• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
12
0
0

Texto

(1)

Physis in the Global Monopole Spaetime

E.R. Bezerra de Mello

Departamento deFsia-CCEN

UniversidadeFederaldaParaba,C.Postal 5.008,Brazil

E-mail: emellosia.ufpb.br

Reeivedon2February,2001

Inthispaperwereviewsomeimportantaspetsoftheglobalmonopolespaetimeandpresenthow

thismanifoldmodies,atlassialandquantumpointsofview,themovementofahargedpartile.

Theexpliitalulationsoftherenormalizedvauumexpetationvaluesoftheenergy-momentum

tensors, hT(x)iRen:, assoiated with massless bosoni and fermioni elds are also presented.

Moreovertheeetofthenonzerotemperatureinthispreviousformalismisanalyzed. Finally,we

brieypresentotherappliationsofthismanifoldinthetopologialinationandondensedmatter

system.

I Introdution

It iswellknownthat dierenttypesoftopologial

ob-jetsmayhavebeenformedduringUniverseexpansion,

suhasdomainwalls,osmistringsandmonopoles[1℄.

Thebasiideaisthatthesetopologialdefetsappeared

due tobreakdownofloalorglobalgaugesymmetries.

SupposethatwehavetheHiggseld a

(a=1;:::;N),

whosepotentialis

V()=

4 (

2

2

0 )

2

; 2

= a

a

; (1)

where

0

isthevauumexpetationvalueanda

ou-pling onstant. Thismodelgivesrisetodierenttypes

of topologialdefets: DomainwallforN =1,osmi

stringforN =2andmonopoles forN =3. Thesalar

mattereldplaystheroleofanorderparameterwhih

outsidethedefetaquiresanonvanishingvalue.

Inthisreviewwepresenttheeldequationsforthe

global monopole in setion II, using a spei model

oupled to the Einstein equations. In setion III, we

analyzethelassialandquantummotionofaharged

partileinthespaetimeofanidealizedpointlikeglobal

monopole, onsidering the indued eletrostati

self-interation. InsetionIV,wealulatetheGreen

fun-tionsassoiatewithmasslesssalarandfermionields

and obtain the renormalized vauum expetation

val-ues (VEV) of their respetive energy-momentum

ten-sors, hT

(x)i

Ren:

. The eet of the temperature in

the salar massless Green funtion and onsequently

itsinuene onthealulationofhT

iisevaluatedin

setion V. In setion VI, we briey present other

ap-pliations ofthisformalism. Finallyweleft forsetion

VII ouronludingremarks.

II Field Equation for a Global

Monopole

A.The Model

A global monopole is a heavy objet formed in

the phase transition of a system omposed by a

self-ouplingiso-salartriplet a

,whoseoriginalO(3)

sym-metryisspontaneouslybrokentoU(1)[2℄.

L= 1

2 g

(

a

)(

a

)

4 (

2

2

0 )

2

: (2)

Theeld ongurationdesribingamonopoleis

a

=

0 f(r)^x

a

; (3)

wherex a

x a

=r 2

. Themostgeneralstatimetritensor

withspherialsymmetryanbewrittenas

ds 2

= B(r)dt 2

+A(r)dr 2

+r 2

(d 2

+sin 2

d 2

): (4)

TheEuler-Lagrange equation forthe eld f(r)in the

metri(4)is:

(r 2

f 0

) 0

Ar 2

+ 1

2B

B

A

0

f 0

2f

r 2

2

0 f(f

2

1)=0; (5)

wheretheprimedenotesdierentiationwithrespetto

r. The energy-momentum tensor assoiated with the

mattereldisgivenby

T t

t

=

2

0

f 2

r 2

+ (f

0

) 2

2A +

4

2

0 (f

2

1) 2

;

T r

r

=

2

0

f 2

r 2

(f 0

) 2

2A +

4

2

0 (f

2

1) 2

; (6)

T

= T

=

2

0

(f 0

) 2

+

2

0 (f

2

1) 2

(2)

InatspaethemonopolehassizeÆ 1

p

0

. Itsmass

isM 0

p

.

Outside theoref 1and theenergy-momentum

tensoranbeapproximatedas

T t

t T

r

r

2

0

r 2

; T

=T

0: (7)

B. EinsteinEquations

Computing the Rii tensor for the metri tensor

(4)onends[3℄:

R

rr =

B 00

2B +

B 0

4B

A 0

A +

B 0

B

+ A

0

rA ;

R

= 1 r

2A

B 0

B A

0

A

1

A

; (8)

R

tt =

B"

2A B

0

4A

A 0

A +

B 0

B

+ B

0

rA :

WealsohaveR

=sin

2

R

:

Combiningonvenientlythese equationsweget

R

rr

2A +

R

tt

2B +

R

r 2

= A

0

rA 2

+ 1

r 2

1

Ar 2

= 1

2 R

r

r R

t

t

+R

; (9)

andonsequently

(r=A) 0

=1 r 2

1=2 R r

r R

t

t

+R

: (10)

With theaidoftheEinsteinequations

R

=8G

T

1

2 g

T

; (11)

weobtain

(r=A) 0

=1+8Gr 2

T t

t

: (12)

Tond the other omponent of the metri tensor we

write

R

rr

A +

R

tt

B =

1

rA

A 0

A +

B 0

B

= R r

r R

t

t

: (13)

Integratingwiththeondition

A(r)B(r)

jr=1

=1; (14)

weobtain

B(r)= 1

A(r) exp

8G Z

r

1 T

r

r T

t

t

rA(r)dr

: (15)

Thegeneralsolutionof(12)is

A(r) 1

=1 8G

2

0

2GM(r)=r ; (16)

whereM(r)isgivenby

M(r)=4 2

0 Z

r

0

(f 0

) 2

2A +

f 2

1

r 2

+

2

0

4 (f

2

1)

r 2

dr:

(17)

Beause T t

t T

r

r

outsidethe oreofthemonopole,in

thisregionwehave

B(r)=1=A(r): (18)

Also we an analyze the behavior of the funtion f.

Introduingnewsvariablesdenedas[4℄

x= p

0

r; =8G 2

0 ;

onendstheasymptotiexpansion

f(x)=1 1

x 2

3=2

x 4

+O(1=x 6

): (19)

Nowletusgobaktothemetritensor. Negletingthe

mass termand resalingthe t variable wean rewrite

themonopole metrias

ds 2

= dt 2

+ dr

2

2

+r 2

d 2

; (20)

where 2

=1 8G

2

0

=1 <1. Theabovemetri

tensor desribes an idealizedpointlike global monople

(G-M)defet.

Thespaetime desribed by (20)has thefollowing

interestingfeatures:

i)Itisnotat: thesalarurvatureR=R

=2

(1 2

)

r 2

:

ii)Thereis noNewtonianpotential: g

tt = 1.

iii) Thesurfae ==2has geometry ofaone, with

deitangleÆ=8 2

G 2

0 .

iv)Thesolidangleofasphereofunitradius is4 2

2

,

so smaller than 4 2

. There is a solid angle deit

Æ=32 2

G 2

0 .

v) Beause T

00

2

=r 2

, outside theglobal monopole

thetotalenergyislinearlydivergentatlargedistane:

E(r)4G 2

0 r:

Now after this brief review about the global

monopolespaetime, letus analyzesomelassialand

quantum eets produed by this geometry on the

movementofahargedpartile.

III Classial Eets

It iswell knownthat aharged/massivepartilewhen

plaedinthespaetimeofaosmistringbeomes

sub-jeted to a repulsive/attrative self-interation[5℄. A

similar phenomenon also our in the spaetime

pro-dued by a global monopole. These self-interations

aregivenby[6℄:

U = K

(3)

where r is the distane from the partile to the

monopoleand

K=q 2

S()=2>0; (22)

fortheeletrostatiase,or

K= Gm 2

S()=2<0; (23)

fortheinduedgravitationalone. Thenumerialfator

S() isafuntion oftheparameter

S()= 1

X

l=0 "

2l+1

p

2

+4l(l+1) 1

#

;

whihisniteandpositivefor<1.

These indued self-interations are onsequeneof

thedistortiononthepartile'seldausedbythe

ur-vatureand/orthenon-trivialtopologyofthespaetime.

Briey speaking these eets anbe explained by

alulatingtheNewtoniangravitationalself-interation

ofanarbitrarymassdistributionoutsidethemonopole

ore

U

G =

1

2 G

Z Z

drdr 0

m

(r)G(r;r 0

)

m (r

0

); (24)

where

m

isthemassdensity. Similarly,forthe

eletro-statiself-interationofanarbitraryhargedistribution

wehave

U

E =

1

2 G

Z Z

drdr 0

q

(r)G(r;r 0

)

q (r

0

); (25)

where now

q

isthehargedensity.

Foranisolatedpartileat somespei positionr,

weget

U

G =

1

2 Gm

2

G

R

(r;r ) (26)

and

U

E =

1

2 q

2

G

R

(r;r); (27)

whereG

R (r;r

0

)istherenormalizedGreenfuntion

de-nedas

G

R (r;r

0

)=G

(r;r

0

) G

H (r;r

0

); (28)

being G

(r;r

0

) the Green funtion dened in the

monopolespaesetion:

G

() (r;r

0

)= 1

r

> 1

X

l=0 2l+1

2

l +1

r

<

r

>

l

P

l

(os); (29)

where

l =

1

2 +

p

2

+4l(l+1)

2 .

TheHadamardfuntion,G

H (r;r

0

),assoiatedwith

thethree-dimensionalLaplae-Beltramioperatoris

G

H (r;r

0

)= 1

0

; (30)

being(r;r 0

) theone-halfofthe geodesidistane

be-tween the two points r and r 0

is the spae setion of

(20). Beauseweareinterested toevaluatethe

renor-malizedGreenfuntion intheoinidene limit,letus

take rst= 0

. Forthisase thethree-dimensional

lineelementin theG-M spaetimeis

d ~

l 2

= dr

2

2

;

whihgiveus

2(r;r 0

)= jr r

0

j

:

Soafter someintermediatealulationsweget

G

R (r;r )=

1

r

S() ; (31)

whihisniteforr>0.

The presene of this indued eletrostati

self-interationisrelevantin theanalysisofthemovement

ofan eletriharged partileplaedin the spaetime

ofaglobalmonopole. Inordertodothat wetakeinto

aounttheself-interationasthezerothomponentof

thefour-vetorA

. Thenextsubsetion isdevoted to

thisinvestigation.

A.ClassialAnalysis of the Motion

For the relativisti lassialanalysis of this

move-ment we shall use the Hamilton-Jaobi (H-J)

formal-ism. Aordingthisformalism,ourrstsetofequation

isgivenby[7℄

M dx

d +qA

=g

S

x

; (32)

being a parameter along the lassial trajetory of

thepartile.

Theseondsetofequationisgivenby

g

S

x

qA

S

x

qA

= M

2

; (33)

whereS isthefuntionalgivenby

S= Et+R (r)+()+L

Z

; (34)

with R (r) and () being unknown funtions and E

andL

Z

onstantsofthemovement.

Integrating (32) and (33) we anobtain the

equa-tionsofthetrajetoriesfordierentsituationsasshown

below. Deningu= 1

r

,weget,forthesurfae==2,

thefollowingsolutions:

u()= EK

L 2

K 2

+ p

(E 2

M 2

)L 2

+M 2

K 2

L 2

K 2

os

"

p

L 2

K 2

L

Z

(

0 )

#

;

(4)

forL 2

>K 2

,

u()= EK

K 2

L 2

+ p

(E 2

M 2

)L 2

+M 2

K 2

K 2

L 2

osh

"

p

K 2

L 2

L

Z

(

0 )

#

;

(36)

forL 2

<K 2

and

u()= M

2

2EK E

2

2

2

(

0 )

2

2K

; (37)

forL 2

=K 2

.

Fromtheaboveequationsispossibletoseethatthe

rst set of solutions presents bounded trajetory for

E 2

<M 2

and K<0,whih happensforthe

unphysi-alasewhen>1.

B. Quantum Analysis ofthe Motion

Fortheanalysis of thequantum motionweshould

usetherelativistiKlein-GordonequationorDiraone

ifthepartileis abosonorfermion,respetively.

Bosoni Case

Forthespin0asetheKlein-Gordonequation

writ-teninaovariantformreads

[2 iqA

p

g (

p

g) iq(

A

) 2iqA

q 2

A

A

R (x) M 2

℄(x)=0; (38)

with

2(x)= 1

p

g

p

gg

(x)

: (39)

whereg=det(g

). Intheaboveequationwealso

on-sidered the non-minimal oupling between the salar

eldwiththesalarurvatureR ofthemanifold.

NowapplyingthisformalismfortheG-Mspaetime

wehave

[

t 2+

2

r 2

r (r

2

r )

~

L 2

r 2

2i K

r

t +

K 2

r 2

M 2

r 2

℄(x)=0: (40)

Beauseourmetritensorisstatiandtheself-potential

istime-independent,weanadoptforthewavefuntion

theform

(x)=Cexp( iEt)R (r)Y

l;m

(;); (41)

where E is thepartile's self-energy. The solutionfor

the radialdierential equation are expressed in terms

ofhypergeometrifuntionsas

R (r)=r

l

e ik r

M( +1+i;2( +1); 2ikr); (42)

wheretheeetiveangularquantumnumberis

l =

1

2 +

p

2

+4[l(l+1)+ K 2

2

with=2(1 2

)=2and

k= p

E 2

M 2

; = EK

2

k :

From the radial solution is possible to obtain the

phaseshiftÆ

l

,whihisthemostrelevantparameterin

thealulationofthesatteringamplitude.

Ifweareinlinedto onsiderthepossibilityofthis

systemtopresentboundstates,wehavetoassumethat

the parameter > 1, in whih ase K <0. So,

tak-ingE 2

<M 2

,wegetdisretevaluesfortheself-energy

givenby

E

n;l =M

2

(n+

l +1)

2

K 2

+ 2

(n+

l +1)

1=2

; (43)

withn=0;1;2:::

Fermioni Case

Consideringnowafermionipartile,wemusttake

theDiraequationin theovariantform

[i

(x)(

+iqA

(x)) M℄ (x)=0; (44)

where

(x)isthespinoeÆient. Usingan

appropri-atedtetradbasisfortheG-Mspaetimeweget[7℄:

[i (0)

t +i

(r)

r +

i

r

()

+

i

rsin

+i ( 1)

r

(r)

q (0)

A

0

M℄ (x)=0(45):

Alsousingthestandardproedureit ispossibleto

ob-tainthesetofsolutionfortheequationabove. Theyare

expressedin termsofhypergeometrifuntions. Again

from thesolution weanalulate the phaseshift,Æ

j .

Ifagainweadmittheunphysialsituationwhere>1,

it is possible to ndbound statesand theexpliit

ex-pressionforthedisreteself-energy

E

n;j =M

"

1+

K 2

(n+ p

(j+1=2) 2

K 2

) 2

#

1=2

:

(5)

IV Quantum Eets

Thenon-trivialtopologyoftheG-Mspaetimeimplies

thatthevauumexpetationvalue(VEV)ofthe

renor-malized energy-momentum tensor assoiated with an

arbitraryolletionofonformalmasslessquantumeld

mustbedierentfromzero[8℄.

TheexpliitalulationsforhT

(x)i

Ren

fora

mass-lesssalareld[9℄ and fermioni one[12℄ havebeen

de-veloped. Also,reently thermaleetshavebeen

on-sideredin thisontext[13℄.

Belowwepresentthemaineetsduetothis

spae-timein theVEVofsomequantum operators.

A. SalarCase

TheEulidean versionof theG-M metritensoris

givenby

ds 2

=d 2

+ dr

2

2

+r 2

d 2

: (47)

Themasslesssalareldpropagatorobeysthe

dieren-tialequationbelow

( 2+R )G

E (x;x

0

)= Æ

4

(x;x 0

)

p

g

; (48)

where wehaveinluded thenon-minimal oupling

be-tween the propagator with the geometry. The

Eu-lideanGreenfuntionanbeevaluatedusingtheheat

kernelapproah:

G

E (x;x

0

) = Z

1

0

dsexpf s( 2+R )g Æ

4

(x;x 0

)

p

g

= Z

1

0

dsK(x;x 0

;s): (49)

In order to obtain the heat kernel, K(x;x 0

;s), let us

solvetheeigenfuntionequationbelow

( 2+R )

(x)=

2

(x): (50)

Theompleteresultfortheequationaboveis:

(x)=

r

p

2r

exp( i!t)J

l (pr)Y

l;m

(;); (51)

with eigenvalues 2

= ! 2

+p 2

2

0 and

l =

1

p

(l+1=2) 2

+2(1 2

)( 1=8). Thesesolutions

obeytheompletenessrelation

X

(x)

(x)=

Æ 4

(x;x 0

)

p

g

: (52)

Nowweareinpositiontoobtaintheheat kernelby

K(x;x 0

;s) = Z

1

1 d!

Z

1

0 dp

X

l;m

(x)

(x

0

)exp( s 2

)

= exp

2

2

+r 2

+r 02

4 2

s

16(s) 3=2

(rr 0

) 1=2

1

X

l=0

(2l+1)I

l

rr 0

2 2

s

P

l

(os): (53)

d

Weaneasilyverifythatfor=1,

l

=l+1=2andin

thisaseitispossibletogetalosedexpressionforthe

heat kernel[14℄:

K(x;x 0

;s)= 1

16 2

s 2

exp

(x x 0

) 2

4s

: (54)

FinallyweanobtaintheEulideanGreenfuntionby

integrating(53). Ourresultis

G(x;x 0

) = 1

8 2

rr 0

1

X

l=0

(2l+1)

Q

l 1=2

2

2

+r 2

+r 02

2rr 0

P

l (os):

(55)

TheComputation ofh 2

(x)i

Ren

TheVEVofthesquareofthequantum eld

opera-torisgivenby

h 2

(x)i= lim

x 0

!x G(x;x

0

): (56)

Howevertheaboveexpressionisdivergent. Soin order

to obtain a nite and well dened value for h 2

(x)i,

we haveto renormalize it. We shall use thestandard

proedureasshownbelow:

h 2

(x)i

Ren = lim

0

[G(x;x 0

) G

H (x;x

0

(6)

whereG

H (x;x

0

)istheHadamardfuntion givenby[9℄

G

H (x;x

0

) = 1

16 2

2

(x;x 0

)

+ ( 1=6)R (x)ln

2

(x;x 0

)

2

; (58)

where is an arbitrary sale introdued in order to

avoidtheinfrareddivergene and(x;x 0

)theone-half

of the square of the geodesi distane between the

pointsxandx 0

. Beauseweareinterestedinthe

oin-idene limit, let us set rst 0

= in (57). Forthis

aseweget (x;x 0

)= (r r

0

) 2

2 2

. Ouraboveexpressions

reduethemselvesto

G(r;r 0

)= 1

8 2

rr 0

1

X

l=0

(2l+1)Q

l 1=2

r 2

+r 02

2rr 0

(59)

and

G

H (r;r

0

) = 1

16 2

4 2

(r r 0

) 2

+ 2

r 2

( 1=6)ln

2

(r r 0

) 2

4 2

: (60)

Beausethedependeneof

l

withlisnotsimpleone,it

isnotpossibletodevelopthesummationintheangular

quantumnumberlin (59)inanexatway;howeverif

we remember that the parameter 2

= 1 is lose

to the unity for realisti models 1

, it is possibleto

ex-pand

l

in powersof andonsequently toobtainan

approximate expressionfor (59). Soin lowestorder in

andusingappropriateintegralrepresentationforthe

Legendrefuntion weget:

G(r;r 0

) =

1

8 p

2 2

rr 0

Z

1

dt

1

p

osht osh

1

X

l=0

(2l+1)e

l t

; (61)

with osh=(r+r 0

) 2

=2rr 0

. Moreoverevaluatingthe

summationin luptotherstorderin,wehave:

S(t)= 1

X

l=0

(2l+1)e

l t

=e t=2

1+e t

(1 e t

) 2

1

2t

1 e 2t

(1 e t

) 2

+e t

: (62)

Also the logarithmi term in the Hadamard funtion

anbeexpressedintermofQ

0

(osh)=ln

r+r 0

r r 0

and

onsequentlyin integralform. So taking into aount

allthese onsiderationswefound, upto therstorder

in

h 2

(x)i

Ren

= lim

r 0

!r [G(r;r

0

) G

H (r;r

0

)℄

=

(p 2q)

8 p

2 2

r 2

( 1=6)

4 2

r 2

ln(r);

(63)

where pand q aretwonumbersgivenby theintegrals

below

p= Z

1

0 dt

e t=2

p

osht 1

1

3 +

t

sinht 1

1+e

t

(1 e t

) 2

; (64)

and

q= Z

1

0 dt

e t=2

p

osht 1

1

t(1+e t

)

1 e 2t

: (65)

Thesetwointegralsareniteandanbeevaluated

nu-merially. Theresultsarep= 0:39andq= 1:41[9℄.

2. Evaluation of hT

(x)i

Ren

InRef. [9℄thegeneralstrutureoftherenormalized

VEV of the energy-momentum tensor for a massless

salareld in theG-M spaetimeis presented. There,

this expression was obtained on basis of dimensional

arguments,symmetries,traeanomalyandtheexpliit

alulationoftheVEVofthesquareoftheeld

opera-tor. Theironlusionisthat theVEVforthis

energy-momentum tensorhasthefollowingstruture:

hT

(x)i

Ren =

1

16 2

r 4

A

(;)+B

(;)ln(r)

;

(66)

whereB

andA

arediagonaltensorsTheexpliit

ex-pressionforthelatteris

A

=diag(T+A r

r B

r

r ; A

r

r ; A

r

r

+1=2B r

r ;

A r

r

+1=2B r

r

) : (67)

For the partiular value = 1=6, T is given by the

trae anomaly. We have hT

(x)i

Ren

= T=16 2

r 4

=

=770 2

r 4

( 1 =2).

B. Fermioni Case

The spinor Feynman propagator is dened as

follows[10℄

iS

F (x;x

0

)=hT( (x) (x 0

))i : (68)

This propagator obeysthe followingdierential

equa-tion

(ir= M)S

F (x;x

0

)= 1

p

g Æ

4

(x;x 0

)I

(4)

; (69)

1

Infatforatypialgranduniedtheorytheparameter0isoforder10 16

Gev. So1 2

(7)

where g=det(g

). Thespinorovariantderivativeis

givenby

r==e

(a) (x)

(a)

(

+

) ; (70)

with the spin onnetion

given in terms of the

matrixandthebasistetrade

(a)

intheusualway:

=

1

4

(a)

(b)

e

(a) e

(b); :

IfabispinorD

F (x;x

0

)satisesthedierentialequation

2 M

2 1

4 R (x)

D

F (x;x

0

)= 1

p

g Æ

(4)

(x;x 0

);

(71)

where the generalized d'Alembertian operator is

ex-pressedby

2=g

r

r

=g

r

+

r

r

;

(72)

thenthespinorFeynmanpropagatormaybewrittenas

S

F (x;x

0

)=( ir=+M)D

F (x;x

0

): (73)

Nowafter thisbriefreview,letusspeializein the

al-ulation of the spin Feynman propagator in the G-M

spaetime.

Using appropriate basis tetrad for this spaetime,

theonlynon-vanishingspinonnetionsare[12℄:

2 =

1

2 h

(1)

(2)

os+ (2)

(3)

sin i

(74)

and

3 =

1

2 h

(1)

(2)

sin+ (1)

(3)

sinos

(2)

(3)

osos i

sin : (75)

We also adopt the following representation for the

-matrix

(0)

=

1 0

0 1

; (k )

=

0

k

k

0

: (76)

These matries obey the antiommutator relation

f (a)

; (b)

g= 2 (a)(b)

.

Aftersomeintermediatestepsweget 2

2 =

1

2

2

t +

2

r 2

r (r

2

r )

~

L 2

r 2

(1 ) 2

2r 2

1

r 2

~

~

L; (77)

where

~

=

~

0

0 ~

: (78)

The systemthat we shallonsider onsists ofa

mass-lessleft-handedfermionield. ForthisasetheDira

equationreduestoa22matrixdierentialequation

asshownbelow:

iD=

L

=0; (79)

where

D=

L =i

1

t

(r)

r 1

r

()

1

rsin

()

+

1

r

(r)

; (80)

with (u)

=~u,^ u^denotingtheusualunitvetoralong

thethree spatialdiretionsinspherialoordinates.

The Feynman two-omponent propagator obeys

nowtheequation

iD=

l S

F (x;x

0

)= 1

p

g Æ

(4)

(x;x 0

)I

(2)

; (81)

andanbegivenin termsofthebispinorG

F (x;x

0

)by

S

F (x;x

0

)=iD=

L G

F (x;x

0

); (82)

wherenowthisbispinorobeysthe2 2dierential

equa-tionbelow:

^

KG

F (x;x

0

)= 1

p

g Æ

(4)

(x;x 0

)I

(2)

; (83)

with

^

K= 1

2

2

t +

2

r 2

r r

2

r ~

L 2

r 2

1

r 2

1+~ ~

L

:

(84)

The VEV of the energy-momentum tensor an be

expressed in terms of the Eulidean Green funtion

G

E (x;x

0

) = iG

F (x;x

0

). Now we shall alulate

G

E (x;x

0

)byusing thesolutionoftheeigenvalue

equa-tionbelow

^

K

(x)= 2

(x); (85)

with 2

0,soweanwrite

G

E (x;x

0

)= X

(x)

+

(x

0

)

: (86)

Thenormalizedeigenfuntionanbewritten as

(k )

(x)=

r

p

2r e

iE

J

k (pr)

(k )

j;mj

; k=1;2; (87)

with

2

= E

2

2

+ 2

p 2

; (88)

and

1 =

l+1

1

2 ;

2 =

l

+

1

2

: (89)

Intheaboveequation (k )

j;m

j

arethespinorspherial

har-monieigenfuntionsoftheoperators ~

L 2

and ~

L[11℄.

2

Hereinthissetionweareusingthefollowingmetritensor: g =diag( 2

;1= 2

;r 2

;r 2

sin 2

(8)

TheexpressionforG

E (x;x

0

)anbegivenby

G

E (x;x

0

) = Z

1

1 dE

Z

1

0 dp

X

j;mj

(1)

(x)

(1)+

(x

0

)+ (2)

(x)

(2)+

(x

0

)

E 2

= 2

+ 2

p 2

:

(90)

Substituting (k )

(x)in theequationaboveweget

G

E (x;x

0

)= 1

2rr 0

X

j;mj h

Q

1 1=2 (u)C

(1)

j;m

j (;

0

)

+Q

2 1=2

(u)C (2)

j;mj (;

0

) i

; (91)

whereQ

(z)istheLegendrefuntion,u=1+( 4

2

+

r 2

)=2rr 0

andC (k )

j;mj (;

0

)= (k )

j;mj ()

(k )+

j;mj (

0

).

Againwean seethat for=1,

1 =

2

=l+1=2

andwegetalosedform forG

E (x;x

0

)

G

E (x;x

0

)= 1

8 2

1

(x;x 0

) I

(2)

; (92)

where2(x;x 0

)= 2

+(~r ~r 0

) 2

.

NowweanexpressthespinorGreenfuntionas

S

F (x;x

0

)=i

1

t

(r)

r +

1

r

(r)

~ ~

L

+

1

r

(r)

G

E

(x;x): (93)

1. VauumExpetation Value

Also,asinthesalarase, thegeneralstrutureof

the VEV of the energy-momentum tensor assoiated

with a massless fermioni eld in the G-M spaetime

hasthefollowingstruture:

hT

(x)i

Ren =

1

8 2

r 4

h

A

+B

ln

r

i

; (94)

where

A

=diag A 0

0

; T+A 0

0 +B

0

0 ;

T A

0

0

1=2B 0

0 ;T A

0

0

1=2B 0

0

(95)

and

B

=B

0

0

diag(1;1; 1; 1): (96)

Beause for this system T := r

4

Tra2

2 =

1 4

60 , our

problemofnding(94)onsiststoobtainthetwo

om-ponentsA 0

0 andB

0

0 only.

Usingthepoint-splittingapproah,theVEVofthe

respetiveenergy-momentumtensorforspinoreldhas

thefollowingform

hT

(x)i=1=4 lim

x 0

!x Tr[

(r

r

0

)

+ (r r

0

)℄S (x;x 0

): (97)

Forus it is neessaryonly to ompute hT 0

0

(x)i, sowe

have

hT 0

0 (x)i=

1

2

lim

x 0

!x Tr

2

G

E (x;x

0

): (98)

The above limit is divergent, so in order to obtain a

welldenedresultweshouldrenormalizeitsubtrating

fromtheEulideanGreenfuntion,G

E

,theHadamard

one, whih for this ase presents struture similar to

the salar ase. After a long alulation we found:

B 0

0 =

1 4

60

and A 0

0

a ompliated integral; however

wewritedownthislatteromponentforspeivalues

oftheparameter.

1)Forlargesolidangledeit(<<1),

A 0

0

1

60

ln+C

0 ; C

0

=0:0104:

2)Forsmallsolidangledeitorexess(j 1j<<1),

A 0

0 C

1

(1 ) ; C

1

=0:0773:

3)Forlargesolidangleexess(>>1),

A 0

0

C

3

4

; C

3

=0:0173:

V Thermal Eets

Nowwewouldliketopresenttheeetsofthenonzero

temperaturein the formalismofquantum eld theory

for a masslesssalar eld in the G-M spaetime. We

shalldeveloprstthealulationoftherespetive

Eu-lideanthermalGreen funtion. Oursubsequent

anal-ysis onerns in the alulation of the orretions to

theVEVofh 2

(x)i

andhT

(x)i

duetothenonzero

temperature[13℄.

A. The Eulidean ThermalGreen Funtion

Thethermal Green funtion, G

(x;x

0

), for a

mas-sivesalareld,non-minimallyoupledwiththe

geom-etryofthebakgroundspaetime,satisesthefollowing

onditions:

(i)Itobeysthedierentialequation

2 m

2

R

G

(x;x

0

)= Æ

(4)

(x;x 0

)

p

g

(99)

and

(ii) isperiodiin the Eulideantime , with period

givenby

= 1

B T

;

where

B

istheBoltzmanonstantandT theabsolute

(9)

BeausetheEulideanversionofourspaetimeisan

ultrastatione 3

,theEulideanthermalGreenfuntion

an be obtained by theShwinger-De Witt formalism

as follows:

G

(x;x

0

)= Z

1

0 dsK

(x;x

0

;s); (100)

where thethermalheatkernelan befatorizedas

K

(x;x

0

;s)=

3

i

4s i

2

4s !

K

1 (x;x

0

;s); (101)

being

3

thethirdthetaJaobifuntion

3 (zj!)=

1

X

n= 1

exp(in 2

!+2inz); (102)

with Im(!)>0. K

1 (x;x

0

;s)is thezerotemperature

heat kernelpreviouslydened byEq. (53)inthe

anal-ysisofthemasslesssalareld.

AftersomeintermediatestepswegettheEulidean

thermalGreenfuntionforasalarmasslesseldwhih

reads

G

(x;x

0

)= 1

8 2

rr 0

1

X

n= 1 1

X

l=0

(2l+1)P

l (os)

Q

l 1=2

2

( n)

2

+r 2

+r 02

2rr 0

; (103)

where we see that this Green funtion is a sum of a

zero temperature one plus some thermal orretion:

G

(x;x

0

)=G

1 (x;x

0

)+G

(x;x

0

).

Nowweareinpositiontoalulatethethermal

or-retionto theVEVofh 2

(x)i

andhT

(x)i

.

B.The Thermal Average h 2

(x)i

Thesingularontribution forh 2

(x)i

omesfrom

the zero-temperature term in the Eulidean thermal

Green funtion. So the proedure to renormalize this

thermalaverageisidentialtothepreviousonedened

inSe. 4:A:1:

h 2

(x)i

;Ren

= lim

x 0

!x [G

(x;x

0

) G

H (x;x

0

)℄

= lim

x 0

!x

G

1 (x;x

0

)+G

(x;x

0

) G

H (x;x

0

)

= h

2

(x)i

1;Ren

+ 1

4 2

r 2

1

X

n=1 X

l0

(2l+1)Q

l 1=2

(z

n );

(104)

d

where z

n =1+

2

n 2

2

2r 2

. Beause the rstterm in the

r.h.s. oftheaboveequationhasalreadybeendisussed

letusonentrateonthethermalorretion. Also,here

it isneessaryto alulatethis orretionexpandinga

series inpowersoftheparameter. After some

inter-mediate stepswegetthefollowingexpression:

h 2

(x)i

=

1

12 2

(1+)

p

2

8 2

r 2

S

1 (=r)

+

1

32 2

r 2

S

2

(=r); (105)

where

S

1

(=r)= X

n1 Z

1

n dt

1

p

osht osh

n t

sinh(t=2)

(106)

and

S

2

(=r)= X

n1 Z

1

n dt

1

p

osht osh

n t

sinh 3

(t=2) ;

(107)

where

n

=arosh

1+ n

2

2

2r 2

.

Unfortunately it is not possible to obtain expliit

resultsfor bothintegralsabovein termsof anyset of

elementaryfuntions. So, ifwewantto getsome

on-rete information about the behavior of the thermal

averageofh 2

(x)iweshouldproeedanumerial

eval-uationfor S

1 and S

2

for someintervalof the variable

! := =r. Speially weare interestedto know this

behaviorin thehightemperature,orgreatdistane

re-gion,i. e.,when!<<1. Byournumerialanalyses[13℄

3

An ultrastati spaetime admitsa globally dened oordinate system inwhih the omponentsof the metri tensor are

(10)

we foundthe following dependenes for both integrals

abovewhen!belongtotheinterval[0:01;0:1℄:

S

1 =

1

! a1

(108)

and

S

2 =

2

! a

2

; (109)

where

1

=14:26witha

1

=0:920:07and

2

=17:82

with a

2

=2:020:02. From these resultswean

in-fer theapproximate behaviorforh 2

(x)i

in thehigh

temperaturelimit:

h 2

(x)i

;Ren =

1

12 2

(1+1:68) 0:25

r

: (110)

Weanseethattheleadingtermisindependentonthe

non-minimal oupling andalso onthedistane from

thepointtotheglobalmonopole.

C. The Thermal Average hT

(x)i

.

The energy-momentum tensor assoiated to the

salareld in ageneralspaetimewithanon-minimal

ouplingisgivenby:

T

(x) = (1 2)r

(x)r

(x) 2(r

r

(x))(x)

+

2 1

2

g

(x)g

(x)r

(x)r

(x)

2 2

g

(x)R (x) 2

(x) G

(x)

2

(x) ;

(111)

d

where G

(x) andR (x) are,respetively,the Einstein

tensorandthesalarurvature.

The thermal average of the operator

energy-momentum tensor an be obtained using the thermal

Greenfuntion denedasusual

G

(x;x

0

)= Tr

e H

hT(x)(x 0

)i

Tre H

: (112)

Sothethermalaverageoftheenergy-momentumtensor

isgivenby

hT

(x)i

= lim

x 0

!x

[(1 2)r

r

0

G

(x;x

0

)

2r

r

G

(x;x

0

) G

G

(x;x

0

)

+

2 1

2

g

g

0

r

r

0

G

(x;x

0

)

2 2

g

R (x)G

(x;x

0

))

: (113)

We have already mentioned that the thermal Green

funtion assoiated with a salar eld in G-M

spae-timeanbewrittenasasumofazerotemperatureone

plus thermal orretions; so the above expression an

bewritten as

hT

(x)i

=hT

(x)i

1 +hT

(x)i

: (114)

Thegeneralstruture of theindependenttemperature

term in the r.h.s. of the aboveequation has already

been disussed previously in Se. 4:A:2. So, by this

reason,weshallonentrateonthepurelythermal

or-retion, hT

(x)i

. Forthesakeofsimpliityweshall

analyzeitszero-zeroomponentonly:

hT

00 i

= lim

x 0

!x

2

G

(x;x

0

)

+

2 1

2

g

0

(x;x 0

)r

r

0G

(x;x

0

)

+ 1

2

(1 4)R (x)G

(x;x

0

)

: (115)

The development of this equation is a long one. Our

nalresultis

hT

00 i

=

2

4 2

r 4

X

n1 X

l0

(2l+1) h

n Q

(2)

l 1=2 (z

n )

+

n Q

(1)

l 1=2

(z

n )+

l Q

l 1=2 (z

n )

i

;

(116)

where Q (k )

(z) are the assoiated Legendre funtions,

z

n =1+

n 2

2

2 ! 2

(11)

n =

1

2

n 2

! 2

+4

2(n 2

! 2

4) 1=2(n 2

! 2

+4)

; (117)

n =

1

n! 3

p

n 2

! 2

+4

2[(3n 2

! 2

2) 2

2℄

1=2[(3n 2

! 2

+2) 2

2℄

; (118)

l

= (2 1=2)+

l(l+1)

2

+

2

(1 4)

2

1

2

:

(119)

d

Also in this ase it is not possible to obtain some

onrete information about the behavior of hT

00 (x)i

with the temperature without to adopt the following

proedures: (i) Toexpandingaseries in powersof the

parameter = 1 2

, and (ii) to proeed the

sum-mationin theangularquantumnumberl. Afterdoing

that,someexpressionsobtainedallowustoproeedthe

summation in n. Unfortunatelywealso ouldnot

de-velop all the integrals that appears and onsequently

the summations in n; again, here we had to develop

some numerial evaluations for these termsin the

re-gionwhere!<<1. Ournal resultis:

hT

00 (x)i

=

2

30 4

+

1

24

6

1

r 2

2

+

1 ()

1

4

+

2 ()

1

r 2

2

+ 1

4 p

2 2

r 4

F(!)

; (120)

where

1 ()=

2

180

(11+52) (121)

and

2 ()=

1

768 64

2

+1725 832

: (122)

ThefuntionF(!)ontainsalltheintegralswhihwere

not possible to be expressed in terms of elementary

funtionsandonsequentlytoproeedthesummations

in n. Analyzing allthe termsin

F(!) numerially, in

thehightemperatureregimewehaveobtainedthatthe

leadingtermare, approximatelyproportionalto 1=! 4

,

followedbytermsproportionalto1=! 3

and1=! 2

.

As our nal onlusion about the thermal eets

in the renormalized VEV of the operators 2

(x) and

T

00

(x)weansaythat inthehightemperatureregime

wehave:

i)h 2

(x)i T

Ren =h

2

(x)i 0

Ren +T

2

f() (123)

and

ii)hT

00 (x)i

T

=hT

00 (x)i

0

+T 4

g() (124)

wheref andgarefuntionsofthedimensionless

param-eter =

B

rT. The analytiform forthese funtions

wereobtainedbyus, uptherstorderin.

VI Other Appliations

A.Topologial Ination

Topologial defets an be seeds for ination[15℄.

VilenkinandLindelaimedthattopologialdefets

ex-pandexponentiallyif

0

>O(m

P ).

In the partiular ase of a global monopole, 2

=

1 8G

2

0

beomesnegativeandthesolidangledeit

(Æ=4(8G 2

0

))biggerthan 4. Theroleofthe

ra-dial and time oordinates interhanges. The exterior

solutionorresponds to the G-M solutionis no longer

stati.

B.Gravitating Magneti Monopole

The ourreneof adeit angle is aonsequene

of the nontrivial topology of the bosoni eld

ong-urationoutsidethe themonopole. The non vanishing

gradients along nonradial diretions imply an energy

densitythat fallsoslowly:

T

00

a

;i

a

;i

2

r 2

:

(This result also points out that the total Newtonian

mass ontained within r is M(r) 4G 2

0

r. If we

taketheradialextentof aGalaxyto beR

G

'15Kp

andonsider atypialgranduniedtheory with

0 '

10 16

Gev, this mass turns out to beof order 10 69

Gev,

whihistentimesthetotalmassofatypialGalaxy.)

However onsidering a gravitating magneti

monopole,thegaugeovariantderivativeof thesalar

ledvanishesoutsidethemonopole:

(D

i )

a

=

i

a

e

ab A

b

(12)

Sothereisnodeitangle.

C. CondensedMatter

Theeetivegravityariseinmanyondensed

mat-tersystem. Thetypialexamplesaretherystalswith

disloations and dislinations linear defets. However

it appears that the superuid 3

He A provides the

most adequate analogies for relativisti models of the

eetivegravity.

Thequasipartilesin 3

He Aarehiralandmassless

fermions. Under spei irumstanesthese fermions

are`relativisti'withthespetrum[16℄

E 2

(k)+g ij

(k

i eA

i )( k

j eA

j

)=0: (125)

Here ~

Aisthedynamialvetorpotentialoftheindued

eletromagnetield, ~

A=k

F ^

land ^

listheunityvetor

inthemomentspae.

Themetritensorof theeetivespaewhih

gov-ernsthemotionofthefermionsisgivenby

g ij

=

2

? Æ

ij

l i

l j

2

k l

i

l j

; g 00

=1:

Here

? and

k =v

F (

? <<

k

)are thespeed of the

light propagating transverse to ^

l and along ^

l ,

respe-tively.

Forthespei asewhere ^

l=r,^ weget

ds 2

=dt 2

dr 2

a 2

r 2

d 2

;

where a 2

= 2

k =

2

?

>1. In this asewehavea metri

spaetimeanalogoustotheG-Monewithasolidangle

exess.

VII Conluding Remarks

Inthepresentpaperwehavereviewedsomeofthemost

importantaspetsabouttheglobalmonopolespaetime

anditsonsequenesonthethelassialandquantum

movement of a harged partile. Also we have

alu-lated the vauum polarization eets due to massless

salarandfermionieldsin thismanifold,andthe

ef-fetsofthenonzerotemperatureonthesequantities.

Besides themain resultsexhibited in thispaperas

mentioned above, the formalisms developed here an

beappliedtoothersub-areasofphysissinethe

ina-tionprobleminosmologytoondensedmattersystem.

Forallthesereasonswebelievethatthephysisinthe

global monople spaetimeis veryrih and deservesto

bestudied.

Aknowledgment

My aknowledgments to all my ollaborators (see

referenes([6℄), ([7℄), ([12℄) and([13℄)) whomadethis

work possible. This work was partially supported by

CNPq.

Referenes

[1℄ T.W.B.Kibble,J.Phys.A9,1387(1976).

A.Vilenkin,Phys.Rep.121,263(1985).

[2℄ M. Bariolaand A.Vilenkin,Phys.Rev.Lett. 63,341

(1989).

[3℄ C.O. Loustoand N.Sanhez, Phys.Lett.B212, 411

(1988).

[4℄ D. Harariand C. O.Lousto, Phys. Rev.D 42, 2626

(1990).

[5℄ A. G.Smith, inProeeding ofthe Symposium onthe

Formation andEvolution ofCosmi String, ed.by G.

W.Gibbons,S.W.HawkingandT.Vashapati,

Cam-bridgeUniv.Press,Cambridgem,England,1990.

[6℄ E.R.BezerradeMelloandC.Furtado,Phys.Rev.D

56,1345(1997).

[7℄ A.A.RodriguesSobreiraandE.R.BezerradeMello,

Grav.andCosmology5,177(1999).

[8℄ W.A.Hisok,Class.QuantumGrav.7,L235(1990).

[9℄ F.D. Mazzitelli and C.O.Lousto, Phys.Rev.D 43,

468(1991).

[10℄ N. D. Birrell and P. C. W. Davies, Quantum Field

in Curved Spae (CambridgeUniversity Press,

Cam-bridge,England,1982).

[11℄ J.D. BjorkenandS.Drell, Relativisti Quantum

Me-hanis(MGraw-Hill,NewYork,1964).

[12℄ E.R.BezerradeMello,V.B.BezerraandN.R.

Khus-nutdinov,Pys.Rev.D60,063506(1999).

[13℄ F.C.CabralandE.R.BezerradeMello.Class.

Quan-tumGrav.18,1637(2001).

[14℄ M.AbramowitzandI.A.Stegum,Handbook of

Math-ematialFuntions(Dover,NewYork,1972).

[15℄ A.L.Vilenkin,Phys.Rev.Lett.72,3137 (1994).

A.D.Linde,Phys.Lett.B327,208(1994).

Referências

Documentos relacionados

Tema: Prisão Preventiva para Extradição - Panamá Julgamento: 22 de maio de 2007.. Publicação: 28 de maio

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

É um período de grandes mudanças na Ciência e tem as principais características na obra de Galileu, inspirado pelas idéias de Francis Bacon (falecido em 1626) e Descartes

Do amor,&#34; mas do amor vago de poeta, Como um beijo invizivel que fluctua.... Ella