• Nenhum resultado encontrado

Social modulation of brain monoamine levels in zebrafish

N/A
N/A
Protected

Academic year: 2021

Share "Social modulation of brain monoamine levels in zebrafish"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatSciVerseScienceDirect

Behavioural

Brain

Research

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Social

modulation

of

brain

monoamine

levels

in

zebrafish

Magda

C.

Teles

a,b

,

S.

Josefin

Dahlbom

c

,

Svante

Winberg

c

,

Rui

F.

Oliveira

a,b,∗

aISPA-InstitutoUniversitário,UnidadedeInvestigac¸ãoemEco-Etologia,RuaJardimdoTabaco34,1149-041,Lisboa,Portugal bChampalimaudNeuroscienceProgramme,InstitutoGulbenkiandeCiência,RuadaQuintaGrande6,2780-156,Oeiras,Portugal cDepartmentofNeuroscience,UppsalaUniversity,Box593,Husargatan3,75124,Uppsala,Sweden

h

i

g

h

l

i

g

h

t

s

•Zebrafishwereexposedtodifferentfightingexperiences:winning,losingandmirror-fighting.

•Winnersshowhigherserotonergicanddopaminergicactivityinthetelencephalon.

•Losersshowhigherserotonergicintheoptictectum.

•Nosignificantchangesinmonoamineactivitywereobservedinmirrorfighters.

•Monoaminesaredifferentiallyregulatedbysocialinteractionsindifferentbrainregions.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received21May2013

Receivedinrevisedform27June2013 Accepted1July2013

Available online 11 July 2013 Keywords: Aggressivebehaviour Behaviouralplasticity Neuromodulators Serotonin Dopamine Zebrafish

a

b

s

t

r

a

c

t

Insocialspeciesanimalstendtoadjusttheirsocialbehaviouraccordingtotheavailablesocial informa-tioninthegroup,inordertooptimizeandimprovetheironesocialstatus.Thischangingenvironment requiresforrapidandtransientbehaviouralchangesthatreliesprimarilyonbiochemicalswitchingof existingneuralnetworks.Monoaminesandneuropeptidesarethetwomajorcandidatestomediatethese changesinbrainstatesunderlyingsociallybehaviouralflexibility.Inthecurrentstudyweusedzebrafish (Daniorerio)malestostudytheeffectsofacutesocialinteractionsonrapidregionalchangesinbrain levelsofmonoamines(serotoninanddopamine).Abehaviouralparadigmunderwhichmalezebrafish consistentlyexpressfightingbehaviourwasusedtoinvestigatetheeffectsofdifferentsocialexperiences: winningtheinteraction,losingtheinteraction,orfightinganunsolvedinteraction(mirrorimage).We foundthatserotonergicactivityissignificantlyhigherinthetelencephalonofwinnersandintheoptic tectumoflosers,andnosignificantchangeswereobservedinmirrorfighterssuggestingthatserotonergic activityisdifferentiallyregulatedindifferentbrainregionsbysocialinteractions.Dopaminergicactivity itwasalsosignificantlyhigherinthetelencephalonofwinnerswhichmayberepresentativeofsocial reward.Togetherourdatasuggeststhatacutesocialinteractionselicitrapidanddifferentialchangesin serotonergicanddopaminergicactivityacrossdifferentbrainregions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Inordertooptimizethebenefitsofgrouplivingandto

min-imizeits costs,social animalsneed toadjust theexpression of

theirsocialbehaviouraccordingtodailychanges intheirsocial

environment. Thisabilityof anindividualtooptimizeits social

behaviourdependingonavailablesocial information(aka social

competence,[1]),dependsprimarilyonmechanismsthatallowfor

rapidandtransientbehaviouralchanges.Giventhespeedand

lia-bilityofthistypeofbehaviouralflexibility,suchmechanismsare

∗ Correspondingauthorat:ISPA-InstitutoUniversitário,UnidadedeInvestigac¸ão emEco-Etologia,RuaJardimdoTabaco34,1149-041,Lisboa,Portugal.

Fax:+351218860954.

E-mailaddress:ruiol@ispa.pt(R.F.Oliveira).

expectedtorelyonsociallydrivenbiochemicalswitchingof

exist-ingneuralnetworks,ratherthanonstructuralrewiringofneural

circuits[2].Inrecent yearsevidenceaccumulatedshowinghow

neuromodulatorscanchangetheactivityand even the

connec-tivity ofneuralcircuits ina waythat eachstructural circuit,as

representedbyitsconnectome,mayincludemultiplefunctional

circuits, withsomeofthem active andsome otherslatentat a

givenmomentintime[3].Differentneuromodulatoryagentsmay

interactwithspecific circuitsand alter theirfunctional

proper-ties,promotingeitherexcitatoryorinhibitorystates.Monoamines

andneuropeptidesareconsideredthetwomajorclassesof

neu-romodulators,andtheactionofbothonsocialbehaviouraswell

astheirsensitivitytoenvironmentalfactors,havebeenextensively

documented[4,5],whichmakesthemmajorcandidatesto

medi-atechangesinbrainstatesunderlyingsociallydrivenbehavioural

flexibility.

0166-4328/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.bbr.2013.07.012

(2)

Monoamineshavebeenimplicatedintheregulationof

moti-vatedbehaviours andamong them therole oftheserotonergic

systemonthecontrolofaggressivemotivationhasbeen

demon-strated both in vertebrate and in invertebrate species [6,7].

Interestinglytheeffectsofserotonin(5-hydroxytryptamine,5-HT)

onaggressivebehaviouraretosomeextentparadoxical.While

sev-eralstudieshavepointedoutthatpharmacologicalmanipulations

thatincrease 5-HTinhibit aggressionin a wide range of

verte-brates,fromfishtohumans[8],otherstudies,incontrast,have

showedincreasedserotonergicactivityinspecificbrain regions

duringtheexpressionofaggressivebehaviour[8–10].Moreover,

the5-HT1Aand5-HT1Breceptorsexertfunctionallyopposingroles

invariousbehaviouralandphysiologicalprocessessuchasappetite,

sexuallibido,motoractivity,andthusitisreasonabletoconsider

thatthisdivergencemayalsobepresentinaggressivebehaviour

[11–13].Therefore, therole of5-HTontheregulation of social

behaviourcannotbeputsimplyintermsofpureinhibitionorpure

facilitationofaggression,butratherasafunctionof

environmen-talcontext.Theeffects ofdopamine(DA)onaggressionarealso

paradoxical.Forexampleinmammals,whileD1andD2dopamine

receptorantagonistsreduceaggression[14],D2receptorsinthe

medialpreopticarea(mPOA)andanteriorhypothalamusfacilitate

affectivedefensebehaviour[15].On theotherhand,the

meso-corticolimbicdopaminesystemhasbeenshowntobeinvolvedin

thepreparation andexecutionofaggressiveacts[16–20].These

neurochemicalstudies linkelevated dopamineand its

metabo-litesinprefrontalcortexandnucleusaccumbensnotonlytothe

initiationofattacksandthreats,butalsotodefensiveand

submis-siveresponsesinreactionofbeingattacked[19,21].Thetransition

betweenbehaviouralstates(e.g.inhibitionorpromotionof

aggres-sivebehaviours) inboth monoaminergic systemsappearstobe

sensitivitytodifferentsocialcontexts,whichmakethese

neuro-modulatorstremendously important in the regulationof social

interactions.

The highdiversity and plasticityof social behaviour among

teleostfishmakesthemexcellentmodelsforcomparativestudies

onthemechanismsofsocialplasticity[22].Inmanyfishspecies

social systems are characterizedby reversibledominance

hier-archies, where animals have to adjust the expression of their

socialbehaviourtotheirperceived socialstatus. Inthese social

systemsrapidchangesinbehaviouraloutputoccur,drivenbythe

assessmentthattheanimaldoesofthesocialinteractionsinwhich

itisinvolved.

Inthis paperwe usedzebrafish(Danio rerio)malestostudy

theeffectsofacutesocialinteractionsonrapidregionalchanges

inbrainlevelsofmonoamines.Zebrafishwerechoseasamodel

species given their increasing use in behavioural neuroscience

researchandtheirflexiblesocialbehaviour.Zebrafishisa

group-livingspeciesthatinnatureformshoals[23]butwhenallowedto

interactinpairs,formdominancehierarchies[24].Inthisspecies

aggressioniscommonlyusedbydominantindividualstogetaccess

tospawningsitesandtoprotecttheirsocialstatusfromcompetitors

[25].Recently,ourgroupdevelopedabehaviouralparadigmunder

whichmalezebrafishconsistentlyexpressfightingbehaviourand

characterizedthestructureofthesefightsinmaledyads[26].Here

thesameparadigmisusedtoinvestigatetheeffectsofdifferent

socialexperiences(i.e.individualsexperiencingavictory,adefeat

orfightinganunsolvedinteraction)onserotoninand dopamine

levelsindifferentbrainregions.

2. Materialsandmethods

2.1. Animalsandhousing

Allsubjectsusedinthisexperimentwereadultwild-type(AB)zebrafishbreed andheldatInstitutoGulbenkiandeCiência(IGC,Oeiras,Portugal).Fishwerekept inarecirculatingsystem(ZebraTec,93Tecniplast),at28◦Cwitha14L:10D

pho-toperiod.Watersystemwasmonitoredfornitrites(<0.2ppm),nitrates(<50ppm) andammonia(0.01–0.1ppm),whilepHandconductivityweremaintainedat7and 700␮Smrespectively.Fishwerefedtwiceadaywithcommercialfoodflakesinthe morningandArtemiasalinaintheafternoon,exceptonthedayoftheexperiments.

2.2. Experimentaldesign

Inthepresentstudyabehaviouralparadigmpreviouslydevelopedforthe studyofzebrafishaggressivebehaviourwasused[26].Thirty-twoadultmales (8ineachexperimentaltreatment)matchedforstandardlength(mean±SEM: 2.81±0.026cm)andbodymass(mean±SEM:0.350±0.009g)weregroupedin dyads.Therewerethreetypesofdyads:(1)realopponentfight:thefishfought withaconspecific;(2)mirrorfight:thefishfoughtwiththeirownmirrorimage; (3)nofight:thefishhadnoagonisticinteraction(Fig.1).Fromthesethreetypes ofdyads,cameoutfourexperimentalconditions:winningtheinteraction,losing theinteraction,fightinganunsolvedinteraction,orexperiencenointeraction (con-trolgroup).Subjectswerealwaystestedinpairs,inordertogivethemaccessto conspecificodours,whichwouldotherwiseonlybepresentinrealopponentdyads, thereforeavoidingconfoundingeffectsofputativechemicalcues.

Fig.1.Experimentalprocedure:(A)overnightisolationtoelicitaggression.Eachfishpairwasplacedintheexperimentaltank,andisolatedvisually,butnotchemically,by aremovableopaquePVCpartition;(B)realopponentinteraction,fishfoughtwithaconspecific;(C)mirrorinteraction,fishfoughtwiththeirownmirrorimage(greybars); (D)controlgroup,noagonisticinteractionormirrorstimulation.

(3)

Prior to the experiment,each pair was placed in the experimental tank (20cm×14.5cm×12.5cm)wheretheywerekeptovernightinvisualisolationusing aremovableopaquePVCpartition.Previousstudieshadestablishedperiodsofsocial isolationof5days[24]and24h[26]aseffectivetoelicitaggressivebehaviour. How-ever,hereweestablishedthatovernightisolationwassufficienttopromotethe consistentexpressionofaggressivebehaviour.Aftertheisolationperiod,theopaque dividerwasremovedandthefishwereallowedtointeractforaperiodof30min. Behaviouralinteractionswerevideotaped(JVC-EverioSMemory camcorder-GZ-MS215)forsubsequentbehaviouralanalysis(seebelow).

2.3. Sampling

Inordertoavoidmonoaminedegradationduringthebrainmacro-dissectionand tokeepthetimeofsamplingafterthesocialinteractionsashomogeneousaspossible acrossdyads,onlyonefishfromeachdyadwasusedformonoaminequantification. Thesefishweresacrificedimmediatelyaftertheinteractionwithanoverdoseof tricainesolution(MS222,Pharmaq;500–1000mg/L)andthespinalcordsectioned. Thebrainwasmacrodissectedunderastereoscope(Zeiss;Stemi2000)intofive areas:OlfactorybulbandTelencephalon(OB/TL),Optictectum(OT),Diencephalon (DE),Cerebellum(CB),andBrainstem(BS).Immediatelyaftercollectionthebrain tissuewasplacedondryiceandstoredat−80◦Cuntilanalysis.

2.4. Analysisofbrainmonoaminesandmetabolites

Thefrozenmacroareaswerehomogenizedin4%(w/v)ice-coldperchloricacid containing100ng/ml 3,4-dihydroxybenzylamine(DHBA,theinternalstandard) usingaSonifiercelldisruptorB-30(BransonUltrasonics,Danbury,CT,USA)and wereimmediatelyplacedondryice.Subsequently, thehomogenized samples werethawedandcentrifugedat21,000×gfor10minat4◦C.Thesupernatant

wasusedforhighperformanceliquidchromatographywithelectrochemical detec-tion(HPLC-EC),analyzingthemonoaminesdopamine(DA)andserotonin(5-HT, 5-hydroxytryptamine)theDAmetaboliteDOPAC(3,4-dihydroxyphenylaceticacid) andthe5-HTmetabolite5-HIAA(5-hydroxyindoleaceticacid),asdescribedby Overlietal.[10].Inbrief,theHPLC–ECsystemconsistedofasolventdeliveryas systemmodel582(ESA,Bedford,MA,USA),anautoinjectorMidastype830(Spark Holland,Emmen,theNetherlands),areversephasecolumn(Reprosil-PurC18-AQ 3␮m,100mm×4mmcolumn,Dr.MaischHPLCGmbH,Ammerbuch-Entringen, Germany)keptat40◦CandanESA5200CoulochemIIECdetector(ESA,Bedford, MA,USA)withtwoelectrodesatreducingandoxidizingpotentialsof−40mVand +320mV.Aguardingelectrodewithapotentialof+450mVwasemployedbefore theanalyticalelectrodestooxidizeanycontaminants.Themobilephaseconsisted of75mMsodiumphosphate,1.4mMsodiumoctylsulphateand10␮MEDTAin deionizedwatercontaining7%acetonitrilebroughttopH3.1withphosphoricacid. Sampleswerequantifiedbycomparisonwithstandardsolutionsofknown con-centrations.TocorrectforrecoveryDHBAwasusedasaninternalstandardusing HPLCsoftwareClarityTM(DataApexLtd.,Prague,CzechRepublic).Theratiosof

5-HIAA/5-HTandDOPAC/DAwerecalculatedandusedasanindexofserotonergic anddopaminergicactivity,respectively.

Fornormalizationofbrainmonoaminelevels,brainproteinweightswere deter-minedwithBicinchoninicacidproteindetermination(Sigma–Aldrich,Sweden) accordingtothemanufacturer’sinstructions.TheassaywasreadonLabsystems multiskan352platereader(Labsystems,ThermoFisherScientific)wavelengthof 570nm.

2.5. Behaviouralobservations

Videorecordingswereanalyzedusingacomputerizedmulti-eventrecorder (ObserverXT,Noldus,Wageningen,TheNetherlands).Thezebrafishethogram[26] wasusedasareferenceandtheobservedbehavioursweredividedintoaggressive (bite,chaseandstrike)andsubmissive(freezeandflee).Aspreviouslydescribedin [26]dyadicmalefightshavetwodistinctphases:thepre-resolutionphasewhere thefightissymmetricandbothfishexhibitthesamerepertoireofbehaviours (dis-play,circle,andbite)andthepost-resolutionphasewhereallagonisticbehaviours areinitiatedbythewinnerwhereastheloseronlydisplayssubmissivebehaviours. Becausewewereonlyinterestedinthedifferentoutputofthefightswhich gener-atedifferentbehaviouralphenotypes(e.g.winnerandloser)weonlyanalyzedthe post-resolutionphase(i.e.thelast5minofthe30mininteraction).Wealso mea-suredthefightresolutiontime(timeforthesocialhierarchytobeestablished)in ordertocomparerealopponentwithmirrorinteractions.

2.6. Statisticalanalysis

StatisticalanalyseswereperformedwiththesoftwareSTATISTICAv.10 (Stat-Soft,Inc.,2011).Parametricstatisticwasusedgiventhatthevariablesmatchthe parametricparameters.Oneloserandonecontrolwereremovedfromtheanalysis, onebecausetheoutputofitsfightwasnotcompletelyclearandthesecondbecause mostofthetimeitwastrappedonthepartition,resultinginasamplesizeof7for losersandcontrolgroups,and8forwinnersandmirrorgroups.Inthebehaviour analyses,oneanimalfromthewinner,loserandmirrorgroupswasremovedfrom theanalysisduetoaproblemwiththevideorecordingswhichmadetheanalysis

impossible.AT-testwasusedtoaccessdifferencesbetweentypesofinteractions (realopponentvsmirror)andfightresolutiontime.Inthemonoaminesanalysis, foursamplesfromtheoptictectumwereexcludedduetoproblemsduringthe sam-plepreparation.Serotonin,dopaminelevelsandtherespectivemetabolites,5HIAA andDOPAC,aswellastheactivityofbothneurotransmittersasmeasuredbythe ratios5-HIAA/5-HTandDOPAC/DA,inbrainmacroareaswerelogtransformedin ordertomeettheassumptionofnormaldistribution.ArepeatedmeasuresANOVA (repeatedfactor:brainmacroareaswith5levels,independentfactor:malestatus with4levels,winner,loser,mirror,control)wasusedtoidentifythemaineffects andtheinteractionbetweenbrainareaandsocialstatusonthedifferentmonoamine measures,followedbyaposthoctestsandplannedcomparisonsofleastsquares meansbetweenthecontrolgroup(isolation)andeachofthedifferentsocialstatus. APCAanalysiswasusedtoreducethenumberofbehaviourvariablesinthereal opponentparadigm.Correlationsbetweenbehaviourandmonoamine concentra-tionswereobtainedwithPearsoncorrelationcoefficients.Alltestsweretwo-tailed andstatisticalsignificancewassetatp<0.05.

2.7. Ethicsstatement

Theanimalexperimentationproceduresusedinthisstudyfollowedthe Asso-ciation fortheStudy ofAnimal Behaviourand theAnimal BehaviourSociety guidelinesforthetreatmentofanimalsinbehaviouralresearchandteachingand wereapprovedbytheinternalEthicsCommitteeoftheGulbenkianInstituteof Sci-enceandbytheNationalVeterinaryAuthority(Direc¸ãoGeraldeAlimentac¸ãoe Veterinária,Portugal;permitnumber8954).

3. Results

3.1. Behaviour

Intherealopponentparadigmallpairsexceptone,developa

cleardominant/subordinaterelationship.Socialhierarchieswere

stableand thebehaviours exclusiveforeachphenotype. During

thepost-resolutionphase a winnernever becamea losernora

loserbecameawinner.Thebehavioursarestereotypedaccording

tosocialstatus,aggressivebehavioursinwinnersandsubmissive

Fig.2. Behaviouralresults.(A)Meannumberofaggressiveactsperformedinthe last5minofthe30minagonisticinteraction;errorbarsrepresentthestandard errorofthemean.(B)Fightresolutiontime,measuredasthetimeneededfora socialhierarchytobeestablishedinthefightingmaledyads(countingfromthefirst bitetothepost-resolutionphase);errorbarsrepresentthestandarderrorofthe mean(t-test:T=−6.39,p<0.0001).

(4)

Fig.3. Principalcomponent(PC)analysisofaggressiveandsubmissivebehavioursintherealopponentparadigm.(A)Factorloadingsofthebehaviouralvariablesand varianceexplainedbyeachPC.(B)GraphicrepresentationoftheextractedPC’s:PC1representsaggressivebehaviourandPC2submissivebehaviour,whichcanbefurther dividedinactivesubmission(flee)onthepositivequadrantandpassive(freeze)onthenegativequadrant.

behaviours in losers. On theother hand,in mirror interactions

becausethefightis symmetricalong time theresulting

pheno-typeis not apparent, theynever behave likelosers orwinners,

andaggressivelevelsarekeptconstantduringthewhole

interac-tion(Fig.2).Thisdifferenceisobviousinthefightresolutiontime

(T=−6.39,p<0.0001;Fig.2B)wheremirrorfightersfightfor30min

whereas inthe realopponent interaction thefightis solved in

approximately7min,afterwhichapost-resolutionphaseis

estab-lished.

In order to reduce the number of behavioural variables in

subsequent analyses in the real opponent paradigm, a

Prin-cipal Component Analysis (PCA) was performed. Two factors,

thattogetherexplain83.1%ofthetotalvariance (Fig.3A),were

extractedthat showa clearseparation betweenaggressive and

non-aggressivebehaviours:PC1haspositiveloadingsfor

aggres-sivebehavioursandanegativeloadforsubmissivebehaviour(flee)

andexplains65.4%ofthevariation;PC2haspositiveloadingsfor

submissivebehaviourandnegativeloadingsforalltheaggressive

behaviours(bite,chase,strike) andexplains17.7% ofthe

varia-tion(Fig.3A).PC2allowsthesubsequentdivisionofsubmissive

behaviourintoanactive (flee,positive quadrant)and a passive

(freeze,negativequadrant)style(Fig.3B).Theseresultssupportthe

separationofaggressiveandsubmissivebehaviourinthereal

oppo-nentinteraction.Inthemirrorinteraction,becausethebehavioural

repertoireisrestrictedtotwobehaviours(bite,strike)noPCAwas

performed.

3.2. Brainmonoamines

Concentrationsofserotonin(5-HT),dopamine(DA) andtheir

mainmetabolites(i.e.5-HIAAandDOPAC,respectively)inthe

stud-iedbrainareasaregiveninTable1.

Therewas a treatmentand brain areamain effect for both

5-HT(repeated measuresANOVA; social treatment: F3,25=7.86,

p<0.001;brainarea:F4,100=79.39,p<0.0001,respectively)and

5-HIAA(repeated measuresANOVA;social treatment: F3,24=8.55,

p<0.001;brainarea:F4,96=50.36,p<0.0001).Theposthoc

anal-ysesrevealedthatsocialexperienceincreased5-HTand5-HIAA

levels in animals that foughtreal opponents (W/L)and mirror

imagewhencomparedtocontrolgroup.For serotonin,the

con-centrationwashigherinthediencephalon,followedbyolfactory

bulb/telencephalon,optictectumandbrainstemandthelowest

concentrationwasfoundinthecerebellum.Ontheotherhand,for

themetabolite5-HIAA,olfactorybulb/telencephalonhadthe

high-estconcentration,followedbydiencephalon,optictectum,brain

stemandfinallycerebellum.

ForDAandDOPACtherewasalsoamaineffectfortreatment

(5)

Table1

Monoamineandmetabolitesconcentrations(mean±SEM)indifferentbrainareas,anddifferenttreatments.Asterisk(*)inthemeanindicatessignificativedifferenceson specifictreatmentswhencomparedtocontrolgroup(repeatedmeasuresANOVA,*p<0.05).

Brainregion Monoaminesand metabolites

Treatment

Control Mirrorfighter Winner Loser Statistics

Telencepahlon 5-HT 3.83±1.02 6.40±0.85* 6.15±1.6 5.61±0.74 F(12,100)=2.48;p<0.01 5-HIAA 5.26±1.67 9.06±1.66* 9.98±1.64* 9.05±1.28* F(12,96)=1.17;p=0.32 DA 2.08±0.57 2.91±0.54 2.57±0.53 2.28±0.31 F(12,96)=3.11;p<0.001 DOPAC 0.46±0.16 0.78±0.20 0.68±0.08 0.54±0.11 F(12,100)=3.55;p<0.001 Diencephalon 5-HT 8.86±1.43 9.26±0.75 8.19±0.95 10.54±0.92 F(12,100)=2.48;p<0.01 5-HIAA 4.44±0.71 4.99±0.45 4.22±0.33 5.86±0.36* F(12,96)=1.17;p=0.32 DA 6.25±0.72 6.23±0.52 5.01±0.68 6.93±0.65 F(12,96)=3.11;p<0.001 DOPAC 0.53±0.08 0.67±0.06 0.52±0.04 0.83±0.09* F(12,100)=3.55;p<0.001 Optictectum 5-HT 4.19±0.34 4.11±0.36 4.04±0.22 3.55±0.28 F(12,100)=2.48;p<0.01 5-HIAA 2.37±0.25 2.11±0.39 2.69±0.26 2.87±0.26 F(12,96)=1.17;p=0.32 DA 0.92±0.07 1.13±0.17 1.01±0.06 0.83±0.08 F(12,96)=3.11;p<0.001 DOPAC 0.18±0.01 0.41±0.03* 0.28±0.02* 0.33±0.05* F(12,100)=3.55;p<0.001 Cerebellum 5-HT 0.32±0.06 1.72±0.51* 1.47±0.25* 1.08±0.26* F(12,100)=2.48;p<0.01 5-HIAA 0.92±0.49 2.17±0.60* 1.47±0.60* 1.75±0.42* F(12,96)=1.17;p=0.32 DA 0.20±0.02 1.63±0.63* 1.02±0.17* 0.72±0.17* F(12,96)=3.11;p<0.001 DOPAC 0.04±0.01 0.30±0.09* 0.15±0.04* 0.18±0.05* F(12,100)=3.55;p<0.001 Brainstem 5-HT 3.62±0.56 3.39±0.40 6.51±1.18* 4.43±1.43 F(12,100)=2.48;p<0.01 5-HIAA 2.37±0.32 2.26±0.18 3.15±0.36 3.03±0.38 F(12,96)=1.17;p=0.32 DA 2.63±0.41 2.23±0.21 4.23±0.66* 3.21±0.86 F(12,96)=3.11;p<0.001 DOPAC 0.27±0.06 0.35±0.03* 0.46±0.04* 0.41±0.08* F(12,100)=3.55;p<0.001

p<0.01)] and DOPAC levels [F3,25=8.31, p<0.001] in winners,

losers andmirrorfighters suggestingan activationofboth sys-temsinacuteinteractions.DA[F4,96=85.68,p<0.0001]distribution

acrossthebrainwasdistinct,withelevatedconcentrationsinthe diencephalon,thenolfactorybulb/telencephalonandbrainstem, andlastlyoptictectumandcerebellum.ForDOPAC[F4,100=39.09,

p<0.0001]olfactorybulb/telencephalonanddiencephalonexhibit thehighestconcentration,optictectumandbrainstemwereafter andcerebellumshowedthelowest.

Therewasa significantmain effect of brainareabut not of socialstatus intheratiosof both5-HIAA/5-HT(repeated meas-uresANOVA,brainareamaineffect:F4,88=83.38,p<0.0001;social

status main effect: F3,22=1.27, p=0.31) and DOPAC/DA (brain

area main effect: F4,68=28.53, p<0.00001; social status main

effect:F3,17=2.17, p=0.13). Theposthocanalysesrevealedthat

5-HIAA/5-HT ratios were significantly higher in the olfactory bulb/telencephalon,followedbythecerebellum,thenoptictectum andbrainstemandlastlybythediencephalon.DOPAC/DAratios weresignificantlyhigherintheoptictectum,followedbyolfactory bulb/telencephalon,thencerebellum,anddiencephalonandlastly inthebrainstem.Contrastanalysisof5-HIAA/5-HTandDOPAC/DA activityofanareabyareabasisrevealedthat5-HIAA/5-HTlevels weresignificantlyhigherinwinners’olfactorybulb/telencephalon (F=18.43, p<0.001), and losers optic tectum (F=9.92, p<0.01;

Fig.4A). Regardingthe DOPAC/DA,winners had higheractivity

levelsintheolfactorybulb/telencephalon(F=6.32,p<0.05),and

mirrorandlosersintheoptictectum(F=12.05,p<0.01andF=6.67,

p<0.05respectively;Fig.4B).Therewasalsoamarginally

non-significanttendencyforloserstohaveincreasedDOPAC/DAratios

inthecerebellum(F=3.96,p=0.06).

3.3. Relationshipbetweenmonoaminesandbehaviour

Correlationsanalysesbetweenbehaviourand monoaminein

differentbrainareasrevealedthatintherealopponentparadigm

therewerenegativecorrelationsbetween5-HIAAlevels(r=−0.70,

N=12,p<0.05)andDOPAClevelsinthediencephalon(r=−0.58,

N=13,p<0.05)andaggressivebehaviour,andbetween5HIAA/5HT

ratio in the diencephalon and submissive behaviour (r=−0.69,

N=12, p<0.05). Positive correlations were found between DA

levels in the diencephalon and submissive behaviour (r=0.60,

N=13,p<0.05)and DAlevelsin thecerebellumand aggressive

behaviour(r=0.76,N=12,p<0.01).

Inthemirrorfightingtreatmenttherewerepositive

correla-tionsbetweenbitefrequencyand5-HIAAlevelsintheoptictectum

(r=0.81,N=7,p<0.05),the5HIAA/5HTratiosinthediencephalon

(r=0.90, N=7,p<0.01)and optictectum(r=0.83,N=7,p<0.05)

andDOPAC/DAratiointhediencephalon(r=0.76,N=7,p<0.05).

Strikefrequencywasnegativelycorrelatedwith5-HTandDOPAC

Fig.4.Monoaminergicactivityindifferentbrainareasfollowinganacutesocial interaction:(A)HIAA/5-HTratio;(B)DOPAC/DAratio.Errorbarsrepresentthe standarderrorofthemean(repeatedmeasuresANOVA,*p<0.05and**p<0.01).

(6)

levelsinthecerebellum(r=−0.79,N=7,p<0.05;r=−0.79,N=7,

p<0.05)andpositivelycorrelatedintheoptictectumwithDAlevels

(r=0.77,N=7,p<0.05).Allothercorrelationswerenonsignificant.

4. Discussion

Inthecurrentstudyitisshownthatfollowinganacute

ago-nisticencounterzebrafishmalesexpresstwodistinctbehaviour

profilesdepending onthesocial status achieved: losers exhibit

exclusivelysubmissivebehaviours,whereaswinnersexpressonly

aggressivebehaviours (Fig.2A). Aftertherelative fighting

abil-ityhasbeenestablished,thedifferentbehaviouralrepertoiresfor

each social status are stable over time (at least up to5 days,

R.F.Oliveiraandco-workers,unpublisheddata).Foranimalsthat

foughttheirownmirrorimageonlyaggressivebehaviourswere

observed,withafrequencythatwasnotsignificantlydifferentfrom

thatobservedinwinnersofrealopponentfights(T-test:T=−0.84,

p=0.42).However,amajordifferencebetweenwinnersandmirror

fightersispresent,notontheirbehaviouraloutput,butratheron

thebehaviourobservedintheopponent,sinceinmirrorfightsthe

opponent(i.e.ownimageonthemirror)neverdisplayssubmissive

behaviours.Asaconsequencemirrorfightswereunsolvedfights,

ascanbedemonstratedbythefactthattheexpressionof

aggres-sivebehaviourtypicalofthepre-resolutionphaselastedforthe

wholedurationofthetrial(30min),whereasinrealopponentfights

theencounterwasresolvedinapproximately7min(afterwhich

post-resolutionbehaviouralprofileswereobserved).Therefore,the

experimentaldesignusedsuccessfullyproducedfourtypesofsocial

phenotypes:winners,losers,individualsthatexpressedaggressive

behaviourbutdidnotexperienceeitherawinoraloss(i.e.

mir-rorfighters),andindividualsthatdidnotexpressorperceivedany

socialbehaviour(control=socialisolation).Therefore,the

compar-isonofmonoaminelevelsinregionsofinterestinthebrainacross

thesefoursocialphenotypesallowstheinvestigationofthe

short-termeffectsofacutesocialinteractionsdependingonperceived

outcomebytheparticipants.

Formonoamines,we foundthat5-HTlevelsaresignificantly

higherinthetelencephalonofmirrorfighters,inthebrainstem

ofwinnersandinthecerebellumofallexperimentalgroups.The

increasein5-HTbrainlevelsinthetelencephalonandbrainstem

suggeststhatmirrorfightersandwinnersarethegroupswherethe

serotonergicsystemisfirstactivatedinresponsetoasocial

interac-tionandalthoughtheybehavesimilarly,thebrainareasactivated

aredistinctwhichmayindicatedifferentperceptionofthecontext.

Wealsofoundabrainarea(i.e.cerebellum)thatrespondstoacute

stressindependentoftheinteractionstype(i.e.anincreaseinall

groupswasseencomparedtocontrols).

For5-HTmetabolite(5-HIAA),significantincreaseswerefound

inthetelencephalonandinthecerebellumofalltreatments

(win-ner,losers, and mirrorinteraction), and in thediencephalon of

losers.Interestingly,5-HIAAlevelsinthediencephalonwere

neg-ativelycorrelatedwithaggressivebehaviourintherealopponent

paradigmsupportingthediencephalonenrolmentintheregulation

ofaggressivebehaviour.Ontheotherhand,aggressivebehaviour

(bitefrequency)waspositivelycorrelatedwith5-HIAAintheoptic

tectumformirrorfighters.Thislatercorrelationmaybeprimarily

associatedwithincreasedvisualstimulationinmirrorfighters.

Ourresultssuggestthatacuteinteractionactivated

serotoner-gicsystemincreasing5-HTand5-HIAAbrainlevelsinresponseto

differentsocialconditions.

Serotonergicactivityinturn,issignificantlyhigherinthe

tele-ncephalonofwinnersandintheoptictectumoflosers,andno

sig-nificantchangeswasobservedinmirrorfighters.Moreover,inreal

opponentfightsserotonergicactivityinthediencephalonwas

neg-ativelycorrelatedwithsubmissivebehaviourandinmirrorfights

serotonergicactivityboth in thediencephalon andin theoptic

tectumispositivelycorrelatedwithovertaggression(i.e.bites).

Giventhatsocialinteractiondidnotaffect5-HTlevelsinthesebrain

areas,5-HTactivitywasmainlydeterminedbymetabolitelevels.

Theseresultssuggestthatserotonergicactivityisdifferentially

reg-ulatedindifferentbrainregionsbysocialinteractions.Inzebrafish

threeclustersofserotonergicneuronshavebeendescribed:the

raphenuclei,theposteriortuberculum/hypothalamicpopulations

andthepretectalarea.Thetelencephalon(includingtheolfactory

bulbs)receivesprojections fromthedorsal cellsofthesuperior

raphe[27,28].Mostofthe5-HT-irfibresterminateindorsolateral

partsoftherostraltelencephalonandaminorpartcontinues

ven-trallyintotheolfactorybulb[29].Thus,theobservedincreasein

telencephalonandolfactorybulbserotonergicactivityinwinners

mayreflectanactivationofthesuperiorrapheprojectionsinthis

socialcondition.Alternativelythisincreaseintelencephalic

sero-tonergicactivitymaybedue topre-synaptic stimulationofthe

terminalareas,whichhasbeendemonstrated,bydisinhibitionof

GABAergicinterneurons,increasedglutamatergiclocalstimulation,

andglucocorticoidinfusion[30,31].

Mostof theserotonergicfibres in theoptictectum seemto

originatefromserotonergicneuronsofthepretectalcluster[29].

Pretectalnuclei,aswellastheoptictectum,havebeenimplicated

intheregulationofvisualandmotorbehaviour,multimodal

sen-soryintegration[32]andescaperesponses[33],whichmayexplain

thesignificantincreasedin subordinates orloser conditions,as

observedinthepresentstudy.Inmammals,avoidanceresponses

areobtainedfromstimulationsinaregionofthesuperior

collicu-lusthatappearstorepresenttheuppervisualfield[34].Finally,

serotonergicactivityin thediencephalonwhich mustrepresent

theactivationoftheposteriortuberculum/hypothalamic5-HT

neu-ronalpopulationswaspositivelycorrelatedwithovertaggression

(i.e.bites)inthemirrorfightsandnegativelycorrelatedwith

sub-missivebehaviourin realopponentfights,suggesting arole for

theseserotonergicpopulationsinthebalancebetweenaggressive

andsubmissivebehaviour.

Theactivationoftheserotonergicsysteminresponsetosocial

interactionshadbeenpreviouslydemonstratedforotherspecies.In

earlystagesofhierarchyformationtheserotonergicsystemappears

tobeactivatedin both dominantsand subordinates.For

exam-ple,5-HTlevelswereelevatedafter10minofsocialinteraction

inthelimbicregionsandinthelocuscoeruleusofdominantand

subordinatefightinglizardmales(inAnolis carolinensis)[35].In

rainbowtrout(Oncorhynchusmykiss)bothdominantsand

subordi-natesincreased5-HTactivityinthetelencephalonandoptictectum

3haftertheinteraction[10].Similarly,inthebicolordamselfish

(Stegastespartitus),afterachronicinteractionof5ddominantsas

wellassubordinatesshowedhigherlevelsof5-HTactivityinthe

telencephalon[36].Otherstudieshave shownthat serotonergic

activityhassimilarpatternsindominantsand subordinatesbut

thispatternseemstobetemporallyadvancedindominants[35].

Ourdatadoesnotallowsuchcomparisonsinceweonlycollectone

timepointbutwecanspeculatethatthedifferencesbetweensocial

statusinthebrainareduetoatimelinethatisactingatdifferent

speedsdependingonsocialstatus,giventhatdominantsand

sub-ordinatesexhibitalreadydifferentialpatternsof5-HTactivationa

shorttimeaftertheresolutionofthefight.

Inthedopaminergicsystemtherewasasignificantincreasein

DAlevelsinthecerebellumforallgroups,andinthebrainstemof

winners.IntherealopponentparadigmDAlevelswerepositively

correlated with aggressive behaviourin thecerebellum and in

thediencephalon withsubmissivebehaviour.For DOPAC, there

wasa significantincrease for allgroups in severalbrain areas;

optictectum,cerebellumandbrainstemandinthediencephalon

oflosers.We alsofoundanegativecorrelationofDOPACinthe

(7)

thecontributionofdiencephalonintheregulationofsubmissive

behaviour. For mirror fighters DOPAC levels in the cerebellum

werepositivelycorrelatedwithstrikes.

On the other hand, dopaminergic activity was significantly

higherinthetelencephalonofwinnersandintheoptictectumof

bothlosersandmirrorfightersandtheseincreasesweremainly

determinedbythemetabolitelevels.Moreover,theexpressionof

aggressivebehaviourwaspositivelycorrelatedwithdopaminergic

activityinthediencephaloninmirrorfights.Togethertheseresults

suggestaninvolvementofthediencephalicmonoaminergic

sys-temintheregulationofaggressiveandsubmissivebehavioursin

differentsocialconditions.Thishypothesisisfurthersupportedby

theknownroleofdifferentdiencephalicnucleiintheregulation

ofspecies-specificbehavioursacrossvertebrates.Forexample,in

thebluegillfish(Lepomismacrochirus)stimulationofthe

preop-ticregioninhibitsaggressivebehavioursandevokecourtship,and

stimulationofaregionsurroundingthelateralrecesselicits

aggres-sivebehaviourandfeeding[37].Similarly,ingoldenhamstersand

rats,theanteriorhypothalamus[38]andthenucleusaccumbens

[16]respectively,havebeenimplicatedintheregulationof

aggres-sivebehaviours,andinSyrianhamsters(Mesocricetusauratus)the

nucleusaccumbensisinvolvedinconditioneddefeat[39].

Dopaminereleaseappeartobeaffectedalsoinotherbrainareas,

asthecerebellumandbrainstem,buttherewerenosignificant

dif-ferencesinDOPAC/DAratiossinceboththeneurotransmitterand

themetabolitelevelsincreasedinparallelindicatinganincreasein

monoaminergicactivity.

Theincreaseddopaminergicactivityinthetelencephalonwhen

males successfully achieve dominant status (i.e. winners) may

be representative of social reward. A similar pattern hasbeen

previously observed in salmonids where dominant individuals

showedhigherDAactivityintelencephalonthansubordinatefish

[40].However,incontrasttoamniotes,wherethedopaminergic

mesolimbicrewardsystemislocatedintheventraltegmentalarea

(VTA),thatprojectrostrallytothenucleusaccumbens,amygdala

andcorticalareas(e.g.prefrontalcortexinmammals),fishdonot

presentamidbraindopaminergicpopulationhomologoustothe

VTA [41].In contrasts,in fishtheDA inputstothe

telencepha-lonoriginateina localsubpallial DAsystemandinDAneurons

intheventraldiencephalon,inparticularintheposterior

tuber-culum,that projecttowardsthe subpallium[42–44]. Therefore,

althoughevolutionaryitcannotbeconsideredashomologousto

themammalianVTADAneurons,infishthisascendingDApathway

maybeplayingasimilarroleinrewardbehaviourasthe

mam-malianmesostriatalDApathway.Ontheotherhand,theincreased

DAactivityobservedinlosersandmirrorfightersmustbea

con-sequenceofthedifferentialactivationofanotherDAsubsystem.

ApretectalDAcellgroup(alarplateofp1)isconsistentlyfound

inbonyfishes,amphibians,andmostamniotesexceptmammals

[41].Thesepretectalneuronsareprojectingmostlyontheoptic

tectum,inalayer-specificfashionandtheymayplayaroleinthe

modulationoftheretino-tectalvisualinput[45].Inthisregardit

isextremelyinterestingtonotethatthesimilaroptictetctumDA

activationinmirrorfightersandlosers,despitethedissimilarities

oftheirbehaviouralprofile(i.e.mirrorfightersareasaggressiveas

winners,andlosersincontrast,aresubmissive),suggeststhatwhat

isdrivingtheDAactivationinthisregionistheperceptionofthe

interaction,whichissimilarinmirrorfightersandlosers(i.e.both

areexposedtoanaggressiveopponent),ratherthatthebehavioural

outputofthefocalindividual.

Insummarythedatapresentedhereconfirmsthatacutesocial

interactions elicit rapid and differential changes in

serotoner-gic and dopaminergic activity across differentbrain regions in

zebrafish. Further studies are needed to elucidate the specific

rolesof differentneuromodulatorysubsystemin theregulation

ofsocialbehaviour.Finally,theabilityofzebrafishreportedhere

torespondtoexperimentalmanipulationsofits social

environ-ment,combinedwiththefactthatitisaspecies thatexpresses

both gregarious (shoaling) andterritorial behaviour,makesit a

promisingmodelorganisminsocialneuroscience.Incomparison

tootherestablishedmodelsinthisfield,suchascichlidfish(e.g.

Astatotilapiaburtoni[46]),zebrafishhastheaddedvalueofhaving

alargegenetictoolboxavailablethatcanbeusedtogenetically

dissectthemechanismsinvolvedinsocialdecision-making.

Acknowledgements

ThisstudywasfundedbythePortugueseFoundationforScience

and Technology (FCT, grants PTDC/PSI/71811/2006 and

PEst-OE/MAR/UI0331/2011toRFO).DuringthisstudyMTwasbeing

sup-portedbyaPh.D.studentfellowshipbyFCT(SFRH/BD/44848/2008).

Wethanktothetwoanonymousrefereeswhocontributedtothe

improvementofthefinalmanuscript.

References

[1]TaborskyB,OliveiraRF.Socialcompetence:anevolutionaryapproach.Trends EcolEvol2012;27:679–88.

[2]ZupancGKH,LamprechtJ.Towardsacellularunderstandingofmotivation: structuralreorganizationandbiochemicalswitchingaskeymechanismsof behavioralplasticity.Ethology2000;46:467–77.

[3]BargmannCI.Beyondtheconnectome:howneuromodulatorsshapeneural circuits.Bioessays2012;34:458–65.

[4]LibersatF,PflugerHJ.Monoaminesandtheorchestrationofbehavior. Bio-science2004;54:17–25.

[5]Goodson JL, Thompson RR. Nonapeptide mechanisms of social cogni-tion, behavior and species-specific social systems. Curr Opin Neurobiol 2010;20:784–94.

[6]KravitzEA.Serotoninandaggression:insightsgainedfromalobstermodel systemandspeculationsontheroleofamineneuronsinacomplexbehavior. JCompPhysiolA2000;186:221–38.

[7]HuberR.Aminesandmotivatedbehaviors:asimplersystemsapproachto com-plexbehavioralphenomena.JCompPhysiolANeuroetholSensNeuralBehav Physiol2005;191:231–9.

[8]SummersCH,KorzanWJ,LukkesJL,WattMJ,ForsterGL,OverliO,etal.Does serotonininfluenceaggression?Comparingregionalactivitybeforeandduring socialinteraction.PhysiolBiochemZool2005;78:679–94.

[9]WinbergS,NilssonGE.Rolesofbrainmonoaminesneurotrannsmittersin agonisticbehaviour andstressreactions,withparticularreference tofish. CompBiochemphysiol1993;106:597–614.

[10]OverliO,HarrisCA,WinbergS.Short-termeffectsoffightsforsocial domi-nanceandtheestablishmentofdominant-subordinaterelationshipsonbrain monoaminesandcortisolinrainbowtrout.BrainBehavEvol1999;54:263–75. [11]OlivierB.Serotoninandaggression.AnnNYAcadSci2004;1036:382–92. [12]DulawaSC,GrossC,StarkKL,HenR,GeyerMA.Knockoutmicerevealopposite

rolesforserotonin1Aand1Breceptorsinprepulseinhibition. Neuropsy-chopharmacology2000;22:650–9.

[13]JenckF,BroekkampCL,VanDelftAM.Effectsofserotoninreceptorantagonists onPAGstimulationinducedaversion:differentcontributionsof5HT1,5HT2 and5HT3receptors.Psychopharmacology(Berl)1989;97:489–95.

[14]SanchezC,ArntJ,HyttelJ,MoltzenEK.Theroleofserotonergicmechanismsin inhibitionofisolation-inducedaggressioninmalemice.Psychopharmacology (Berl)1993;110:53–9.

[15]SweidanS,EdingerH,SiegelA.D2dopaminereceptor-mediatedmechanismsin themedialpreoptic-anteriorhypothalamusregulateeffectivedefensebehavior inthecat.BrainRes1991;549:127–37.

[16]VanErpAM,MiczekKA.Aggressivebehavior,increasedaccumbaldopamine, anddecreasedcorticalserotonininrats.JNeurosci2000;20:9320–5. [17]FerrariPF,vanErpAM,TornatzkyW,MiczekKA.Accumbaldopamineand

serotonininanticipationofthenextaggressiveepisodeinrats.EurJNeurosci 2003;17:371–8.

[18]MosJ,VanValkenburgCF.Specificeffectonsocialstessandaggressionon regionaldopaminemetabolisminratbrain.NeurosciLett1979;15:325–7. [19]Puglisi-Allegra S, Cabib S. Effects of defeat experiences on dopamine

metabolism in different brain areas of the mouse. Aggress Behav 1990;16:271–84.

[20]LouilotA,LeMoalM,SimonH.Differentialreactivityofdopaminergicneurons inthenucleusaccumbensinresponsetodifferentbehavioralsituations.An invivovoltammetricstudyinfreemovingrats.BrainRes1986;397:395–400. [21]TideyJW,MiczekKA.Socialdefeatstressselectivelyaltersmesocorticolimbic

dopaminerelease:aninvivomicrodialysisstudy.BrainRes1996;721:140–9. [22]OliveiraRF.Socialplasticityinfish:integratingmechanismsandfunction.JFish

Biol2012;81:2127–50.

[23]SpenceR,SmithC.Maleterritorialitymediatesdensityandsexratioeffectson ovipositioninthezebrafish,Daniorerio.AnimBehav2005;69:1317–23.

(8)

[24]LarsonET,O‘MalleyDM,MelloniJrRH.Aggressionandvasotocinare associ-atedwithdominant–subordinaterelationshipsinzebrafish.BehavBrainRes 2006;167:94–102.

[25]PaullGC,FilbyAL,GiddinsHG,CoeTS,HamiltonPB,TylerCR.Dominance hierar-chiesinzebrafish(Daniorerio)andtheirrelationshipwithreproductivesuccess. Zebrafish2010;7:109–17.

[26]OliveiraRF,SilvaJF,SimoesJM.Fightingzebrafish:characterizationof aggres-sivebehaviorandwinner–losereffects.Zebrafish2011;8:73–81.

[27]LillesaarC,TannhauserB,StigloherC,KremmerE,Bally-CuifL.Theserotonergic phenotypeisacquiredbyconverginggeneticmechanismswithinthezebrafish centralnervoussystem.DevDyn2007;236:1072–84.

[28]LillesaarC,StigloherC,TannhauserB,WullimannMF,Bally-CuifL.Axonal pro-jectionsoriginatingfromrapheserotonergicneuronsinthedevelopingand adultzebrafish,Daniorerio,usingtransgenicstovisualizeraphe-specificpet1 expression.JCompNeurol2009;512:158–82.

[29]KaslinJ,PanulaP.Comparativeanatomyofthehistaminergicandother amin-ergicsystemsinzebrafish(Daniorerio).JCompNeurol2001;440:342–77. [30]SummersTR,MatterJM,McKayJM,RonanPJ,LarsonET,RennerKJ,etal.Rapid

glucocorticoidstimulationandGABAergicinhibitionofhippocampal seroto-nergicresponse:invivodialysisinthelizardAnoliscarolinensis.HormBehav 2003;43:245–53.

[31]BarrJL,ForsterGL.Serotonergicneurotransmissionintheventralhippocampus isenhancedbycorticosteroneandalteredbychronicamphetaminetreatment. Neuroscience2011;182:105–14.

[32]Bally-CuifL,VernierP.Organizationandphysiologyofthezebrafishnervous system.In:PerrySF,EkkerM,FarrellAP,BraunerCJ,editors.Zebrafish. Amster-dam:Elsevier;2010.

[33]HerreroL,RodriguezF,SalasC,TorresB.Tailandeyemovementsevoked byelectricalmicrostimulationoftheoptictectumingoldfish.ExpBrainRes 1998;120:291–305.

[34]SahibzadaN,DeanP,RedgraveP.Movementsresemblingorientationor avoid-ance elicitedby electricalstimulationofthesuperiorcolliculus inrats.J Neurosci1986;6:723–33.

[35]SummersCH,SummersTR,MooreMC,KorzanWJ,WoodleySK,RonanPJ,etal. Temporalpatternsoflimbicmonoamineandplasmacorticosteroneresponse duringsocialstress.Neuroscience2003;116:553–63.

[36]WinbergS,MyrbergJrAA, NilssonGE.Agonisticinteractionsaffectbrain serotonergic activity inan acanthopterygiianfish: thebicolor damselfish (Pomacentruspartitus).BrainBehavEvol1996;48:213–20.

[37]Demski LS, Knigge KM. The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): evokedfeeding, aggressive and reproduc-tivebehaviorwithrepresentativefrontalsections.JCompNeurol1971;143: 1–16.

[38]CraigFF,MelloniJrRH,KoppelG,PerryKW,FullerRW,DelvilleY. Vaso-pressin/serotonininteractionsintheanteriorhypothalamuscontrolaggressive behavioringoldenhamsters.JNeurosci1997;17:4331–40.

[39]Luckett C, Norvelle A, Huhman K. The role of the nucleus accumbens in theacquisitionandexpressionofconditioneddefeat.BehavBrainRes 2012;227:208–14.

[40]WinbergS,NilssonGE,OlsenKH.Socialrankandbrainlevelsofmonoamines andmonoaminemetabolitesinArcticcbarr,SMvelinusMpinus(L.).JComp PhysiolA1991:241–6.

[41]SmeetsWJ,GonzalezA.Catecholaminesystemsinthebrainofvertebrates: newperspectivesthroughacomparativeapproach.BrainResBrainResRev 2000;33:308–79.

[42]Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascendingtothesubpallium(striatum)islocatedinthebasaldiencephalon (Posteriortuberculum).BrainRes2001;889:316–30.

[43]RinkE,WullimannMF.Developmentofthecatecholaminergicsysteminthe earlyzebrafishbrain:animmunohistochemicalstudy.BrainResDevBrainRes 2002;137:89–100.

[44]TayTL,RonnebergerO,RyuS,NitschkeR,DrieverW.Comprehensive cat-echolaminergic projectome analysis reveals single-neuron integration of zebrafish ascendinganddescendingdopaminergic systems. NatCommun 2011;2:171.

[45]Smeets WJ, Reiner A. Catecholamines in the CNS of vertebrates: cur-rent conceptsof evolutionand functional significance. In:Smeets WJAJ, Reiner A,editors. Phylogenyand developmentofcatecholaminesystems in theCNSofvertebrates. Cambridge:CambridgeUniversityPress; 1994. p.463–81.

Imagem

Fig. 1. Experimental procedure: (A) overnight isolation to elicit aggression. Each fish pair was placed in the experimental tank, and isolated visually, but not chemically, by a removable opaque PVC partition; (B) real opponent interaction, fish fought with
Fig. 2. Behavioural results. (A) Mean number of aggressive acts performed in the last 5 min of the 30 min agonistic interaction; error bars represent the standard error of the mean
Fig. 3. Principal component (PC) analysis of aggressive and submissive behaviours in the real opponent paradigm
Fig. 4A). Regarding the DOPAC/DA, winners had higher activity levels in the olfactory bulb/telencephalon (F = 6.32, p &lt; 0.05), and mirror and losers in the optic tectum (F = 12.05, p &lt; 0.01 and F = 6.67, p &lt; 0.05 respectively; Fig

Referências

Documentos relacionados

Os modelos desenvolvidos por Kable &amp; Jeffcry (19RO), Skilakakis (1981) c Milgroom &amp; Fry (19RR), ('onfirmam o resultado obtido, visto que, quanto maior a cfiráda do

In this study we used the Schmidt and Sickles (1984) stochastic production frontier time-invariant inefficiency model to analyze the efficiency of each Member

Uma das explicações para a não utilização dos recursos do Fundo foi devido ao processo de reconstrução dos países europeus, e devido ao grande fluxo de capitais no

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

Assim, ao falar em possibilidade de responsabilidade civil por prática de alienação parental, se está a pensar (i) no incumprimento reiterado da responsabilidade