• Nenhum resultado encontrado

Rosmaninhob, Ana Paula de Carvalho Teixeiraa, Patterson Patrício de Souzac, Rochel Montero Lagoa, ∗

N/A
N/A
Protected

Academic year: 2019

Share "Rosmaninhob, Ana Paula de Carvalho Teixeiraa, Patterson Patrício de Souzac, Rochel Montero Lagoa, ∗"

Copied!
6
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Catalysis

Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Alcoxycle:

A

novel

route

for

glycerol

reform

into

H

2

and

CO

x

in

separate

stages

Fabiano

Gomes

Ferreira

de

Paula

a

,

Marcelo

Gonc¸

alves

Rosmaninho

b

,

Ana

Paula

de

Carvalho

Teixeira

a

,

Patterson

Patrício

de

Souza

c

,

Rochel

Montero

Lago

a,∗ aUniversidadeFederaldeMinasGerais(UFMG),Av.AntônioCarlos,6627,BeloHorizonte,31270-901,MinasGerais,Brazil

bUniversidadeFederaldeOuroPreto(UFOP),MorrodoCruzeiro,Bauxita,OuroPreto,35400-000,MinasGerais,Brazil cCentroFederaldeEducac¸ãoTecnológica(CEFET),Av.Amazonas,5253,BeloHorizonte,30421-169,MinasGerais,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received16May2016

Receivedinrevisedform14June2016 Accepted15June2016

Availableonlinexxx

Keywords: Glycerol Sodiumhydroxide Alkoxide Hydrogen Syngas

a

b

s

t

r

a

c

t

Inthispaper,itisproposedanewroute,named“Alkoxycle”,fortheconversionofglycerolfrombiodiesel productionintoH2andCO/CO2indifferentandseparatestages.Inthisprocess,glycerolfirstreactswith NaOHtoformanalkoxidethat,inasecondstep,undergoescontrolledthermaldecomposition.Analyses ofglycerol:NaOHprecursormixtures(molarratiosof1:1,1:2,1:3and1:5)byTG,XRD,SEM,TEM,Raman, totalcarbonandGC–MSshowedthatthedecompositionofthealkoxideat400◦Cleadstotheformation

ofthreefractions:liquid,gasandsolid.Theliquidproductswereformedonlyinverysmallamounts whereasanimportantgasfraction(12–16wt%)wasproducedconsistingmainlyofH2(95%selectivity). Inthesecondstage,thesolidproducts(70–86wt%)consistingofNa2O,carbonandmostlyNa2CO3can bedecomposebyheatingat700◦CtoprocuceCO

2andespeciallyCO.AttheendoftheAlcoxycleprocess, theNaOHusedinthereactionandalsotheNaOHpresentinthebiodieselglycerolcanberecoveredand reused.

©2016PublishedbyElsevierB.V.

1. Introduction

Newstrategieshavebeenintensivelyinvestigatedtodevelop processestousethedifferentbiodiesel by-products.Oneofthe mainby-productisglycerolformedduringthetransesterification reaction,whichcontains10–15%impuritiesbasedonwater,oil, carboxylicacid/soapsand5–10%ofcatalystwaste,typicallyNaOH [1].

Differentroutestoconvertglycerolintoseveralproductshave beenstudiedinthelastyears[2–6],e.g.1,3-propanedioland dihy-droxyacetone, organic acids from biological route [7], acrolein [8–10],fueladditives[11],polymers[12]andoligomerswith dif-ferentapplicationssuchasdustsuppressor[13].Theconversion ofglycerolintosyngas,H2 andCO,hasbeenreceiving

consider-ableattentionlately[14,15].Differentreformstrategieshavebeen investigated suchas steam,liquid phase, supercritical, dry and autothermal.Thesteamreformconsistsinthereactionofglycerol withwater(Eq.(1))[16,17].

C3H8O3(g)+ 3H2O(g)→ 3CO2(g)+ 7H2(g) (1)

Correspondingauthor.

E-mailaddress:rochel@ufmg.br(R.M.Lago).

Thisreactionisendothermicandusuallytemperatureshigher than500◦C areusedand sidereactionssuchaswater-gas shift

andmethanationcommonlyoccur.ThisprocessproducesH2:CO

ratiogenerallyhigherthan10,whichisfarfrom2,theideal syn-gasratioforFischer-Tropsch[18,19].Analternativerouteisthe aqueous phase reform which demands moderate temperatures (200–300◦C)buthighpressures,e.g.28–55atm[20]affording

rel-ativelylowyields.Thereforminsupercriticalwaterconsistsinthe samechemicalprocesses(Eq.(1))butthetemperatureandpressure mustbehigherthanthecriticalpoint(T>374◦CandP>218atm)

[21].Also,ingeneral,thesereformprocessesproduceconsiderable amountsofundesirablechemicalintermediates,e.g.acrolein[21]. Thedryreformisdoneintheabsenceofwater,usingCO2asan

oxidant(Eq.(2))[19].

C3H8O3(g)+ CO2(g)→ 4CO(g)+ 3H2(g)+ H2O(g) (2)

Theautothermalreformisthecombinationoftwoprocesses, thesteamreformandpartialoxidation(Eq.(3)).Thisprocessoffers anenergeticadvantageoncetheexothermicpartialoxidation out-balancestheendothermicsteamreform[22,23].

C3H8O3(g)+ air+ steam→ carbonoxides+ hydrogen (3)

(2)

theneedofarelativelyexpensivemetalbasedcatalystwhicheasily deactivatesunderthereactionconditions[14,24].

Inthiswork,anewroutetotransformglycerolintoH2andCOis

proposedwithsignificantadvantagessuchas(i)theH2isproduced

inadifferentstepfromCO production,beingpossibletoobtain thesegasesseparatelybyacontrolofthetemperatureand(ii)the NaOHusedascatalystinthetransesterificationreaction(present asacontaminationintheglycerol)canberecovered.

2. Materialsandmethods

Allchemicalswereusedwithoutprevioustreatment.The pre-cursorwerepreparedreactingglycerol(Synth,99,5%)withNaOH (Vetec,99%)inmolarratiosof1:1,1:2,1:3and1:5glycerol:NaOH (Glyc:1Na,Glyc:2Na, Glyc:3Na and Glyc:5Na, respectively). The resultantmixturewastreatedat60◦Cfor24handuseddirectly

in the further experiments. For the thermal decomposition, 80–120mgoftheprecursorswereplacedinatubularquartz reac-torunderastaticargonatmosphereandheated(10◦min−1)ina

ceramicfurnaceuntil400,550and900◦Cfor1heach.Three

frac-tionswereobtained:solid,liquidandgaseous.

Thecompositionofthesolidfractionwasdeterminedusing sev-eraltechniques.TheX-raydiffraction(XRD)wasperformedina ShimadzuequipmentmodelXRD-7000,withCuK␣radiation,using

thepowdermethod.TheRamanspectrawasobtainedinaBruker equipment,modelSenterraequippedwithaCCDdetector.Also,it iscoupledwithanopticalmicroscopy(OLYMPUSBX51)tofocus thelaserbeamandtocollectthebackscatteredlight.Thespectra wasdoneusingthe633nmlaserwith2mWofpotency,integration timeof10sand10co-additions.TheSEMimageswereacquiredin aQuanta200FEGequipment.TheTEMimageswereobtainedin aTecnaiG2-20SuperTwinFEI200kV.Thermogravimetricanalysis (TG)wasdoneinaShimadzumodelDTG–60Hwithanitrogenor airfluxof50mLmin−1upto900Candheatingrateof10Cmin−1.

Thetotalcarbon (TC)in solutionwasperformedin aShimadzu equipmentmodelTOC-V-CPH.Forthisanalysis,deionizedwater wasaddedtothecrudesolidandthemixturewasthenfilteredto obtainasolution.

Theliquidcondensedatthetrapwerecollecteddissolvingitat acetone(Quimex,99,5%).Then,theproductswerecharacterized usinggaschromatographyinanAgilent®modelGC-7890coupled

withamassspectrometerAgilent®model5975Cwithaquadrupole

analyzer.TheproductswereseparatedonaHP-5column. Thegasproducedweresampledandanalyzedwithgas chro-matographyinaShimadzumodelGC-2010.Thepermanentgases wereseparatedonaCarboxen®-1010columnandanalyzedina

thermalconductordetector(TCD).

Thehydrocarbonsgaseswereseparatedinthesamecolumnand analyzedwithaflameionizationdetector(FID).TheCGwas cali-bratedwithastandardgasmixturecontainingH2,CO,CO2,CH4,

C2H6,C2H4eC2H2inN2.Thegasproductswereobtainedin%molar

andindicatedthevariationofgascompositionwithrespecttothe precursorthermallydecomposed.

3. Resultsanddiscussion

The alkoxide intermediates were prepared by the sim-ple reaction of glycerol with sodium hydroxide with different NaOH/glycerolmolarratios,i.e.1,2,3and5(Eq.(4)).

C3H5(OH)3(l)+ 3NaOH(s)→ C3H5(O−Na+)3(s)+ 3H2O(l) (4)

Theformationofthesealkoxideshasbeendescribedbefore[25]. Theseprecursorsareveryhygroscopicand,afterdryingat60◦Cfor

24h,theywereuseddirectlyfortheexperiments.

Fig.1.TGanalyses,inargonatmosphere,oftheprecursorsGlyc:Naandglycerol.

Fig.2.Massbalanceofthesolid,liquidandgasfractionsobtainedforthe decom-positionofthedifferentprecursorsat400◦

C.

Thermogravimetricanalysesoftheprecursors(Fig.1)showed threemainweightlossesat150–300,400–550and700–900◦C.

Thefirstweightloss,upto300◦C,isprobablyrelatedtotheloss

ofwater,partialdecompositionoftheprecursorsandevaporation ofexcessglycerol.Infact,pureglycerolshowsa100%weightloss between140and240◦Cduetoitsevaporation(Fig.1).The

sec-ondweightloss,relatedtoprecursordecomposition,variesfrom 3up to10%.Above 700◦C, theweight lossis likely duetothe

decompositionofmorestablecompounds,mostlikelyinorganics. Ingeneral,astheNacontentintheprecursorincreased,allthe lossesdecreased whereastheremainedsolidfractionpresentin thesamplesat900◦Cincreased.Basedontheseresults,the

ther-maldecompositionofthesubstrateswasinvestigatedat400,550 and900◦C.

Decompositionofthedifferentprecursorscarriedoutat400◦C

producedthreefractions:solid,liquidandgas.Theobtainedmass balancesforthesefractionsareshowninFig.2.

Forallprecursors,thesolidproductrepresentedca.70–90%.In thisfraction17–39%isrelatedtothepresenceofNa+,likelyinthe

formofoxidesandcarbonatesalts.Theliquidfractionwasonly significantforGlyc:1NaandGlyc:2Na.Itcanbeobservedthatthe gasfractionslightlyincreasedfrom12to18%astheNacontent increasedintheprecursor.

(3)

Fig.3.SEMimagesandEDSforrawsolidobtainedbydecompositionofthe precur-sorsat400◦

C.

Fig.4. SEMandTEMimagesandEDSforthewashedsolidobtainedby decomposi-tionoftheprecursorsat400◦

C.

treatment)showedfibrous-needle-shapedstructures,commonfor carbonatesalts[26,27].Infact,EDSanalysisconfirmedthepresence ofsodium,carbonandoxygenatoms(Fig.3).

After acid wash, a completely different morphology was observedbySEMandtheEDSspectrumsuggeststhatthesodium wasremovedand onlycarbon waspresent.TEMimagesofthe obtainedblacksolid afterwashing suggestedfor mostparticles agraphite-likestructureandinsomecasesfewlayersgraphene structure(Fig.4).

TheRamanspectrafor theraw solid presented a bandnear 1188cm−1,relatedtoacarbonate(CO

3−)COstretching[28],and

twobandsduetothepresenceofcarbon,i.e.Dbandrelatedto lessorganizedcarbonstructuresandGbandrelatedtoorganized graphenestructure[29](Fig.5).AfterwashingwithHCltheseDand Gbandbecamemorepronounced(seedetailofFig.5)

Thediffractogramfortherawsolidsampleswereinperfect cor-relationwiththepatternofNa2CO3,accordingtoJCDPS37-457(see

SupplementaryMaterial).

TGanalysesof theraw solidobtainedat400◦C inair

atmo-sphereshowedanexothermicweightlossbetween300and500◦C

(seeDTAinSupplementaryMaterial)likelyrelatedtooxidationof thecarbonaceousproducts(Fig.6).Therelativelylow oxidation temperaturessuggestthepresenceofamoreamorphousreactive

Fig.5.Ramanspectrumforthecrudesolidandforthewashedsolid(detail)obtained bydecompositionoftheprecursorsat400◦

C.

Fig.6.TGanalysesfortherawsolidobtainedbydecompositionoftheprecursors at400◦C.

Table1

Compositionofthesolidfractionobtainedbythedecompositionofthedifferent precursorsat400◦

C.

Substrates %Ca %Na

2CO3b %Na2Oc

Glyc:1Na 11 85 4

Glyc:2Na 10 89 1

Glyc:3Na 4 85 11

Glyc:5Na 2 80 18

aDeterminedbyTG. bDeterminedbyTC. c Calculatedbydifference.

carbon[30].Itcanalsobeobservedaweightlossnear850◦Clikely

relatedtothesodiumcarbonatedecomposition.

Therawsolidwassolubilizedinwaterandthenfiltered.The amountofcarbonatewasestimatedfromtheremainingsolutionby TC(TotalCarbonanalysis).Thus,thecompositionofthesolid frac-tionwasdeterminedusingtheamountofcarbonestimatedfrom TG,carbonateestimatedfromTCmeasurementsandNa2Ofromthe

difference(Table1).

Asitcanbeobserved,carbonatesaltrepresentsthemain com-ponentofthesolidfraction,morethan80%.Also,asexpected,the amountofNa2OincreasesfortheprecursorswithhigherNa

con-tent,whiletheoppositeoccursforcarbon.

(4)

Fig.7. Gascompositionobtainedforthedifferentprecursorsdecomposedat400◦ C.

Glyc:2Naat400◦C,i.e.ca.20%.Inthesesamples,GC–MS

analy-sisshowedthat non-reactedglycerolwasthemain component andtracesof1,2-propanediolwereidentified.Theothersubstrates Glyc:3NaandGlyc:5Nashowedonlytracesofliquidderivatives. Thegasproductsformedupto400◦C,collectedandidentifiedby

GC,werecomposedmainlybyH2,verysmallamountsofCO,CO2,

CH4 and tracesof hydrocarbonsC2 andC3.Asshown in Fig.7,

theselectivityforH2 increasedforthesubstrateswithexcessof

NaOHinitspreparation,reaching99%forGlyc:5Na.Onwudiliand Williams[31]studiedtheroleofNaOHinhydrothermalreactions withseveralbiomasssamplessuchascellulose,glucose,starchand others.ItwasobservedthatthepresenceofNaOHfavouredthe gasificationreactionsandtheproductionofH2.Somemechanistic

studies[32,33]suggestedthattheNaOHreactswithCO2toform

Na2CO3orNaHCO3favouringtheWaterGasShiftreaction.

FortheAlkoxycleinvestigated inthis work,onlyin thefirst decompositionstep,thecalculatedH2productionwas4.7molofa

theoreticalmaximumof5.5molwhichcorrespondstoa85%yield forGlyc:3Na,consideringallhydrogenatomsfromglyceroland NaOH.

Thesecondstageofthermaldecomposition(observedintheTG curvesnear500◦C)wasalsoinvestigatedbycollectingthegases

onlyintheseconddecomposition,between400and550◦C. GC

analysesshowedthepresenceofmainlyCOandsmallamountsof CO2 andH2 (Fig.8).TheprecursorGly:5Nadidnotproduce

sig-nificantamountofgasin thetemperaturerange 400–550◦C as

observedbyTGinFig.1.

Thegasesformedinthethirdstageofthethermal decomposi-tion(observedintheTGcurvesafter700◦C)wasalsoinvestigated.

Thegaseswerecollectedbetween550and900◦Candanalyzedby

GC.ItcanbeobservedthatthemaingasesareCOandCO2,especially

fortheGlyc:2Na,Glyc:3NaandGlyc:5Naprecursors(Fig.9). ThehighamountofCOandCO2 atthistemperatureislikely

relatedtotworeactions,theNa2CO3decomposition(Eq.(5))and

alsothe reverse Boudouard reaction (Eq.(6))which shouldbe favouredat900◦C[34,35].

Na2CO3(s)→ CO2(g)+ Na2O(s) (5)

C(s)+ CO2(g)→ 2CO(g) (6)

Afterthermaldecomposition(900◦C),theremainingwhitesolid

wascompletelysolubleinwaterandstronglyalkaline.Moreover, TCanalysisofthesolutionalsoshowedtheabsenceofcarbonates, suggestingthepresenceofonlyNa2O.Basedontheresultsobtained

inthisworksomeconsiderationscanbemadeontheAlkoxycle.

Fig.8.Gascompositionintherangeof400–550◦ C.

Fig.9.Gascompositionintherangeof550–900◦C.

WhenlowNacontentsareused,i.e.Glyc:1NaandGlyc:2Na,aliquid productisformed.Thisfractionisaresultofglycerolevaporation combinedwithotherprocess,e.g.alkoxidedecompositiontoform glycerolderivativesandotherreactionspromotedbythestrong alkalinemedium.Thisliquidis,therefore,acomplexmixtureof differentcompoundswithnodirectapplication.Whenmolarratios NaOH:glycerolhigherthan3:1areused,nosignificantamountof liquidproductisformed.Theseresultssuggestthatthe combina-tionof1Naatomfor1Oatomofglycerolinducesthecomplete collapseoftheglyceroltoformonlysmallgasmolecules. Appar-ently,inthefirstthermaldecompositionstepmostoftheoxygen andcarbonatomswillremaininthesolidphaseascarbonate.Some oftheCatomsaromatizetoformasolidcarboncontaining rela-tivelyhighconcentrationofoxygenfunctionalitiesandproduceH2

(Eq.(7)).

C3H5(O−Na+)3→ Na2CO3/Na2O/Carbon(OxHy)+ H2 (7) Althoughtheprocesstakingplaceintheseconddecomposition stageisnotclear,onepossibilityisthedecompositionofthehigh functionalizedcarbontolosesmallamountsofH2andoxygenas

COandCO2(Eq.(8)).

(5)

Na2CO3(85%)

C (4%) Na2O (11%)

Glycerol: NaOH

1:3 mol

400°C Solid

(TG = 84%wt)

Gas(TG = 16%wt) Gas(TG = 7%wt) Gas(TG = 29%wt) 550°C Solid

(TG =77%wt)

Solid

(TG = 48%wt)

Na2O

750°C

H2(4,7 mol, 95%)

CO(0,38 mol, 4%)

CO2(0,09 mol, 1%)

H2(0,08 mol, 23%)

CO(0,49 mol, 70%)

CH4(0,06 mol, 10%)

H2(0,16 mol, 8%)

CO(0,49 mol, 24%)

CO2(1,3 mol, 64%)

CH4(0,08 mol, 4%)

Fig.10.SummaryofcompletethermaldecompositionoftheprecursorGlyc:3Na.

Fig.11. Representationofthe“Alkoxycle”fortheproductionofH2andCO/CO2from

glycerolandNaOH.

Inthethirdstageattemperatureshigherthan700◦C,

appar-entlythesodiumcarbonatedecomposestoproduceCO2and,bya

reactionwiththecarbon,producesCO.

Fig.10representsasummaryofallthermaldecompositionsteps fortheprecursorGlyc:3Na.At400◦C,H

2wasproducedwithhigh

selectivity(95%)andyieldof4.7ofanominalmaximumof5.5mol (85%),consideringallhydrogenatomsfromglycerolandsodium hydroxide.Theyieldwascalculatedusingtheresultsfrom thermo-gravimetricanalysisandgaschromatography.Inthesecondand thirddecompositionstages,COandCO2werethemainproducts,

70and64%,respectively.Theseresultssuggestthatispossibleto produceH2withhighselectivityinadifferentstep,separatedfrom

theothergases,mainlyCOx.

Fig. 11 represents the complete Alcoxycle, where basically hydrogen is produced at 400◦C and a mixture of CO/CO

2 was

obtainedat900◦C.Furthermore,onlyNa

2Owasobservedatthe

endoftheprocess,showingapossibilityofrecoveringtheNaOH. Animportantaspectofthisprocessistheenergyconsumption. Detailedstudyonthethermodynamicsandenergybalanceis cur-rentlyinprogress.However,onecanenvisagethatcomparedtothe otherglycerolconversionprocesses,i.e.steam,dryandautothermal reform,theenergyconsumptionshouldbesimilar.

4. Conclusion

ThermaldecompositionofNa+alkoxidesfromglycerolat400C

producesmainlyH2withselectivityof95mol%and85%yieldfor

Glyc:3Na.ThesolidfractioniscomposedmainlybyNa2CO3,but

alsocontainedNa2Oandcarbon.Furthertreatmentupto900◦C

produced mainlyCO and CO2. Thiscyclic process showedvery

promisingresultstoconvertglyceroltosyngaswiththeadvantages ofproducingH2andCOxinseparateanddifferentstagesaswell

asrecoveringtheNaOHpresentintheglycerolfromthebiodiesel process.

Acknowledgments

Theauthorsaregratefulforthefinancialsupportforthiswork byPetrobras,FAPEMIG,CAPESandCNPq.Theauthorswouldliketo acknowledgetheCenterofMicroscopyattheUniversidadeFederal deMinasGerais(http://www.microscopia.ufmg.br)forproviding theequipmentandtechnicalsupportfor experimentsinvolving electronmicroscopy.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2016.06. 039.

References

[1]M.Zhang,H.Wu,Effectofmajorimpuritiesincrudeglycerolonsolubilityand propertiesofglycerol/methanol/bio-oilblends,Fuel159(2015)118–127. [2]M.Ayoub,A.Z.Abdullah,Criticalreviewonthecurrentscenarioand

significanceofcrudeglycerolresultingfrombiodieselindustrytowardsmore sustainablerenewableenergyindustry,Renew.Sustain.EnergyRev.16 (2012)2671–2686.

[3]A.B.Leoneti,V.Aragão-Leoneti,S.V.W.B.deOliveira,Glycerolasaby-product ofbiodieselproductioninBrazil:alternativesfortheuseofunrefined glycerol,Renew.Energy45(2012)138–145.

[4]C.J.A.Mota,Gliceroquímica:novosprodutoseprocessosapartirdaglicerina deproduc¸ãodebiodiesel,SociedadeBrasileiradeQuímica,2009.

[5]C.A.G.Quispe,C.J.R.Coronado,J.A.CarvalhoJr.,GlycerolProduction, consumption,prices,characterizationandnewtrendsincombustion,Renew. Sustain.EnergyRev.27(2013)475–493.

[6]H.W.Tan,A.R.AbdulAziz,M.K.Aroua,Glycerolproductionanditsapplications asarawmaterial:areview,Renew.Sustain.EnergyRev.27(2013)118–127. [7]G.P.daSilva,M.Mack,J.Contiero,Glycerol:apromisingandabundantcarbon

sourceforindustrialmicrobiology,Biotechnol.Adv.27(2009)30–39. [8]A.Corma,G.W.Huber,L.Sauvanaud,P.O’Connor,Biomasstochemicals:

catalyticconversionofglycerol/watermixturesintoacroleinreaction network,J.Catal.257(2008)163–171.

[9]B.Katryniok,S.Paul,V.Belliere-Baca,P.Rey,F.Dumeignil,Glycerol dehydrationtoacroleininthecontextofnewusesofglycerol,GreenChem. 12(2010)2079–2098.

[10]L.Ott,M.Bicker,H.Vogel,Catalyticdehydrationofglycerolinsub-and supercriticalwater:anewchemicalprocessforacroleinproduction,Green Chem.8(2006)214–220.

[11]N.Rahmat,A.Z.Abdullah,A.R.Mohamed,Recentprogressoninnovativeand potentialtechnologiesforglyceroltransformationintofueladditives:a criticalreview,Renew.Sustain.EnergyRev.14(2010)987–1000.

[12]M.deAraújoMedeiros,M.T.C.Sansiviero,M.H.Araújo,R.M.Lago,Modification ofvermiculitebypolymerizationandcarbonizationofglyceroltoproduce highlyefficientmaterialsforoilremoval,Appl.ClaySci.45(2009)213–219. [13]M.A.Medeiros,C.M.M.Leite,R.M.Lago,Useofglycerolby-productofbiodiesel

toproduceanefficientdustsuppressant,Chem.Eng.J.180(2012)364–369. [14]S.Adhikari,S.D.Fernando,A.Haryanto,Hydrogenproductionfromglycerol:

anupdate,EnergyConvers.Manage.50(2009)2600–2604.

[15]P.D.Vaidya,A.E.Rodrigues,Glycerolreformingforhydrogenproduction:a review,Chem.Eng.Technol.32(2009)1463–1469.

[16]S.Adhikari,S.Fernando,A.Haryanto,Productionofhydrogenbysteam reformingofglycerinoveralumina-supportedmetalcatalysts,Catal.Today 129(2007)355–364.

[17]T.Hirai,N.-o.Ikenaga,T.Miyake,T.Suzuki,Productionofhydrogenbysteam reformingofglycerinonrutheniumcatalyst,EnergyFuels19(2005) 1761–1762.

[18]E.L.Kunkes,R.R.Soares,D.A.Simonetti,J.A.Dumesic,Anintegratedcatalytic approachfortheproductionofhydrogenbyglycerolreformingcoupledwith water-gasshift,Appl.Catal.B:Environ.90(2009)693–698.

[19]H.C.Lee,K.W.Siew,J.Gimbun,C.K.Cheng,Synthesisandcharacterisationof cementclinker-supportednickelcatalystforglyceroldryreforming,Chem. Eng.J.255(2014)245–256.

[20]R.D.Cortright,R.R.Davda,J.A.Dumesic,Hydrogenfromcatalyticreformingof biomass-derivedhydrocarbonsinliquidwater,Nature418(2002)964–967. [21]E.Markoˇciˇc,B.Kramberger,J.G.vanBennekom,H.JanHeeres,J.Vos, ˇZ.Knez, Glycerolreforminginsupercriticalwater;ashortreview,Renew.Sustain. EnergyRev.23(2013)40–48.

[22]G.Nahar,V.Dupont,Recentadvancesinhydrogenproductionvia autothermalreformingprocess(ATR):areviewofpatentsandresearch articles,RecentPat.Chem.Eng.6(2013)8–42.

(6)

productionbyliquidphasereformingofglycerol:catalyticpropertiesand performance,anddeactivationstudies,Top.Catal.57(2014)1066–1077. [25]H.S.Fry,E.L.Schulze,Theliberationofhydrogenfromcarbonccompunds.IV.

theinteractionofglycolandglycerolwithfusedcausticalkalies,J.Am.Chem. Soc.50(1928)1131–1138.

[26]J.Jiang,M.-R.Gao,Y.-H.Qiu,G.-S.Wang,L.Liu,G.-B.Cai,S.-H.Yu,Confined crystallizationofpolycrystallinehigh-magnesiumcalcitefromcompact Mg-ACCprecursortabletsanditsbiologicalimplications,CrystEngComm13 (2011)952–956.

[27]M.Wang,H.K.Zou,L.Shao,J.F.Chen,Controllingfactorsandmechanismof preparingneedlelikeCaCO3underhigh-gravityenvironment,Powder Technol.142(2004)166–174.

[28]S.Gunasekaran,G.Anbalagan,S.Pandi,Ramanandinfraredspectraof carbonatesofcalcitestructure,J.RamanSpectrosc.37(2006)892–899. [29]A.C.Ferrari,J.Robertson,InterpretationofRamanspectraofdisorderedand

amorphouscarbon,Phys.Rev.B61(2000)14095–14107.

[30]J.P.Trigueiro,G.G.Silva,R.L.Lavall,C.A.Furtado,S.Oliveira,A.S.Ferlauto,R.G. Lacerda,L.O.Ladeira,J.W.Liu,R.L.Frost,G.A.George,Purityevaluationof carbonnanotubematerialsbythermogravimetric,TEM,andSEMmethods,J. Nanosci.Nanotechnol.7(2007)3477–3486.

hydrogengasfromthehydrothermalgasificationofbiomass,Int.J.Hydrogen Energy34(2009)5645–5656.

[32]J.A.Onwudili,P.T.Williams,Reactionofdifferentcarbonaceousmaterialsin alkalinehydrothermalmediaforhydrogengasproduction,GreenChem.13 (2011)2837–2843.

[33]J.A.Onwudili,P.T.Williams,Hydrothermalreactionsofsodiumformateand sodiumacetateasmodelintermediateproductsofthesodium

hydroxide-promotedhydrothermalgasificationofbiomass,GreenChem.12 (2010)2214–2224.

[34]Y.Jiao,W.Tian,H.Chen,H.Shi,B.Yang,C.Li,Z.Shao,Z.Zhu,S.-D.Li,Insitu catalyzedBoudouardreactionofcoalcharforsolidoxide-basedcarbonfuel cellswithimprovedperformance,Appl.Energy141(2015)200–208. [35]P.Lahijani,Z.A.Zainal,M.Mohammadi,A.R.Mohamed,Conversionofthe

Imagem

Fig. 1. TG analyses, in argon atmosphere, of the precursors Glyc:Na and glycerol.
Fig. 6. TG analyses for the raw solid obtained by decomposition of the precursors at 400 ◦ C.
Fig. 7. Gas composition obtained for the different precursors decomposed at 400 ◦ C.
Fig. 10. Summary of complete thermal decomposition of the precursor Glyc:3Na.

Referências

Documentos relacionados

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Para tanto foi realizada uma pesquisa descritiva, utilizando-se da pesquisa documental, na Secretaria Nacional de Esporte de Alto Rendimento do Ministério do Esporte

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente

The efficiency of the decomposition of CCl 4 using the homemade torch to generate thermal plasma can be demonstrated by the major solid carbon and chlorine and minor

Alguns ensaios desse tipo de modelos têm sido tentados, tendo conduzido lentamente à compreensão das alterações mentais (ou psicológicas) experienciadas pelos doentes

As etapas de criação e expressão dos modelos e analogias proporcionaram à professora, às pesquisadoras e aos pares acesso às ideias que embasavam o entendimento dos estudantes sobre