentration-dependentmanner(Fig.2B). Pre-incubationwithl-NACfor 1h waseffectiveinlesseningperezone-inducedcytotoxicity,butnot sufficient to reverse the effects prompted especially by higher concentrationsonneitherviable andnon-viablecellcount.It is noteworthythatthepresentdatashowedareductioninthe num-berof viable cellsin control groups whenincubated onlywith l-NAC,whichindicatesthatthisantioxidantitselfhasamild cyto-toxicity.

Intracellular reactive oxygen species (ROS) accumulation was monitored using 2,7-dichlorodihydrofluorescein diacetate (H2-DCF-DA),whichisconvertedtothehighlyfluorescent dichlo-rofluorescein(DCF)inthepresenceofintracellularROS.Perezone (1)showedtobeastrongproducerofintracellularROS,andthis effectcouldbeperceivedaftermerely1hexposure(Fig.2C). Pre-incubationofcellswithl-NAC,asexpected,weakenedmostofthis effect.

Discussion

Marinesecondarymetabolitescontaininginteresting biomedi-calpropertieshavebeenisolatedfrommanyorganisms,including

bacteria, algae, sponges, bryozoans, mollusks, ascidians, and cnidarians(Costa-Lotufoetal.,2009).Fromachemicalstandpoint, withinthe cnidarians, thegreatest attentions in this groupare sessileand softbody organisms,suchascorals,gorgonians and zoanthids.MarineGorgonaceaOctocoralsareknowntobearich sourceofbiologicallyactiveterpenoids,whichareanimportant partinecologicalrelationships(MartinsandEpifanio,1998). Sev-eralstudiescarriedoutwithpseudopterosin,aditerpeneglycoside isolatedfromPseudopterogorgiaelisabethaespecies,demonstrated apotentanti-inflammatoryactivity(Ataetal.,2003;Mayeretal., 1998).

TheCaribbeangorgonianP.rigida(Bielschowsky,1929)belongs tothephylumCnidaria,classAnthozoaanditisknownfor produc-inganumberofsesquiterpenes,ofwhichmostarequinonesand hydroquinones(McEnroeand Fenical,1978;Freyer etal.,1997; D’Armaset al., 2000).Some of thesecompounds seem to play importantecologicalrolesinthehostorganism,suchasdefense against predation. In fact, curcuphenol and curcuhydroquinone proved to be responsible for the feeding deterrent activity of thecrudeextractobtainedfromP.rigidaagainstgeneralistfishes (Harvelletal.,1988).Inplants,bisabolanesarealsoallelopatic com-poundswithherbicidalandantifeedantactivities,hencerecruiting agrochemicalinterests(Burgue ˜no-Tapiaetal.,2008).

Perezone(1)hasbeenpreviouslyreportedinextractsofP.rigida

(Georganteaetal.,2013),besidesbeingisolatedfromthedryroots

ofPereziaspp.(Enrıquezetal.,1980).Itsspectraldataarealso

(6)

L-NAC pre-treatment

(+) (–)

+

Perezone 2 µM Perezone 4 µM Perezone 8 µM

8 4 2 (+) (–) 0 20 40 60 80

c

Perezone (µM)

Viable cell count (x10

4/ml)

c

a a

a b

b b

b

8 4 2 (+) (–) 0 5 10 15 20

a

a

a b

b

b b

a

Perezone (µM)

Non-viable cell count (x10

4/ml)

c c

8 4 2 (+) (–) 0 20 40 60 80

Perezone (µM)

c

b

a b b b

c c c

ROS generation (% of cells)

B

C

A

20 µM

20 µM

20 µM

20 µM

20 µM

20 µM

20 µM

20 µM

20 µM

20 µM

No pre-treatment L-NAC pre-treatment

No pre-treatment L-NAC pre-treatment

Fig.2.Influenceofreactiveoxygenspecies(ROS)onthecytotoxicityinducedbyperezone(1)onHL-60cellswithorwithout1hpre-treatmentwith5␮Ml-NAC5.(A)

DepictsrepresentativestructuraleffectsoncellmorphologybyMay–Grümwald–Giemsastainingafter24hexposure;(B)theeffectsoncellviabilitybyexclusionoftrypan

bluedyeafter24hexposure;and(C)theeffectsonROSgenerationbyH2-DCF-DAstainingandflowcytometryanalysisafter1hexposure.Cellswereeithertreatedwith

DMSO1%(−),2␮M␤-lapachone(+),orwith1at2,4or8␮M.Dataarepresentedasmeanvalues±standarderrorofthemean(S.E.M.)fromthreeindependentexperiments,

eachconductedintriplicate,andcomparedbyANOVAfollowedbytheStudentNewman–Keulstest.a,indicatesstatisticallysignificantlydifferentfrom(−)withl-NAC

pre-treatment(p<0.05);b,indicatesstatisticallysignificantlydifferentfrom(−)withoutl-NACpre-treatment(p<0.05);andc,indicatesstatisticallysignificantlydifferent

fromtheirrespectivetreatmentcounterpart(p<0.05).

fromthisspecieandtheNMRdataarealsoaccordingtothe litera-ture(Georganteaetal.,2014).

AnaturalproductscreeningcarriedoutbytheNationalCancer Institute(NCI)hasidentifiedthatquinonesareanimportant phar-macological elementwithcytotoxic activity(Pérez-Sacauet al., 2007).Accordingly, 1 showed tobe cytotoxicin a four-human tumorcelllinepanel.Furthermore,bisabolanes2–4alsoshowed thesamekindofactivity,howevertoalesserpotency(Table2). Perezone(1)wasnotselectivebetweentumorandnon-tumorcells, and itscytotoxicityseemedtoberelated toapoptosisinducing propertiesinleukemiacells.Thesefindingsareinagreementwith apreviousstudyfromSánchez-Torresetal.(2010)showingthat

1iscytotoxictoK562leukemiccellsandcancausemitochondrial depolarizationinaconcentrationdependentmanner.

Quinoidalstructuresarewidespreadinnatureandarehighly redox active molecules. Such reactivity leads to the produc-tion of ROS (reactive oxygen species), a normal mitochondrial metabolicby-product, which, in excess, triggers cellular oxida-tivestressthroughtheoxidationofmacromolecules(Boltonetal., 2000).These proprieties, nonetheless, can be explored for the developmentofnewdrugsincancertherapy.ProductionofROS is involved in induction of apoptosis and this death pathway is considered the most appropriate when it comes to provok-ing tumorcells death (Bironaite et al., 2004).One ofthe main features responsible for quinone cytotoxicity is the alkylation of cellular nucleophiles, suchas DNA, lipids and proteins, and therefore,theirabilitytogenerateROS.Theoneelectron reduc-tionfromaquinonecompoundproducesasemi-quinoneradical, which,inturn,generatesROSwhilealteringmitochondrial trans-membrane potential. This alteration can interfere in some cell signsassociatedwithdeathpathways(Tudoretal.,2003). Pere-zone(1)hasbeenshowntobeboth, anelectron-donor andan

electron-acceptor, and theseoxido-reductionproprietiesinhibit mitochondrialelectrontransportat50␮M(CarabezandSandoval, 1988).

Glutathioneisanacutefreeradicalneutralizerduetoitsrole asasubstratetointracellularROSscavengingenzymes(Circuand Aw,2008).l-NACisaprecursorofglutathioneand,therefore,an importantantioxidant.Thus,l-NAChasbeenwidelyusedastoolfor investigatingtheinvolvementofROSincytotoxicity(Sun,2010). Perezone (1) is a potent inducer of intracellular ROS in HL-60 cells,andthiseffectcanbeobservedafteraslittleas1hexposure (Fig.2C).Pre-treatment withl-NAC,ontheotherhand,showed competencetovirtuallyeliminatemeasurableROSinductionby1

and␤-lapachone.Actually,l-NACdesensitizedHL-60to perezone-inducedcytotoxicity,andIC50increasedatleast8-foldafter24h exposure(Table3).Theprotective effect deliveredby l-NACis evidencethatthemechanismofperezone-inducedcytotoxicityis partiallyassociatedtogenerationofROSandaconsequent induc-tionofoxidativestress.

(7)

Otherquinones,suchasthatisolatedfromtherootsofCordia

leucocephala,alsoinduceapoptosisandnecrosisbyamechanism

involvingoxidativestress.Thisnaphthoquinone,rapidlyinduced ROS-relateddeathinHL-60cellsafteronly3hexposure( Marinho-Filho et al., 2010). Studies also suggest that several cytotoxic agentsappliedclinicallyincancerchemotherapy,likedoxorubicin, bleomycinandcisplatin,inducestressthroughROSgenerationin tumorcells(Tiligadaetal.,2002).

Conclusion

Perezone(1),isolatedhereinfromthebisabolane-richtropical gorgonianP.rigida,isacytotoxicquinonewithlowselectivitythat inducescellsdeathtroughamechanismthatisassociated,though incompletely,withtheexcessivegenerationofintracellular reac-tiveoxygenspeciesandconsequentinductionofoxidativestress.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authorcontribution

CMRR,LSP,JWA,ALVandRAEconductedtheextract fraction-ation,naturalproductisolationandstructureelucidationefforts, includingtheMS andNMR studies.PAA, PCJ,DVW,JDBMF, AJA andEGFconductedbiologicalassayswithfractionsandpure com-pounds, including cytotoxicity,flow cytometry and microscopy analysis.PCJ,ALV,CMRR,LVCLandRAEdevelopedtheprojectand interpretedtheresults.Allauthorscontributedtothewriting.

Acknowledgements

WethankDr.FrederickBayer,NationalMuseumofNatural His-torySmithsonianInstitution,forthegorgonianidentification,and thestaffattheMassSpectrometryCenter,Universityof California-Riverside,forprovidingHRMS.WealsothankDr.WilliamFenical, fromScrippsInstitutionofOceanography,UniversityofCalifornia SanDiego,forstructuralsupportduringthecollectionexpedition andplentifulscientificdiscussions.Thisworkwassupportedby grantsfromtheUnitedStatesNationalScienceFoundation(NSF) andtheBrazilianfundingagencyConselhoNacionalde Desenvolvi-mentoCientíficoeTecnológico(CNPq).

References

Asche,C.,2005.Antitumorquinones.MiniRev.Med.Chem.5,449–467.

Ata,A.,Kerr,R.G.,Moyab,C.E.,Jacobs,R.S.,2003.Identificationofanti-inflammatory

diterpenesfromthemarinegorgonianPseudopterogorgiaelisabethae. Tetrahe-dron59,4215–4222.

Bironaite,D.,Kalvelyte,A.V.,Imbrasaite,A.,Stulpinas,A.,2004.Theintracellular

antioxidantbalanceofHL-60cellsanditsimplicationintheapoptosisinduced byquinoidalcompounds.Biologia1,48–51.

Bolton,J.L.,Trush,M.A.,Penning,T.M.,Dryhurst,G.,Monks,T.J.,2000.Roleof

quinonesintoxicology.Chem.Res.Toxicol.13,135–160.

Burgue ˜no-Tapia,E., Castillo, L.,Gonzalez-Coloma, A., Joseph-Nathan, P., 2008.

Antifeedantandphytotoxicactivityofthesesquiterpenep-benzoquinone pere-zoneandsomeofitsderivatives.J.Chem.Ecol.34,766–771.

Carabez,A.,Sandoval,F.,1988.Theactionofthesesquiterpenicbenzoquinone

pere-zone,onelectrontransportinbiologicalmembranes.Arch.Biochem.Biophys. 260,293–300.

Circu, M.L., Aw, T.Y., 2008. Glutathione and apoptosis. Free Radic. Res. 42,

689–706.

Costa-Lotufo,L.V.,Wilke,D.V.,Jimenez,P.C.,Epifanio,R.A.,2009.Organismos

mar-inhoscomofontedenovosfármacos:histo´rico&perspectivas.Quim.Nova32, 703–716.

D’Armas,H.T.,Mootoo,B.S.,Reynolds,W.F.,2000.Anunusualsesquiterpene

deriva-tivefromtheCaribbeangorgonianPseudopterogorgiarigida.J.Nat.Prod.63, 1593–1595.

Enrıquez,R.,Ortega,J.,Lozoya,X.,1980.ActivecomponentsinPereziaroots.J.

Ethnopharmacol.2,389–393.

DelaPe ˜na,A.,Izaguirre,R.,Ba ˜nos,G.,Viveros,M.,Enriquez,R.G.,Fernández-G,

J.M.,2001.Effectofperezone,aminoperezoneandtheircorresponding

iso-mersisoperezoneandisoaminoperezoneuponinvitroplateletaggregation. Phytomedicine8,465–468.

Freyer,A.J.,Patil,A.D.,Kilmer,L.,Zuber,G.,Meyer,C.,Johnson,R.K.,1997.Rigidone,

asesquiterpeneo-quinonefromthegorgonianPseudopterogorgiarigida.J.Nat. Prod.60,309–311.

García,X.,Alcántara-Sarabia,G.,Cartas-Heredia,L.,Gijón,E.,1995.Actionsof

pere-zoneonratsmoothmuscle.Gen.Pharmacol.26,1741–1745.

Georgantea,P.,Ioannou,E.,Vagias,C.,Roussis,V.,2014.Bisabolaneandchamigrane

sesquiterpenesfromthesoftcoralPseudopterogorgiarigida.Phytochemistry. Lett.8,86–91.

Georgantea,P.,Ioannou,E.,Vagias,C.,Roussis,V.,2013.Perezoperezoneand

cur-cuperezone:bisabolanedimersfromthesoftcoralPseudopterogorgiarigida. TetrahedronLett.54,6920–6922.

Gheeya,J.S.,Chen,Q.R.,Benjamin,C.D.,Cheuk,A.T.,Tsang,P.,Chung,J.Y.,Metaferia,

B.B.,Badgett,T.C.,Johansson,P.,Wei,J.S.,Hewitt,S.M.,Khan,J.,2009.Screening

apanelofdrugswithdiversemechanismsofactionyieldspotentialtherapeutic agentsagainstneuroblastoma.CancerBiol.Ther.8,2386–2395.

Harvell,C.D.,Fenical,W.,Greene,C.H.,1988.Chemicalandstructuraldefensesof

Caribbeangorgonians(Pseudopterogorgiaspp).1.Developmentofaninsitu feedingassay.Mar.Ecol.Prog.Ser.49,287–294.

Joseph-Nathan,P.,González,M.P.,Rodríguez,V.M.,1972.TerpenoidsofPerezia

hebe-clada.Phytochemistry11,1803–1808.

Joseph-Nathan,P.,Mendoza,V.,García,E.,1977.Thereactionmechanismofthe

perezonepipitzoltransformation.Tetrahedron33,1573–1576.

Marinho-Filho,J.D.,Bezerra,D.P.,Araújo,A.J.,Montenegro,R.C.,Pessoa,C.,Diniz,

J.C.,Viana,F.A.,Pessoa,O.D.,Silveira,E.R.,Moraes,M.O.,Costa-Lotufo,L.V.,2010.

Oxidativestressinductionby(+)-cordiaquinoneJtriggersboth mitochondria-dependentapoptosisandnecrosisinleukemiacells.Chem.Biol.Interact.183, 369–379.

Martins,D.L.,Epifanio,R.A.,1998.AnewGermacraneSesquiterpenefromthe

BrazilianEndemicGorgonianPhyllogorgiadilatataEsper.J.Braz.Chem.Soc.9, 586–590.

Mayer,A.M.S.,Jacobson,P.B.,Fenical,W.,Jacob,R.S.,Glasei,K.B.,1998.

Pharmacolog-icalcharacterizationofthepseudopterosins:novelanti-inflammatorynatural productsisolatedfromtheCaribbeansoftcoral,Pseudopterogorgiaelisabethae. LifeSci.62,401–407.

McEnroe,F.J.,Fenical,W.,1978.Structuresandsynthesisofsomenewantibacterial

sesquiterpenoidsfromthegorgoniancoralPseudopterogorgiarigida. Tetrahe-dron125,1661–1664.

Ozben,T.,2007.Oxidativestressandapoptosis:impactoncancertherapy.J.Pharm.

Sci.96,2181–2196.

Pérez-Sacau, E., Díaz-Pe ˜nha, R.G., Estévez-Braun, A.E., Ravelo, A.G.,

García-Castellano,J.M.,Pardo,L.,Campillo,M.,2007.synthesisandpharmacophore

modelingofnaphthoquinone derivativeswithcytotoxicactivity inhuman promyelocyticleukemiaHL-60cellline.J.Med.Chem.50,696–706.

Rubio,M.,Ramirez,G.G.,Jimenez,F.G.,Salcedo,R.,Belmont,M.A.,1997.About

perezonederivatives,atheoreticalapproach.J.Mol.Struct.(Theochem)397, 239–248.

Sánchez-Torres, L.E., Torres-Martinez, L.A., Godínez-Victoria, M., Omar, J.M.,

Velasco-Bejarano, B., 2010. Perezone and its isomer isoperezone induce

caspase-dependentandcaspase-independent celldeath. Phytomedicine17, 614–620.

Sun,S-Y.,2010.N-acetylcysteine,reactiveoxygenspeciesandbeyond.CancerBiol.

Ther.9,109–110.

Tiligada,E.,Miligkos,V.,Delitheos,A.,2002.Cross-talkbetweencellularstress,cell

cycleandanticanceragents:mechanisticaspects.Curr.Med.Chem.Anti-cancer Agents2,553–566.

Tudor,G.,Gutierrez,P.,Aguilera-Gutierrez,A.,Sausville,E.A.,2003.Cytotoxicity

andapoptosisofbenzoquinones:redoxcycling,cytochromecrelease,andBAD proteinexpression.Biochem.Pharmacol.65,1061–1075.

Vásquez,D.,Rodríguez,J.A.,Theoduloz,C.,Calderon,P.B.,Valderrama,J.A.,2010.

Studiesonquinones.Part46.Synthesisandinvitroantitumorevaluationof aminopyrimidoisoquinolinequinones.Eur.J.Med.Chem.45,5234–5242.

Imagem

Fig. 1. Characterization of perezone (1) cytotoxicity on HL-60 cells. (A) Depicts the effects on cell growth after 3, 6, 12, 24, 48 and 72 h exposure; (B) the effects on membrane integrity after 3, 6, 12, 24, 48 and 72 h; (C) the effects on cell cycle afte
Fig. 2. Influence of reactive oxygen species (ROS) on the cytotoxicity induced by perezone (1) on HL-60 cells with or without 1 h pre-treatment with 5 ␮M l -NAC 5

Referências

Documentos relacionados

Da mesma forma, o código malicioso, para onde o programa será desviado, pode ser colocado tanto no heap quanto na pilha.. Nas figuras 3.4 e 3.5 pode ser vista uma representação

como justa e vincadamente sublinhou um eminente especialista: «não aceitamos que o económico se separe do humano; nem o desenvolvimento, das civilizações em que ele se inclui. O

Este fenômeno é relevante para a classificação da língua Apiaká, dentro da família TupíGuaraní, segundo os critérios de mudança fonológica adotados por Rodrigues 1985 e

O foco da pesquisa sobre as escutas dos jovens evidenciou-se após uma leitura cuidadosa das falas. Considerando que a experiência musical se dá através da escuta, foi

NÓS E OS OUTROS EM/COM QUEM HABITAMOS Na atual sociedade do conhecimento, pautada por encontros inesperados com as mudanças da era digital e cimentada por múltiplas incertezas,

Utilizamos como variáveis explicativas para TRAF_DROGA o IVS e também número de jovens com idade entre 15 e 29 anos (JOVENS_1529), já que a literatura indica uma relação positiva

O tema da migração internacional de goianos para os Estados Unidos da América, em especial para o estado da Califórnia e para a cidade de San Francisco, tem sido tema e

Resultados: O presente estudo demonstrou que o antagonista do MIF (p425) diminuiu significativamente proteinúria, excreção urinária de GAGs , relação proteína/creatinina na