• Nenhum resultado encontrado

Morphological traits, allometric relationship and competition of two seed-feeding species of beetles in infested pods

N/A
N/A
Protected

Academic year: 2021

Share "Morphological traits, allometric relationship and competition of two seed-feeding species of beetles in infested pods"

Copied!
5
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution w w w . r b e n t o m o l o g i a . c o m

Biology,

Ecology

and

Diversity

Morphological

traits,

allometric

relationship

and

competition

of

two

seed-feeding

species

of

beetles

in

infested

pods

Jessica

A.

Silva,

Angelo

B.

Monteiro,

Laís

F.

Maia,

Lucas

D.B.

Faria

UniversidadeFederaldeLavras,DepartamentodeBiologia,SetordeEcologiaeConservac¸ão,Lavras,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2February2017

Accepted11April2017

Availableonline25April2017

AssociateEditor:LucasKaminski

Keywords: Merobruchusterani Statormaculatopygus Senegaliatenuifolia Bruchinae Negativeallometry

a

b

s

t

r

a

c

t

Pair-wisecompetitionproducesasymmetricconsequencesfortheinteractingspecies,resultingin reduc-tionofspeciesfitnessattheindividualscale;however,littleisknownoftheeffectsofcompetitiononthe allometricpatternsofinsects.Inthisstudy,weexploredhowcompetition,bymeansofpodinfestation, affectsthedevelopmentoffemaleandmaleindividualsintheco-occurringbruchinebeetlesMerobruchus teraniandStatormaculatopygus.WefounddifferencesbetweenM.teraniandS.maculatopygusinall mor-phometrictraits,butnosignificantdifferencesbetweenmalesandfemalesineitherspecies.Wealso found,withanincreasingdegreeofpodinfestation,apositivetrendinthepronotum,elytronandbody weightofM.teraniandanegativetrendinmorphologicaltraitsandbodyweightofS.maculatopygus. Anegativeallometrywasmaintained,suggestingthatwithincreasingbodyweight,thebodystructures didnotincreaseproportionally.Ontheotherhand,wefoundthatincreasingthedegreeofpod infesta-tionproducedawidervariationintheindividuals’bodysizethaninlowlevelsofinfestation.Finally,we discusshowpodinfestationcantriggercompetitionbetweenspecies,withbothpositiveandnegative impacts,eventhoughthespeciesfunctionsimilarlyinresourceexploitation.

©2017SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The role of competitive interactions between herbivorous

insects asan importantcommunity-structuring factorhasbeen

debatedfor50 years(KaplanandDenno,2007).Theconceptof

competition asa centralorganizing force that prevailedin the

early1960sand1970s(Dennoetal.,1995)changedinthe1980s

toconsideringcompetitionasaweakandinfrequentstructuring

process(LawtonandStrong,1981;Strongetal.,1984),andmore

recently tothe perspective that herbivorous insects frequently

compete(Dennoetal.,1995;KaplanandDenno,2007).Pair-wise

interactionsproduceasymmetricconsequencesfortheinteracting

species(Dennoetal.,1995; KaplanandDenno, 2007),resulting

inspeciesexclusionsatthepopulationleveland/orfitness

reduc-tionattheindividuallevel.Consequencesatregionalorlocalscales

resultfrommortality,nicheshiftingandavoidance;whilefitness

reductionresultsfromdecreasingsurvival,fecundityandbodysize

(Dennoetal.,1995).

Bodysizeregulatestheorganism’s formunder

developmen-talmechanisms (Cariveau et al.,2016; Shingletonet al., 2008),

∗ Correspondingauthor.

E-mail:lucasdbf@gmail.com(L.D.B.Faria).

sincemostmeasurableaspectsofmorphologicaltraitscovarywith

body size(Emlenand Nijhout, 2000).Therelationship between

thesizeofonemorphologicaltraitandthesizeofanother

mor-phological traitorthebody sizeistermedallometry, aconcept

widelyapplicabletoecologyandevolution;andisameasurement

employedtoinvestigatecharacteristicsofinsectsandtheirsexes

(ColgoniandVamosi,2006;Foxetal.,2003).Still,littleisknown

oftheeffectsofcompetitionontheallometricpatternsofinsects

(EmlenandNijhout,2000;Shingletonetal.,2008;SternandEmlen,

1999).

MembersofthecoleopteransubfamilyBruchinaeareimportant

seed-feeders,capableofdamagingedibleleguminous seedsand

seedstocksusedinreforestationprograms(HegazyandEesa,1991;

Southgate,1979;Venkataramanaetal.,2016).Immaturestageslive

insideseedsthathavebeenexcavatedbythefeedinglarvae,while

adultslivefreeandfeedonpollenandnectar(Southgate,1979).

Usually,seed-feeding,miningandgallinginsectsexperiencehigher

levelsofcompetition,sincetheirmobilityisconstrainedbytheir

life-historyandresourcetraits(Dennoetal.,1995).

Merobruchusterani(Kingsolver,1980)(Chrysomelidae:

Bruchi-nae) and Stator maculatopygus (Pic, 1930) (Chrysomelidae:

Bruchinae)arebruchinespeciesthatconsumeseedsofa

climb-ing acaciaspecies, Senegaliatenuifolia (L.) Britton &Rose, 1928

(Fabaceae:Mimosoideae),andshowsimilarseed-predation

behav-ior, although M. terani hasa larger body and occurs in higher

http://dx.doi.org/10.1016/j.rbe.2017.04.003

0085-5626/©2017SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

abundancesthanS.maculatopygus(Tulleretal.,2015).Bothlarval

andpupalstagesliveinsidetheseeds,consumingtheseedsasthey

develop(KingsolverandJohn,2004;JohnsonandRomero,2004;

Tulleretal.,2015).Intermsofresourcelimitation,weobservedthat

onlyoneseedwassufficientfortheimmaturestagestodevelop,and

twoconsiderationsarose:thelarvaehadnoaccesstootherseeds

whenconsumingtheoriginalone,andalaboratoryexperimenthad

shownthatM.teranicancompleteallstagesoflifeinsideasingle

seed(Tulleretal.,2015;Maiaetal.,2017).Indeed,thesetwobeetle

speciesarefoundattackingthesamefruit,butnotthesameseed

(Maiaet al.,2017), whichsuggeststhattheyarenotcompeting

directly,i.e.,interferencecompetition,butrather arecompeting

indirectly,i.e.,exploitativecompetition.Finally,asignificant

dif-ferencebetweenthespeciesinconsumingseedsisrelatedtothe

timewhenthefemaleslaytheireggs.M.teraniarrivesfirst,whileS.

maculatopygusreachesthefruitjustbeforethepodsstarttoopen

andaftertheseedsarereleased(JohnsonandRomero,2004;Tuller

etal.,2015).

Theseaspectsofthebiologyofthetwobruchinespeciesmake

themaninterestingmodeltobetterunderstandtheeffectsofpod

infestation(hereusedasanestimateofindirectcompetition)on

morphologicaltraitsandallometry.Weexaminedhow

competi-tion,throughpodinfestation,affectstheindividualmorphological

traitsofM.teraniandS.maculatopygus.WehypothesizedthatM.

terani,asasuperiorcompetitor,wouldhaveanegativeimpacton

themorphologicaltraitsofS.maculatopygus,andthegreaterthe

degreeofinfestation,thegreatertheimpactwouldbe.Specifically,

wemeasuredmorphologicaltraitsincludingthepronotum,both

elytra,andbodysize,andevaluatedvariationsbetweenspecies,

malesandfemales,andinfestationcategories.Finally,we

exam-inedtheallometricrelationshipsofthesemorphologicaltraitswith

respecttothedegreeofinfestationofthepod.

Methods

Fieldsamplesandbeetlemeasurement

We sampled once a month in July and August 2014 (the

ripening period) to collect fruits of S. tenuifolia. As S.

tenuifo-lia is a liana species, the identification of an individual plant,

fromitsrootstoitsfruits,isdifficultbecauseeachplantspreads

over other plants, making it difficult to distinguish the

num-ber of individuals at a site. We therefore opted to collect the

fruitscasuallythroughthesubareas. We collected25 fruitsper

subareaineach samplingevent, totaling 350fruits.The7

sub-areaswereat least400mdistantfromeach other,and located

intwomunicipalities(LavrasandLuminarias)insouthernMinas

Gerais,Brazil:Aero-2(S21◦145.71W044◦578.66),Aero-3(S

21◦14787W044◦58006),Lav-1(S21◦183.46W044◦580.53),

Lumi-1(S21◦311.36W044◦531.78),Lumi-2(S21◦315.13W

044◦526.32),Lumi-3(S21◦315.31W044◦523.84)andLumi-4

(S21◦315.13W044◦5140.80).

Westoredthepodsinlabeledpaperbagsandbroughtthemto

thelaboratory,whereweplacedeachpodinanindividualPVCtube,

sealingtheendswithvoileattachedwithrubberbands,toallowair

exchange.Weleftthecollectedpodsonaworkbenchinthesame

temperatureandphotoperiod(12:12h).Afterthreemonthsof

stor-age,weopenedthefruits,identifiedtheattackedseedsbyspecies,

sex,andlarvalconsumptiontraits(adultsofbothspeciesleavea

typicalholewhenemergingfromtheseeds,whileotherspecies

thatconsumetheseedsleavenodefinitevisualpattern).By

select-ingpodscontainingonlyattackedseedswithahole,weensured

thatonlybruchinespecieswerepresent,andwecouldestimatethe

degreeofbruchineinfestationasanindirectestimateof

competi-tionbetweenspecies.Further,allattackedseedsheldonlyasingle

beetle,andwecommonlyfoundbothspeciesoccupyingthesame

fruit,butindifferentseeds(Maiaetal.,2017).Thebruchineswere

storedin1.5-mLlabeledplasticmicrotubescontaining70%ethanol.

Tomeasurethedryweight,hereafterbeetlebodyweight,ofboth

beetlespecies,adultsemergedorun-emergedfromseedscollected

inthefield(wedissectedtheun-emergedindividualsfrominside

theseeds)wereplacedinindividualpaperbags,driedat40◦Cfor

48h,andweighedusingaprecisionanalyticalbalance(Shimadzu

AY220).

Inordertoestimatetheeffectsofpodinfestationonbodysize,

we selected three morphological traits that best explained the

bodysizevariationinsomespeciesofbruchinebeetles(Colgoni

andVamosi,2006):pronotumlength,leftelytronlength,andright

elytronlength.Thesemeasurementsweretakenwithindividualsin

dorsalview,usingaLeicaM205Astereomicroscopeequippedwith

aLeicaDFC295digitalcamera.Sinceallthebeetlesfoundbelonged

tothesubfamilyBruchinae,wesexedthembyexaminingthewidth

ofthelastabdominalsegment.Wedepositedvoucherspecimens

intheEntomologicalCollectionoftheLaboratoryofEcologyand

ComplexityattheFederalUniversityofLavras,MinasGerais,Brazil.

Statisticalanalysis

Toperform thestatistical analysesand isolate theinfluence

ofnon-bruchidcompetitors,weconsideredonlypodsthatwere

infestedexclusivelybybruchines(pleaseseeTulleretal.,2015for

moredetailsaboutthefoodweb).Laboratorymeasurementsafter

thesamplingshowlowerspeciesabundancesthanthenumbers

ofseedspredatedperpod.Thatisbecausesomeindividualshad

alreadyemergedfromtheseedsbeforethesamplesweretaken.

Sinceallattackedseedsheldonlyasinglebeetleandwecommonly

foundbothspeciesoccupyingthesamefruit,butindifferentseeds,

weassessedthecompetitionasthedegreeofinfestation,i.e.the

numberofpredatedseedsinrelationtothenumberofseedsinthe

pod.Wedefinedthreeinfestationcategories:(G1)low,from0to

0.30;(G2)medium,from0.31to0.60;and(G3)high,from0.61to

0.90.Noinfestationlevelabove91%wasfound.

Weevaluatedthevariationinmorphometrictraits(leftelytron,

rightelytron,andpronotum)betweeninfestationcategoriesand

betweenmalesandfemales.Weusedgeneralmixedmodelswith

alog-normaldistribution,andsamplingdateasarandomfactor,

toreducetheeffectsofsamplingandrepeatedmeasures.Wealso

evaluatedallometricrelationships,estimatingthevariationrateof

thepronotum,leftelytron,andrightelytroninrelationtothe

indi-vidualbodyweight.Inthisanalysis,weusedmajoraxisregressions

(i.e., geometricmean), which are considered more appropriate

whenbothxandyvariablesaremeasuredwitherror(Sokaland

Rohlf,1995).Thevaluesofslopesandconfidenceintervalsfrom

theanalyseswereusedinasingleplottoillustratetheallometric

relationshipsbetweenspeciesandbetweeninfestationcategories.

AllanalyseswereperformedusingR2.15.3(RDevelopmentCore

Team,2013).

Results

Weevaluated152individualsofM.terani:38inG1,81inG2and

33inG3,totaling78femalesand74males.Thebodyweightranged

from0.4mgto3.8mg,pronotumfrom0.56mmto1.70mm,left

elytronfrom1.45mmto2.65mm,andrightelytronfrom0.96mm

to2.60mm.Wealsoevaluated24individualsofS.maculatopygus:

18inG1and6inG2,totaling5femalesand19males.Wedidnot

findindividualsofS.maculatopygusininfestationcategoryG3.The

bodyweightrangedfrom0.4mgto2mg,pronotumfrom0.53mm

to86mm,leftelytronfrom1.39mmto1.87mm,andrightelytron

(3)

Table1

Femaleandmalespeciesabundance,theabundanceofeachspeciesforeach

infes-tationcategory,andestimatesofbodyweightandmorphologicaltraits.

Merobruchus terani Stator maculatopygus Femaleabundance 78 5 Maleabundance 74 19 G1abundance 38 18 G2abundance 81 6 G3abundance 33 0

Bodyweight(min–max,mg) 0.4–3.8 0.4–2

Pronotum(min–max,mm) 0.56–1.70 0.53–86

Leftelytron(min–max,mm) 1.45–2.65 1.39–1.87

Rightelytron(min–max,mm) 1.40–2.60 1.39–1.84

G1,G2andG3abundance,abundanceforeachcategoryofpodinfestation;G1, lowinfestation(0–0.30%ofattackedseeds);G2,mediuminfestation(0.31–0.60% ofattackedseeds);G3,highinfestation(0.61–0.90%ofattackedseeds);min–max, minimumandmaximumvalue.

leftandrightelytra(Spearmancorrelationof0.97forM.teraniand

0.98forS.maculatopygus).Thus,belowwediscussonlytheresults

fortheleftelytron(Table1).

WefoundasignificantvariationbetweenM.teraniandS.

macu-latopygusforallmorphometrictraits.However,wedidnotobserve

asignificantvariationbetweenmalesandfemalesforeitherspecies

(Fig.1).Thebody weightofM.teraniwassignificantlylargerin

thehigher-infestationcategories(T=−3.47,D.F.=170,p<0.01).The

estimateddifferencewas0.27mg±0.07mgbetweenG1andG3.

Wedidnotfindsignificantvaluesforthepronotumandelytron.

Wedidnotobservesignificantvariationsinmorphometrictraitsof

S.maculatopygusbetweeninfestationcategories(Fig.2).

Regarding allometric relationships, our resultsshowed

neg-ative allometry for all relationships investigated. The slope of

variationwas0.257inG1,0.258inG2,and0.541inG3betweenthe

pronotumandbodyweight(pronotumallometry)inM.terani

indi-viduals.However,weobservedconfidenceintervalsrangingtozero

inG3,indicatingalackofrelationshipbetweenthese

morphomet-rictraits.Wefoundasimilarpatternforthepronotumallometry

ofS.maculatopygus.However,apartfromthelackofindividualsin

G3,wefoundinG2confidenceintervalsrangingtozero(Fig.3).

Theresultsforallometricrelationshipsbetweentheelytronand

bodyweight(elytronallometry)wereidenticaltotheresultsfor

pronotumallometry.Weobservedslopesofvariationof0.19,0.15,

and0.40inG1,G2,andG3respectivelyforM.terani;and0.09in

bothG1andG2forS.maculatopygus.Again,weobserved

confi-denceintervalsrangingtozerointhehigherinfestationcategories

(Fig.3).

Discussion

We have demonstrated some consequences frompod

infes-tation for the morphological traits, sexes and their allometric

relationships, of theseed-feeding beetlesM. teraniand S.

mac-ulatopygus. Males and females of both species showed similar

morphologicaltraits.ForM.terani,thehigherwastheinfestation

level,thelargerthebodypartsandbodyweight.S.maculatopygus

showedtheoppositetrend,i.e.,thehighertheinfestationlevel,the

smallerthebodypartsandbodyweight.Last,anegativeallometry

patternwasestimatedforbothspeciesregardlessofthelevelof

infestation,althoughincreasesintheinfestationlevelresultedin

significantvariationinbodysizeandmorphologicaltraits.

Although males are larger than females, we found no

sta-tisticallysignificantsexualdimorphismsformorphometrictraits

(e.g.,pronotumandelytron)ineitherspecies.Sexualsize

dimor-phismreflectsdifferentmaleandfemaleadaptations(Fairbairn,

a MF 0.0035 1.2 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.1 1.0 0.9 0.8 0.7 0.6 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 MM

Body weight Pronotum

Elytra

SF SM MF MM SF SM MF MM SF SM

a b b a a b b a a b b

Fig.1. Variationsinbodyweight,pronotumandelytronlengthbetweenMerobruchusteraniandStatormaculatopygusandformalesandfemales.Theanalysesusedalinear

mixedmodelwithalog-normaldistributionandTukey’spairwisecomparison.MF,M.teranifemales;MM,M.teranimales;SF,S.maculatopygusfemales;SM,S.maculatopygus

(4)

a ab a a a a a a 0.0035 1.2 2.6 2.4 2.2 2.0 1.8 1.6 1.1 1.0 0.9 0.8 0.7 0.6 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 b MG1 MG2 MG3 SG1

Body weight Pronotum

Elytra

SG2 SG3 MG1 MG2 MG3 SG1 SG2 SG3 MG1 MG2 MG3 SG1 SG2 SG3

b b b b

c c

Fig.2.Variationsinbodyweight,pronotumandelytronlengthforMerobruchusteraniandStatormaculatopygusineachinfestationcategory.Theanalysesusedalinear

mixedmodelwithalog-normaldistributionandTukeypairwisecomparison.M,M.terani;S,S.maculatopygus.G1,lowinfestation(0–0.30%ofattackedseeds);G2,medium

infestation(0.31–0.60%ofattackedseeds);G3,highinfestation(0.61–0.90%ofattackedseeds).

1.5 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.0 M. terani S. maculatopygus 0.5 0.0 G1 G2 G1 G2

Pronotum allometry Elytra allometry

G3 G3

Fig.3.Negativeallometrydepictedbytheslopesandtheirconfidenceintervalsforthepronotumandelytronallometry(pronotumlengthandelytronlengthinrelation

tobodyweight)betweeninfestationcategoriesforbothbruchinespecies.G1,lowinfestation(0–0.30%ofattackedseeds);G2,mediuminfestation(0.31–0.60%ofattacked

seeds);G3,highinfestation(0.61–0.90%ofattackedseeds).

1997). It is a common pattern for females to be larger than

males; larger females are able to produce and lay more eggs,

whichresultsinhigherfecundity (Honek, 1993).However,

sex-ualdimorphism is contingent on environmentaland biological

conditions.Environmentalconditionssuchasthehost’sdefense

mechanisms,temperature,sizeofthehostseed,andfood

short-agesaffectthelarvaldevelopmentandpromotethedevelopment

ofadaptivestrategies,suchasreductioninbodysize(Carrolland

Hoyt,1986;CenterandJohnson,1974;Honek,1993).Ontheother

hand,femalesmaybesmallerthanmalesinresponsetobiological

factors, suchas male–male competition for sexual selection of

females(Foxetal.,2003;SavalliandFox,1998).

Tulleretal.(2015)foundthatM.teraniwasfivetimesmore

abundantthanS.maculatopygusinpodsofS.tenuifolia,and

pro-posedthatM.teraniiscompetitivelydominant.Maiaetal.(2017)

observeddominantspecies witha positive relationshiptotheir

resourcequantity,whereasS.maculatopygusdidnotshowsucha

relationship.Ourresultsconcordwiththesefindings.Thehigher

bodyweightandthemorphometrictraitsofM.teranicouldprovide

(5)

whiletheincreaseofbodyweightwithinfestationlevelsindicates

thatM.teranimaynotbelimitedbycompetitiveintra-and

interspe-cificinteraction.Ontheotherhand,S.maculatopygusmaybelimited

byinterspecificcompetition,sincethisspecieswasnotobservedat

thehighestlevelofpodinfestationanditsbodypartsandweight

becamesmaller.Therefore,S.maculatopygusmayreduce

competi-tionbyavoidingpodswithhighlevelsofinfestation,orevenfailto

surviveinthiscondition.Bruchinebeetleshavemodified

develop-mentalstrategies,suchasalteredfeedingandpupatingbehaviors,

andreductioninbodysize(CenterandJohnson,1974).Additionally,

theyshowtemporaldifferentiationinovipositionandhost

special-ization(CenterandJohnson,1974).Thesebehavioralresponsesto

selectivepressuresacttoreducetheeffectofcompetitivepressures

between species, such as the effects on development time,

weightandprobabilityofemergence(Foxetal.,2003;Messina,

1991).

Inordertounderstandtheproblemofhowbodypartsvarywith

totalbodyweightorotherpartsinrespecttopodinfestation,we

employedtheallometricapproach.Wechosethemorphological

traitsthatbestcapturetheeffectsofbodyvariation(elytronwidth

andlengthandpronotumlength)asrepresentativemeasurements,

commonly used to investigate thedevelopment of insects and

theirmorphologicalcharacteristics(ColgoniandVamosi,2006;Fox

etal.,2003).Thegeneraloutcomesdemonstratethatthenegative

allometry,maintainedthroughthedifferentinfestationlevels,

sug-geststhatincreasingbodyweightdidnotincreaseproportionally

withthebodystructures.However,thehighestlevelofinfestation

experiencedbyM.teraniincreasedtherelationship(slopevalueis

larger),increasingthesizeofmorphologicalstructureswithrespect

tobodyweight.Ontheotherhand,weshowedthatincreasingthe

degreeofpodinfestationproducedawidervariabilityinthe

indi-viduals’bodysize,makingthepopulationsofbothspeciesmore

heterogeneousintermsofmorphologicaltraits.Further,thestress

causedbytheinfestationlevelsmayincreasetheinstabilityofthe

developmentoftheindividuals,affectingtherelationshipamong

bodyparts.

In conclusion, we tested the hypothesis that M. terani is a

superiorcompetitor,negativelyaffectingS.maculatopygus;andan

increasein thedegreeofpodinfestationaugmenteditsimpact.

Ingeneral,wecorroboratedthehypothesiseventhoughthe

sta-tisticalanalysesdidnotsupportit.M.teraniseemsnottohave

beenaffectedbyintraspecificandinterspecificcompetitioninour

system,whileS.maculatopygusisimpactedbyinterspecific

com-petition,decreasingitsmorphologicaltraitsandbodysize.Wealso

observedthattheallometryapproachappliedtoinfertheeffects

ofcompetitiononthesespeciesdidnotshowconsistentpatterns,

despitetheincreasesinthesizeheterogeneityofindividualsofthe

populationsofbothspecies,insomelevelsofinfestation.Finally,

we demonstrated that interspecific competition affects these

species differently,although theyplay similarrolesin resource

exploitation.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Wethanktheanonymousrefereesfortheirvaluablecomments

onthisstudy.Faria,L.D.B.thankstheMinasGeraisResearch

Foun-dation(FAPEMIG)andtheBrazilianNationalCouncilforScientific

andTechnologicalDevelopment(CNPq)andCoordinationforthe

ImprovementofHigherEducationPersonnel(CAPES)forfinancial

support.

References

Cariveau,D.P.,Nayak,G.K.,Bartomeus,I.,Zientek,J.,Ascher,J.S.,Gibbs,J.,Winfree,

R.,2016.Theallometryofbeeproboscislengthanditsusesinecology.PLoSONE

11(3),e0151482.

Carroll,D.P.,Hoyt,S.C.,1986.Someeffectsofparentalrearingconditionsandage

onprogenybirthweight,growth,development,andreproductionintheapple aphid,Aphispomi(Homoptera:Aphididae).Environ.Entomol.15,614–619.

Center,T.D.,Johnson,C.D.,1974.Coevolutionofsomeseedbeetles(Coleoptera–

Bruchidae)andtheirhosts.Ecology55,1096–1103.

Colgoni,A.,Vamosi,S.M.,2006.Sexualdimorphismandallometryintwoseedbeetles

(Coleoptera:Bruchidae).Entomol.Sci.9,171–179.

Denno,R.F.,McClure,M.S.,Ott,J.R.,1995.Interspecificinteractionsinphytophagous

insects–competitionreexaminedandresurrected.Annu.Rev.Entomol.40, 297–331.

Emlen,D.J.,Nijhout,H.F.,2000.Thedevelopmentandevolutionofexaggerated

mor-phologiesininsects.Annu.Rev.Entomol.45,661–708.

Fairbairn,D.J.,1997.Allometryforsexualsizedimorphism:patternandprocessin

thecoevolutionofbodysizeinmalesandfemales.Annu.Rev.Ecol.Syst.28, 659–687.

Fox,C.W.,Dublin,L.,Pollitt,S.J.,2003.Genderdifferencesinlifespanandmortality

ratesintwoseedbeetlespecies.Funct.Ecol.17,619–626.

Hegazy,A.K.,Eesa,N.M.,1991.Ontheecology,insectseed-predation,and

conserva-tionofarareandendemicplantspecies:Ebenusamnitagei(Leguminosae).Cons. Biol.5,317–324.

Honek,A.,1993.Intraspecificvariationinbodysizeandfecundityininsects:a

gen-eralrelationship.Oikos66,483–492.

Johnson,C.D.,Romero,J.,2004.Areviewofevolutionofovipositionguildsinthe

Bruchidae(Coleoptera).Rev.Bras.Entomol.48,401–408.

Kaplan,I.,Denno,R.F.,2007.Interspecificinteractionsinphytophagousinsects

revis-ited:aquantitativeassessmentofcompetitiontheory.Ecol.Lett.10,977–994.

Lawton,J.H.,Strong,D.R.,1981.Communitypatternsandcompetitioninfolivorous

insects.Am.Nat.118,317–338.

Kingsolver,J.G.,John,M.,2004.HandbookoftheBruchidaeoftheUnitedStatesand

Canada(Insecta,Coleoptera).U.S.Depart.Agric.Tech.Bull.1912,1–636.

Maia,L.F.,Tuller,J.,Faria,L.D.B.,2017.Morphologicaltraitsoftwoseed-feeding

beetlespeciesandtherelationshiptoresourcetraits.Neotrop.Entomol.46, 36–44.

Messina,F.J.,1991.Life-historyvariationinaseedbeetle:adultegg-layingvs.larval

competitiveability.Oecologia85,447–455.

RDevelopmentCoreTeam,2013.R:alanguageandenvironmentforstatistical

com-puting,Ver2.15.3.RFoundationforStatisticalComputing,Vienna,Available

from:http://www.rproject.org.

Savalli,U.M.,Fox,C.W.,1998.Sexualselectionandthefitnessconsequencesofmale

bodysizeintheseedbeetleStatorlimbatus.Anim.Behav.55,473–483.

Shingleton,A.W.,Mirth,C.K.,Bates,P.W.,2008.Developmentalmodelofstatic

allom-etryinholometabolousinsects.Proc.R.Soc.Lond.B275,1875–1885.

Sokal,R.R.,Rohlf,F.J.,1995.Biometry:ThePrinciplesandPracticeofStatisticsin

BiologicalResearch.W.H.Freeman,NewYork.

Southgate,B.J.,1979.BiologyoftheBruchidae.Annu.Rev.Entomol.24,449–473.

Stern,D.L.,Emlen,D.J.,1999.Thedevelopmentalbasisforallometryininsects.

Devel-opment126,1091–1101.

Strong,D.R.,Lawton,J.H.,Southwood,R.,1984.InsectsonPlants:Community

Pat-ternsandMechanisms.HarvardUniversityPress,Cambridge,MA.

Tuller,J.,dePaula,E.L.,Maia,L.F.,Moraes,R.A.,Faria,L.D.B.,2015.Seedpredation

foodweb,nutrientavailability,andimpactontheseedgerminationofSenegalia tenuifolia(Fabaceae).Rev.Biol.Trop.63,1149–1159.

Venkataramana,P.B.,Gowda,R.,Somta,P.,Ramesh,S.,MohanRao,A.,Bhanuprakash,

K.,Srinives,P.,Gireesh,C.,Pramila,C.K.,2016.MappingQTLforbruchid

Referências

Documentos relacionados

FIGURA 5 - FLUTUAÇÃO POPULACIONAL DE Hypothenemus eruditus, Sampsonius dampfi e Xyleborus affinis (SCOLYTINAE, CURCULIONIDAE) COLETADOS COM ARMADILHAS ETANÓLICAS (25%)

O experimento foi realizado com uma amostra de 43 alunos dos cursos de licenciatura em Engenharia Informática da Universidade Fernando Pessoa, como já referido,

São reconhecidos sobre as diferenças temporárias apuradas entre as bases fiscais de ativos e passivos e seus valores contábeis, considerando as alíquotas efetivas vigentes na

Para determinar o teor em água, a fonte emite neutrões, quer a partir da superfície do terreno (“transmissão indireta”), quer a partir do interior do mesmo

In males, the body weight, chelae length and weight with reference to carapace length indicated positive allometric growth while other parameters such as total length,

Figure 3 - Relationship between carapace width and length for females (A) and males (B); and the relationship between carapace width and individual weight for females (C) and

3.3.2 Tamanho médio de precipitados Após o tratamento térmico de dissolução, observou-se o ataque preferencial nos contornos de grão austenítico da austenita primitiva PAGB,

Simple correlation between lignin content in the pods and in the seed coat of seeds and the permeability of the pods and corresponding seeds at different periods of imbibition, and