• Nenhum resultado encontrado

Deconstructing the molecular mechanisms shaping the vertebrate body plan

N/A
N/A
Protected

Academic year: 2021

Share "Deconstructing the molecular mechanisms shaping the vertebrate body plan"

Copied!
6
0
0

Texto

(1)

Deconstructing

the

molecular

mechanisms

shaping

the

vertebrate

body

plan

Rita

Aires

1

,

Andre´ Dias

1

and

Moise´s

Mallo

Thelargedisplayofbodyshapesandsizesobservedamong

vertebratesultimatelyrepresentvariationsofacommonbasic

bodyplan.Thislikelyresultsfromtheuseofhomologous

developmentalschemes,justdifferentiallytinkeredbothin

amplitudeandtimingbynaturalselection.Inthisreview,wewill

revisit,discussandcombineoldideaswithnewconceptsto

updateourviewonhowthevertebratebodyisbuilt.Recent

advances,particularlyatthemolecularlevel,willguideour

deconstructionoftheindividualdevelopmentalmodulesthat

sequentiallyproducehead,neck,trunkandtailstructures,and

thetransitionsbetweenthem.

Address

InstitutoGulbenkiandeCieˆncia,RuadaQuintaGrande6,2780-156 Oeiras,Portugal

Correspondingauthor:Mallo,Moise´s(mallo@igc.gulbenkian.pt) 1

Equalcontribution.

CurrentOpinioninCellBiology2018,55:81–86

ThisreviewcomesfromathemedissueonDifferentiationand disease

EditedbyKatjaRo¨perandXose´ RBustelo

ForacompleteoverviewseetheIssueandtheEditorial

Availableonline14thJuly2018

https://doi.org/10.1016/j.ceb.2018.05.009

0955-0674/ã2018ElsevierLtd.Allrightsreserved.

Introduction

Formationofthevertebratebodyisadynamicandcomplex

processthatstartsattheendofgastrulation.Progressively,

from head to tail, the body axis is laid down by the

sequential addition of primodiae for the different body

structuresattheposteriorembryonicend[1].Thisprocess canbedividedintofoursequentialstages.Thefirststage

comprises production of head structures, essentially

formed bythe brainandmost sensoryorgansencasedin

arigid skull.Aftercompletionof head structures,a

pro-foundswitchin developmentalmechanismsleadstothe

formation ofthetrunk,whichcontains the largest partofthe

respiratory, digestive,reproductiveandexcretory organs.

Theseareheldandprotectedbyaribcageandamobile

axialskeletoncomposedofvertebraethatalsoenclosethe

spinal cord. The neck emerges as a transitory region

betweentheheadandthetrunk,alreadycontainingspinal

cord and vertebral column but still not associated with

major organicsystems.Thelast stageof vertebratebody

formationistaildevelopment,whichyieldsa

muscle-skel-etalstructureinvolvedinlocomotion,balance,defenceand

intraspecificcommunication.Insomespecies,suchasin

humans,taildevelopmenthasbeenmodifiedinsuchaway

thatonlyavestigialelementisleft[2,3].

Thehead,neckandtrunkallrelyontheepiblasttoproduce theirneuraltubeandrequiretheactivityofthePrimitive

Streak (PS) to generate mesodermal components. This

contrastswithtaildevelopment,whichdependsonthetail

budtobuildbothitsmesodermandneuraltube[4].These

differences were initially observedby Holmdahlalmost

100 years ago, coiningthe terms primary andsecondary

body for PS-dependentand tailbud-dependent regions,

respectively [5]. Today, recent advances enable us to

addresstheformationofthevertebratebodyatamolecular

level,thusexpandingHolmdahl’sclassicalvision.

New

layers

in

the

regulation

of

PS

formation

FormationofthePSisakeystepinvertebrate

develop-ment. This is a complex process involving a variety of

cellularandmolecularinteractionslimitingaratherbroad

cellularcompetencetoaspecificareaofamorphogenetic

field[6].Recentfindingshavediscoveredextraregulatory

layers to this process. Classic genetic experiments had

shownthattheTransforming GrowthFactor-b(TGF-b)

familymemberNodal(SeeBox1)isacentralcomponentof

the molecularnetworkinducingPS formation[6].

How-ever,thepre-gastrulatingamnioteembryocontainsNodal

activity scatteredthroughoutthe epiblast.Nevertheless,

thisactivityisunabletotriggergastrulationbecauseitis keptbelowacriticalthresholdlevelbyspecificinhibitors, includingthe Cerl1ortheLeftyproteins[7].Yet,itstill

allowsforsporadiccelldelaminationthroughoutthe

epi-blast[8].Ithasnowbeenshownthatthisscatteredactivity

converges in a restricted domain as a consequence of

stereotyped cell movements within thisepithelial layer.

This convergencetriggers apositive feedbackloop that

promotes a local increase of Nodal signalling and of

Crumbs2-dependentstimulationofEpithelial to

Mesen-chymalTransition(EMT)-associatedprocesses,confining

andamplifyingthecelldelaminatingactivityinthatareaof theepiblasttogeneratethePS[8,9].Rathersurprisingly,it

was recently found that regulation of Lefty expression

involvesanepigeneticmechanism,requiringtheactivity

oftheTetgenestokeeptheirpromotersnon-methylated.

Indeed, in Tet mutant embryos Nodalactivity becomes

excessively highthroughout theepiblast,leading to the

(2)

The

neuro-mesodermal

progenitors

as

a

common

theme

in

post-cranial

body

formation

Head,neckandtrunkhavebeenclassifiedasprimarybody

onthebasis ofcommongeneraldevelopmentalfeatures.

However,therearefundamentalmechanisticdifferences

betweentheproductionofheadandpost-cranialvertebrate

structures(i.e.neck,trunkandtail)[4].Twoparticularly

relevant indicators of this change are thecontrol of PS

activity, that becomes independent of Nodal signalling

[11],andthedrasticmodificationinthebuildingofbody structures.Inparticular,whiletheprimordiaeforthe

head-associated neural and mesodermal structures are mostly

shapedconcomitantlywiththeappearanceandearly

orga-nizingactivityofthePS,thepostcranialbodyis progres-sivelylaiddownastheembryoextendsatitscaudalend.In

theneuraltubeandsomiticmesoderm,thisdevelopmental

switchmarkstheoutsetofthespinalcord andvertebral

columnandisfunctionallylinkedtotheappearanceofthe

Neuro-MesodermalProgenitor(NMP)[12].Thiscell

pop-ulationwasidentifiedingraftingexperimentsbyitsability

to generate neural and paraxial mesodermal tissues

throughoutdevelopment[13,14],andfurthercharacterized byretrospectiveclonalanalysesinthemouseembryo[15].

Despite some controversy, it is generally accepted that

NMPsarethe origin of the spinal cordand paraxial (somitic) mesodermfoundintheneck,trunkandtailstructures,thus

contributingtobothprimaryandsecondarybodystructures

[12,15].Inamnioteembryos,NMPsinvolvedinneckand

trunkdevelopmentarelocatedintwospecificareasofthe

epiblast,thenode-streakborderandtheanteriorpartofthe caudallateralepiblast[14,16].Thesecellsarethen

reallo-catedtotheChordo-NeuralHinge(CNH),withinthetail

bud,whentheembryoengagesinsecondarybody

forma-tion[14].TheobservationthattheCNHcontainsremnants

of the blastopore lip in amphibians and the node in

amniotes [17,18] suggests a mechanistic continuity

between primary and secondary body formation, which

was further supported by retrospective clonal analyses

revealingthattailbudNMPsaredirectderivativesoftheir trunkcounterparts[15].Basedinthepreeminentrolethat

NMPshaveduringvertebratedevelopmentwe,therefore,

proposethat,inadditiontoprimaryandsecondarybody,

vertebratedevelopmentcouldbefurtherdividedin

NMP-independentandNMP-dependentstages.

NMPsarecurrentlydefinedbytheirco-expressionof

Bra-chyury (T) and Sox2, mesodermal and neural markers,

respectively[14,16]. Thesecells are thus thought to be

inatransientstatebetweenthesetwolineages,andtheir

ultimate choice resulting from the balance between the

networkscontrollingeachfate.Avarietyofinvitroandin vivoexperimentsareconsistentwiththisideaandhavealso identifiedWnt3aasakeyregulatoroflineagechoiceinthese

cells. Collectively, these studies show that NMPs take

neural routes when exposed to low or negative Wnt3a

activityandmesodermalfatesuponincreasedandsustained

Box1 . Cdxgenes

CdxhomeoboxgenesbelongtotheParaHoxgeneclusterandencode severalimportanttranscriptionfactorsthatcontrolaxialpatterning.

Cerl1

Thisgeneencodesacytokineandfunctionsasanantagonistofthe TGF-bfamily.Itisinvolvedinvertebrateheadandheartinduction andintheformationandpatterningofthePS.

Crumbs2

ThisgeneencodesforamemberoftheCrumbscellpolaritycomplex familyofproteins.Recentdatasuggeststhat,inmammals,Crumbs2 isnecessarytoremove,ratherthanmaintain,apicaljunctions.It playsakeyroleinmesodermproductionbycompletingtheEMTof epiblastcellsinthePS.

Gdf11

Gdf11belongstotheTGF-bsuperfamilyofproteins.Itbindstothe growthfactor-breceptorAlk5,regulatingtheexpressionofkeygenes (e.g.Hoxgenes)duringembryonicdevelopment.Itisinvolvedinthe Anterior-Posterior(AP)patterning,particularlyduringtailbudandtail formation.

Leftygenes

LeftygenesencodeantagonistsofNodalactivity,bypreventingthe interactionbetweenNodalanditsreceptors.Lefty-1iscrucialduring gastrulation,confiningNodalactivitytothefuturePSregion.Itisalso involvedtheestablishmentofleft-rightasymmetry.

Nodal

NodalisasignalingmoleculeoftheTGF-bsuperfamily.Bindingof Nodaltospecificsurfacereceptorstriggersasignalingpathway involvingrecruitmentandactivationoftheSMADtranscription fac-torsfamily.ItplayskeyrolesinPSformationandintheestablishment ofleft-rightsymmetry.

Oct4(Pou5f1)

Embryonicstemcellsaregovernedbyacoreofkeytranscription factorsincludingOct4.Thisgeneencodesaproteinessentialfor pluripotencyandself-renewalpropertiesduringembryonic devel-opment.Additionally,ithasrecentlybeenshowntoplayakeyrole controllingvertebratetrunklength.

Sox2

Sox2isamemberoftheSRY-relatedHMG-box(SOX)familyof tran-scriptionfactorsthatplayscriticalrolesinavarietyofdevelopmental processes.Itisinvolvedinmaintainingtheself-renewalofneural progenitorcells,thusplayingakeyroleinneuraltubeformation.

T

TheT-boxtranscriptionfactorBrachyury(T)playsseveralkeyroles duringembryonicdevelopment,particularlyinmesodermformation anddifferentiationbytranscriptionalregulationofimportant meso-derm-associatedgenes.Itisalsocrucialfornotochorddevelopment.

Tetgenes

TetgenesencodeforproteinsoftheTET(ten-eleventranslocation) familythatcatalyseDNAdemethylationandcontrolgeneexpression throughepigeneticmechanisms.

Wnt3/Wnt3a

Wntproteinsareinvolvedinkeyintercellularsignallingwithmultiplecrucial rolesduringembryonicdevelopment.Wnt3regulatesAPpatterninginthe earlyembryoandPSformation.Wnt3aisnecessaryformesoderm production,asitcontrolsprogenitorcellfateduringaxialelongation.

(3)

Wnt3aactivity,whichisfurtherpromotedandstabilizedby Tbx6andMsgn1[19,20,21,22,23–25,26,27–29].

NMPs are involved in the formation of primary and

secondarybodystructures.Somefactors,likeT,Wnt3a,

Cdx,andFgfsignallingregulatetheiractivityatallaxial levels[19,30,31,32,33,34].However,recentstudies

indi-cate that genetic networks regulating early trunk and

earlytailprogenitorsinthemouseseemtobe

fundamen-tallydifferent,relyingondistinctivesubsetsofgenesfor trunkandtailformation[22].Amongthem,Oct4stands

out as a key regulator of trunk development, being

dispensable attail bud stages.Indeed, conditional Oct4

inactivation after completion of its role during early

pluripotentstagesproducedembryoslackingtrunk

struc-tures,but thatstillcontained recognizabletailbud

deri-vatives [35]. Conversely, sustained Oct4 activity in the

epiblast was sufficient to extend formation of trunk

structures,maintainingtypicalprimarybodygrowth

char-acteristics,aswellasdelayingorevencompletely

block-ing thetransition intosecondary bodyformation [36].

The importance of Oct4 for trunk development was

further supported by the observation that in snake

embryos,characterizedbyextremelylongtrunks,

recom-bination eventsmostlikelybroughtOct4underthe

con-trolofregulatoryelementsthatkeptitsexpressionactive for exceptionallylongdevelopmentaltimes[36].

Similar

structures,

different

mechanisms

Somites areanotherkeyelement ofvertebrate

develop-ment.Interestingly,althoughtheyareproduced

through-outmostofthemainbodyaxis,themechanismsregulating

theirformationvaryatdifferentaxiallevels.Thefirstfew somites,whichformtheoccipitalboneinsteadofvertebrae [37],arenotbuiltfollowingthegeneralmodelof somito-genesis,astheyareparticularlyresilienttogenetic

altera-tionsthatstronglycompromisethedevelopmentofmore

caudalsomites[38,39].Interestingly,recentobservations

indicate thatformation of NMP-derived somites is also

mechanistically different during primary and secondary

bodyformation.Inparticular,whilecompleteinactivation

of Lfnginterferesgloballywithpostcranialsomitogenesis

[40,41],oscillatory expression of thisgene isrequiredto buildtrunksomitesbutdispensableattaillevels[42].Tail

somiteswerealsoshowntobemoreresilienttoreductions

in Lfng dosagethan theirtrunk counterparts [43].

Con-versely,Hoxb6readilyinterfereswithsomiteformationat

taillevelsbuthavenonegativeeffectsonthesameprocess

in more anteriorregions,further supporting mechanistic

differencesinsomitogenesisduringprimaryandsecondary

bodyformation[44].

Regulating

transitions

between

compartments

Based ontheabovediscussion, vertebratedevelopment

seemstorequireatleasttwomajorfunctionaltransitions:

from NMP-independent to NMP-dependent and from

primarytosecondarybodyformation(seeFigure1).The

firsttransitionentailsaswitchincanonicalWntsignalling

fromrequiringWnt3atheadstagestorelyonWnt3awhen

entering the NMP-dependent phase [[32],19]. The

mechanismsunderlyingthischangearenotknown.

How-ever, in mouse embryos carryingastabilized versionof

theAxin2protein,Wntsignallingwasreducedduringthe

Wnt3phasebutstimulatedafterswitchingtothe

Wnt3a-drivenstage[45],indicatingthattheWnt3toWnt3aswap

isassociatedwithamechanisticchangeinthecanonical

Wntpathway.Duringthisfirsttransition,axialextension

also becomes dependent on T and the Cdx genes

[31,32,46]. Wnt3a, T and Cdx activities might indeed

cooperatetopromotetheemergenceofNMPsasrecent

genomic studiesrevealedtheopening ofkey enhancers

uponWnt-inducedNMPformation,followedby

cooper-ativebindingofTandCdxproteinstoregulatoryregions

of Wnt and Fgf signalling targets involved in NMP

activity[32].

Thetransitionfromheadtoneck/trunkdevelopmentalso

requireschangingthedevelopmentalpotentialofepiblast

cellsfatedtointermediateandlateralmesoderm.During

headformation,thesecellsgeneratetheheartprimordion,

whereasinthetrunktheycontributetoawidevarietyof

organsofthe digestive,excretory and reproductive

sys-tems.Recentdataindicatesthatasignalfromthe

NMP-derived neural tubeis instrumentalto prevent the

pro-duction of heart lineages from the lateral mesoderm.

Interestingly, as for PS formation, Tet-mediated

epige-neticmodificationsseemtoplayanessentialroleinthis

process[47].Specifically,intheabsenceofTetactivity,

Wntsignallingbecomesover-activatedintheprogenitor

zone,blockingneuraldifferentiation ofNMPs,whichin

turnleadstoafailureinkeepingthecardiacfieldwithin

itsnormaldomain,extendingcaudallyintothe

prospec-tiveneckregion[47].Theseobservationsindicatethat thepositionofthefirstvertebraeandthecaudallimitof theheartlineagesarebothinter-relatedandlinkedtothe

emergenceofNMPs,whichoccursatanalmostinvariable

axialpositionindifferentvertebratespecies.Conversely,

activationoftrunklateralmesoderm,generallymarkedby

thepositionoftheforelimbbud,occursathighlyvariable

axial levels. The relativetimingof thesetwo processes

most likely will provide the basis for the broad neck

lengthdiversityamongvertebratespecies.

Asforthelasttransition,recentdataplacesGdf11 signal-lingatthetopoftheregulatoryhierarchycontrollingthe

shift from primary to secondary body formation. The

absence of Gdf11 alone or together with Gdf8 resulted

infetuseswithextendedtrunks[48,49],whereas

prema-tureactivationofGdf11signallingledtodramatic

short-eningsinthisregion,withanearlytransitioninto

second-ary body formation [50]. The axial level of Gdf11

expression directly correlates with the position of the

(4)

species[36,51],furthersupportingakeyroleforGdf11

signallinginthisprocess.Interestingly,Gdf11andNodal

signallingsharemanyfeatures,whichconstitutean

inter-esting parallelism between mechanisms initiating and

finishingPS-dependentvertebrate development.

None-theless,themechanismsoperatingdownstreamofGdf11

signallingareonly partiallyunderstood.One of thekey

componentsof thisprocess, theend oforgan-producing

progenitors, seems to depend on the Gdf11-mediated

activationof Isl1in theprogenitors fortheintermediate

and lateral mesoderm [50]. This activation triggers the

terminaldifferentiationofthoseprogenitorsbymeansof

inducingboththehindlimbfromitssomaticlayerandthe

cloaca-associatedmesodermfrom itssplanchnic

compo-nent.However,themechanismsregulatingNMP

reallo-cation from theepiblast into the tailbud remain to be

discovered.

Concluding

remarks

Holmdahl’sfirstproposalfortheexistenceofprimaryand

secondary body formation was solely based on

morphological traits. The age of genetics has mostly

proven him right; yet, it also revealed the enormous

complexity surrounding the development of the

verte-bratebody.Despiteitscontinuousnature,theprocessof

axisextensionseemstobeorganizedintodevelopmental

units,eachcontrolledbydistinctivemolecularnetworks

thatbroadlycorrespondtoeachbodyregion.Recentdata

has added new layers of complexity to these relevant

regulatory networks, including the discovery of acting

epigenetic mechanisms. A full understanding of these

processesand their mutualinteractions will furtherour

knowledgeofhowthevertebratebodyplanisshapedand

how modifications in these processes and interactions

produced the wide variety of body shapes displayed

amongvertebratespecies.

Acknowledgements

WorkinM.M.labwassupportedbygrantsPTDC/BEX-BID/0899/2014 (FCT,Portugal)andSCML-MC-60-2014(fromSantaCasadaMiserico´rdia deLisboa,Portugal).A.D.isrecipientofaPhDfellowshipPD/BD/128426/ 2017(FCT,Portugal).

Figure1

Head Neck Trunk Tail

Primary body Secondary body

NMP-indep. NMP-dependent

Tail bud Gdf11(+) PS Nodal(-) Epiblast Oct4(+) Gdf11(-)

PS Nodal(+) Tet Wnt3 Wnt3a Cdx T(Brachyury) ~E 7.5 ~E 8.5 ~E 9.5 ~E 10.5 PS PS TB

Current Opinion in Cell Biology

Schematicrepresentationofthedifferentsequentialstagesinvolvedintheformationofthevertebratebody.Thehead,neckandtrunk representtheprimarybody,associatedwiththepresenceoftheprimitivestreak(PS),whereasthetailrepresentsthesecondarybody, relyingonthetailbud(TB).Notallprimarybodydependsonthesamemechanisms.Inthehead,thePSrequiresNodalandWnt3butin thetrunkthePSisindependentofthesesignals,becomingdependentonOct4.Theneck,trunkandtailallrequireNMPsfortheir development,whichcoincideswiththerequirementofT,Wnt3aandtheCdxfamilyfortheirdevelopment.Thedrawingsrepresentmouse embryosatstagesrelatedtotheproductionofhead,neck,trunkandtailstructures.Theredarrowindicatesthedirectionoftheaxial growth.

(5)

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas

 ofspecialinterest ofoutstandinginterest

1. WilsonV,Olivera-Martı´nezI,StoreyKG:Stemcells,signalsand vertebratebodyaxisextension.Development2009, 136:1591-1604.

2. BentonMJ:VertebratePalaeontology.BlackwellScienceLtd; 2005.

3. CracraftJ,DonoghueMJ:AssemblingtheTreeofLife. Oxford: OxfordUniversityPress;2004.

4. Be´naze´rafB,Pourquie´ O:Formationandsegmentationofthe vertebratebodyaxis.AnnuRevCellDevBiol2013,29:1-26.

5. HolmdahlDE:ExperimentelleUntersuchungenuberdieLage derGrenzeprimarerundsekundarerKorperentwicklungbeim Huhn.AnatAnz1925,59:393-396.

6. ArnoldSJ,RobertsonEJ:Makingacommitment:celllineage allocationandaxispatterningintheearlymouseembryo.Nat RevMolCellBiol2009,10:91-103.

7. Perea-GomezAetal.:Nodalantagonistsintheanteriorvisceral endodermpreventtheformationofmultipleprimitivestreaks. DevCell2002,3:745-756.

8. VoiculescuO,BodensteinL,JunIL,SternCD:Localcell interactionsandself-amplifyingindividualcellingression driveamniotegastrulation.Elife2014,2014:1-26.

9.

 Ramkumartheepithelial-to-mesenchymalNetal.:Crumbs2promotestransitioncellatingressiongastrulation.duringNat CellBiol2016,18:1281-1291.

TheauthorsreportthatCrumbs2isrequiredforcellstocompleteEMT duringgastrulationandthat,togetherwithmyosinIIB,playsakeyrole definingwhichcellswillingressinthePS.

10.

 DaigastrulationH-Qetal.:byTET-mediatedregulatingLefty-NodalDNAdemethylationsignalling.Naturecontrols2016, 538:1-20.

Thisstudydemonstratesthatkeysignallingpathwaysduring gastru-lation are controlled by DNAmethylation of specific promoters.In particular, the authors show that the TET family of dioxygenases, throughDNAdemethylation,playsafundamentalroleregulatingPS formation.

11. KumarA,LualdiM,LewandoskiM,KuehnMR:Broad mesodermalandendodermaldeletionofNodalat postgastrulationstagesresultssolelyinleft/rightaxial defects.DevDyn2008,237:3591-3601.

12. HenriqueD,AbranchesE,VerrierL,StoreyKG:

Neuromesodermalprogenitorsandthemakingofthespinal cord.Development2015,142:2864-2875.

13. CambrayN,WilsonV:Axialprogenitorswithextensivepotency arelocalisedtothemousechordoneuralhinge.Development 2002,129:4855-4866.

14. CambrayN,WilsonV:Twodistinctsourcesforapopulationof maturingaxialprogenitors.Development2007,134:2829-2840.

15. TzouanacouE,WegenerA,WymeerschFJ,WilsonV,NicolasJF: Redefiningtheprogressionoflineagesegregationsduring mammalianembryogenesisbyclonalanalysis.DevCell2009, 17:365-376.

16.

 WymeerschprogenitortypesFJetal.:inthePosition-dependentprimitivestreak.Elifeplasticity2016,of5:1-28.distinct

Inthisstudytheauthorsassesstherelationship,potencyandplasticityof differentpopulationsofaxialprogenitorsintheepiblastandPS, suggest-ingthatthechoiceofneuroormesodermaldifferentiationofNMPsis dictatedbytheirpositioninthesetissues.

17. GontLK,SteinbeisserH,BlumbergB,deRobertisEM:Tail formationasacontinuationofgastrulation:themultiplecell populationsoftheXenopustailbudderivefromthelate blastoporelip.Development1993,119:991-1004.

18. CatalaM,TeilletMA,LeDouarinNM:Organizationand developmentofthetailbudanalyzedwiththequail-chick chimaerasystem.MechDev1995,51:51-65.

19. TakadaSetal.:Wnt-3aregulatessomiteandtailbudformation inthemouseembryo.GenesDev1994,8:174-189.

20. MartinBL,KimelmanD:CanonicalWntsignalingdynamically controlsmultiplestemcellfatedecisionsduringvertebrate bodyformation.DevCell2012,22:223-232.

21.

 KochcontrolFettheal.:fateAntagonisticchoiceofneuro-mesodermalactivitiesofSox2progenitors.andBrachyuryDev Cell2017,42:514-526.

Thisstudyprovidesaglobalanalysisofthekeymolecularinteractions thatcontrolNMPmaintenanceanddifferentiationduringvertebratetrunk development.

22.

 mesodermGoutiMetal.:specificationAgeneregulatoryduringvertebratenetworkbalancestrunk neuraland development.DevCell2017,41:1-19.

ThisstudyprovidesthemolecularfingerprintoftrunkNMPsatasinglecell resolutionandproposeatranscriptionalregulatorynetworkcontrolling NMPdifferentiationthatinvolvesopposingWntandretinoicacidsignals.

23. GoutiMetal.:Invitrogenerationofneuromesodermal progenitorsrevealsdistinctrolesforWntsignallinginthe specificationofspinalcordandparaxialmesodermidentity. PLoSBiol2014,12http://dx.doi.org/10.1371/journal.

pbio.1001937.

24. TsakiridisAetal.:DistinctWnt-drivenprimitivestreak-like populationsreflectinvivolineageprecursors.Development 2014,141:1209-1221.

25. JurbergAD,AiresR,No´voaA,RowlandJE,MalloM: Compartment-dependentactivitiesofWnt3a/b-catenin signalingduringvertebrateaxialextension.DevBiol2014, 394:253-263.

26.

 JavalinoveltransientAetal.:Co-expressionneuromesodermofTbx6progenitorandSox2cellidentifiesstate. a Development2017,144:4522-4529.

Thisstudyidentifiedacellpoolco-expressingTbx6andSox2inthetail budthatconstituteanewspecificsubdomainofNMPsduringposterior bodyformation.

27. GarriockRJetal.:Lineagetracingofneuromesodermal progenitorsrevealsnovelWnt-dependentrolesintrunk progenitorcellmaintenanceanddifferentiation.Development 2015,142:1628-1638.

28. BouldinCMetal.:WntsignalingandTbx16formabistable switchtocommitbipotentialprogenitorstomesoderm. Development2015,142:2499-2507.

29. GotoH,KimmeySC,RowRH,MatusDQ,MartinBL:FGFand canonicalWntsignalingcooperatetoinduceparaxial mesodermfromtailbudneuromesodermalprogenitors throughregulationofatwo-stepepithelialtomesenchymal transition.Development2017,144:1412-1424.

30. NaicheLa,HolderN,LewandoskiM:FGF4andFGF8comprise thewavefrontactivitythatcontrolssomitogenesis.ProcNatl AcadSciUSA2011,108:4018-4023.

31. HerrmannBG,LabeitS,PoustkaA,KingTR,LehrachH:Cloning oftheTgenerequiredinmesodermformationinthemouse. Nature1990,343:617-622.

32.

 inAmintheSembryonicetal.:CdxandaxialTBrachyuryprogenitorco-activateniche.CellgrowthRep2016,signaling 17:3165-3177.

TheauthorsreportthatTandCdx2directlycooperatetoactivateWntand Fgfgeneregulatorynetworksessentialfortrunkelongation.

33. SavoryJGetal.:Cdx2regulationofposteriordevelopment throughnon-Hoxtargets.Development2009,136:4099-4110.

34. YoungTetal.:CdxandHoxgenesdifferentiallyregulate posterioraxialgrowthinmammalianembryos.DevCell2009, 17:516-526.

35. DeVealeBetal.:Oct4isrequiredE7.5forproliferationinthe primitivestreak.PLoSGenet2013,9:e1003957.

(6)

36.

 diversity.AiresRetal.:DevOct4Cellis2016,akey38:262-274.regulatorofvertebratetrunklength

ThisstudyshowsthatOct4andGdf11areatthetopoftheregulatory networkscontrollingvertebratetrunklength.Italsoprovidesevidence suggesting that the characteristic long trunks of snakes result from persistentOct4expressionduringdevelopment.

37. HuangR,ZhiQ,PatelK,WiltingJ,ChristB:Contributionofsingle somitestotheskeletonandmusclesoftheoccipitaland cervicalregionsinavianembryos.AnatEmbryol(Berl)2000, 202:375-383.

38. OkaCetal.:DisruptionofthemouseRBP-Jkappageneresults inearlyembryonicdeath.Development1995,121:3291-3301.

39. SagaY,HataN,KosekiH,TaketoMM:Mesp2:anovelmouse geneexpressedinthepresegmentedmesodermandessential forsegmentationinitiation.GenesDev1997,11:1827-1839.

40. ZhangN,GridleyT:Defectsinsomiteformationinlunatic fringe-deficientmice.Nature1998,394:374-377.

41. EvrardYA,LunY,AulehlaA,GanL,JohnsonRL:Lunaticfringeis anessentialmediatorofsomitesegmentationandpatterning. Nature1998,394:377-381.

42. ShifleyETetal.:Oscillatorylunaticfringeactivityiscrucialfor segmentationoftheanteriorbutnotposteriorskeleton. Development2008,135:899-908.

43. WilliamsDR,ShifleyET,LatherJD,ColeSE:Posteriorskeletal developmentandthesegmentationclockperiodaresensitive toLfngdosageduringsomitogenesis.DevBiol2014, 388:159-169.

44. CasacaA,NovoaA,MalloM:Hoxb6caninterferewith somitogenesisintheposteriorembryothroughamechanism

independentofitsrib-promotingactivity.Development2016, 143:437-448.

45. QianL,MahaffeyJP,AlcornHL,AndersonKV:Tissue-specific rolesofAxin2intheinhibitionandactivationofWntsignaling inthemouseembryo.ProcNatlAcadSciUSA2011, 108:8692-8697.

46. SavoryJGA,MansfieldM,RijliFM,LohnesD:Cdxmediates neuraltubeclosurethroughtranscriptionalregulationofthe planarcellpolaritygenePtk7.Development2011, 138:1361-1370.

47.

 LineuroectodermalXetal.:Tetproteinsandmesodermalinfluencethefatebalancechoicebetweenbyinhibiting Wntsignaling.ProcNatlAcadSci2016,113:E8267-E8276.

TheauthorsshowthatthecontrolofWntsignalinglevelsbyTet-mediated DNAdemethylationplaysafundamental roleintheregulationoffate selectionbyNMPs,eventuallyimpactingthedelimitationofthedomain takingcardiogenicdifferentiationroutes.

48. McPherronAC,LawleAM,LeeS-J:Regulationofanterior/ posteriorpatterningoftheaxialskeletonbygrowth/ differentiationfactor11.NatGenet1999,22:260-264.

49. McPherronAC,HuynhTV,LeeS-J:Redundancyofmyostatin andgrowth/differentiationfactor11function.BMCDevBiol 2009,9:24.

50. JurbergAD,AiresR,Varela-LasherasI,No´voaA,MalloM: Switchingaxialprogenitorsfromproducingtrunktotail tissuesinvertebrateembryos.DevCell2013,25:451-462.

51. MatsubaraYetal.:Anatomicalintegrationofthesacral– hindlimbunitcoordinatedbyGDF11underliesvariationin hindlimbpositioningintetrapods.NatEcolEvol2017, 1:1392-1399.

Referências

Documentos relacionados

Treg cells are a T lymphocyte subset characterized by the expression of CD4 and CD25 as well as the transcription factor FoxP3 (forkhead box P3) and are indispensable for the

RESUMO – A infeção anogenital pelo vírus do papiloma humano (VPH) é a infeção sexualmente transmissível (IST) mais frequente; devido ao seu potencial oncogénico, está na origem

iniciar, precocemente, nas escolas e famílias... ESQUEMA FINAL Perfil e reoresentaoão social do cuidar em enfermaeem obstétrica Articulacão entre ensinos realizados

Após perceber os constantes desafios surgidos da vivência cotidiana da comunidade, o processo acelerado de mudanças urbanas que atinge as favelas da Zona Sul e

A partir da análise dos elementos recorrentemente presentes nas estampas desse tecido tradicional, e entendendo que os mesmos são responsáveis pelo seu reconhecimento enquanto

Esta variabilidade das manifestações orais tornou muito complexo também o diagnóstico, dado não é possível identificar sintomas constantes entre pacientes além do aumento de volume

The size of buffers affects the performance of the system because if buffers are too short, message losses will occur event for light traffic loads and the reduced number of

During the tracheal development, characterized in rhea embryos and fetuses, the differentiation of the EM9 epithe - lial cells to the morphological formation observed in the