• Nenhum resultado encontrado

Equilíbrio Químico. Capítulo 14. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

N/A
N/A
Protected

Academic year: 2021

Share "Equilíbrio Químico. Capítulo 14. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display."

Copied!
83
0
0

Texto

(1)

1

Equilíbrio Químico

Capítulo 14

(2)

2

Equilíbrio é um estado em que não há alterações observáveis​​, à medida que o tempo passa.

Equilíbrio Químico é alcançado quando:

• as velocidades da reação direta e da reação inversa são iguais

• as concentrações dos reagentes e produtos permanecem constantes Equilíbrio físico H2O (l) Equilíbrio químico N2O4 (g) H2O (g) 2NO2 (g) NO2

(3)

3 N2O4 (g) 2NO2 (g)

Começa com NO2 Começa com N2O4 Começa com NO2 & N2O4 equilibrio

(4)

4 constante

(5)

5 N2O4 (g) 2NO2 (g) = 4,63 x 10-3 K = [NO2] 2 [N2O4] aA + bB cC + dD K = [C] c[D]d

(6)

6

K >> 1 K << 1

Se desloca para a direita Favorece os produtos Se desloca para a esquerda Favorece os reagentes

Se o Equilíbrio

K = [C]

c[D]d

[A]a[B]b

aA + bB cC + dD

(7)

7

Equilíbrio homogéneo aplica-se a reações em que todas as espécies reagentes estão na mesma fase.

N2O4 (g) 2NO2 (g) Kc = [NO2] 2 [N2O4] Kp = NO2

P

2 N2O4

P

aA (g) + bB (g) cC (g) + dD (g) Kp = Kc(RT)Dn

Dn = moles de produtos gasosos – moles de reagentes gasosos = (c + d) – (a + b)

Na maioria dos casos

(8)

8

Equilíbrio Homogéneo

CH3COOH (aq) + H2O (l) CH3COO- (aq) + H3O+ (aq)

Kc

= [CH3COO -][H 3O+] [CH3COOH][H2O] [H2O] = constante Kc = [CH3COO -][H 3O+] [CH3COOH] = Kc

[H2O]

Prática geral não incluir unidades para a constante de equilíbrio.

(9)

Example

9

14.1

Escreva as expressões para Kc, e KP se aplicável, para as seguintes reações reversíveis em equilíbrio:

(a) HF(aq) + H2O(l) H3O+(aq) + F-(aq) (b) 2NO(g) + O2(g) 2NO2(g)

(c) CH3COOH(aq) + C2H5OH(aq) CH3COOC2H5(aq) + H2O(l)

(10)

Example

10

14.1

Estratégia

Tenha em mente os seguintes factos: (1) a expressão KP aplica-se apenas às reações de gases e (2) a concentração de solvente (geralmente água) não aparece na expressão da constante de equilíbrio.

(11)

Example

11

Solução

(a) Porque não existem gases presentes, KP não se aplica e só temos Kc.

HF é um ácido fraco, deste modo a quantidade de água consumida nas ionizações do ácido é insignificante em comparação com a quantidade total de água presente como solvente. Assim, podemos reescrever a constante de equilíbrio como:

14.1

+ -' 3 c 2 [H O ][F ] = [HF][H O] K K + -3 c [H O ][F ] = [HF]

(12)

Example

12

(b)

(c) A constante de equilíbrio é dada por:

Porque a água produzida na reação é insignificante em comparação com a água do solvente, a concentração de água não é alterada. Assim, podemos escrever a nova constante de equilíbrio como:

14.1

P K K P P 2 NO c p 2 NO O [NO ] = = [NO] [O ] 2 2 2 2 2 2 ' c

K

' 3 2 5 2 c 3 2 5

[CH COOC H ][H O]

=

[CH COOH][C H OH]

K

K

c 3 2 5 3 2 5

[CH COOC H ]

=

[CH COOH][C H OH]

(13)

Example

13

14.2

O seguinte processo de equilíbrio foi estudado a 230°C: 2NO(g) + O2(g) 2NO2(g)

Numa experiência, as concentrações em equilíbrio das espécies participantes na reação, foram [NO] = 0,0542 M, [O2] = 0,127 M e [NO2] = 15,5 M. Calcular a constante de equilíbrio (Kc) da reação a esta temperatura.

(14)

Example

14

Estratégia As concentrações dadas são as concentrações de

equilíbrio. Elas têm unidades de mol/L, para que possamos calcular a constante de equilíbrio (Kc), usando a lei de ação das massas [Equação (14.2)].

Solução A constante de equilíbrio é dada por:

Substituindo as concentrações, descobrimos que:

14.2

2 2 c 2 2

[NO ]

=

[NO] [O ]

K

2 c 2

(15.5)

=

=

(0.0542) (0.127)

5

6.44 × 10

K

(15)

Example

15

14.2

Verificação

Note-se que Kc é dada sem unidades. Além disso, o valor elevado de Kc é consistente com a concentração elevada de produto de reação (NO2) em relação às concentrações dos reagentes (NO e O2).

(16)

Example

16

14.3

A constante de equilíbrio KP para a decomposição do pentacloreto de fósforo em tricloreto de fósforo e cloro molecular

PCl5(g) PCl3(g) + Cl2(g)

é de 1,05 a 250 °C. Se as pressões parciais de PCl5 e PCl3 no equilíbrio são 0,875 atm e 0,463 atm, respectivamente, qual é a pressão parcial de Cl2 no equilíbrio, a 250 °C?

(17)

Example

17

14.3

Estratégia

As concentrações dos gases reagentes são dadas em atm, de modo que podemos expressar a constante de equilíbrio em KP. A partir do valor conhecido para KP e das pressões de equilíbrio de PCl3 e de PCl5, podemos obter PCl

(18)

Example

18

14.3

Solução

Em primeiro lugar, escrevemos KP em função das pressões parciais de espécies envolvidas na reação

Conhecendo as pressões, escrevemos: 3 2 5 PCl Cl p PCl

=

P

P

K

P

2 2 Cl Cl

(0.463)(

)

1.05 =

(0.875)

(1.05)(0.875)

=

=

(0.463)

1.98 atm

P

P

ou

(19)

Example

19

14.3

Verificação Repare que PCl 2 se encontra em atm.

(20)

Example

20

14.4

O metanol (CH3OH) é fabricado industrialmente pela reação: CO(g) + 2H2(g) CH3OH(g)

A constante de equilíbrio (Kc) para a reação é 10,5 a 220 °C. Qual é o valor de KP a esta temperatura?

(21)

Example

21

14.4

Estratégia

A relação entre Kc e KP é dada pela Equação (14.5). Qual é a variação no número de moles dos gases dos reagentes para o produto de reação? Lembre-se que

Δn = moles dos produtos gasosos - moles dos reagentes gasosos

(22)

Example

22

14.4

Solução A relação entre Kc e KP é KP = Kc(0,0821T )Δn Atendendo a que T = 273 + 220 = 493 K e Δn = 1 - 3 = -2, temos: KP = (10,5) (0,0821 x 493)-2 = 6,41 x 10-3

(23)

Example

23

14.4

Verificação

Repare que tanto KP, como Kc, são tratados como quantidades adimensionais. Este exemplo mostra que podemos obter valores muito diferentes para a constante de equilíbrio da mesma reação, dependendo das unidades em que se expressam as concentrações em moles por litro, ou atmosferas.

(24)

24

Equilíbrio heterogéneo aplica-se a reações nas quais os

reagentes e produtos estão em fases diferentes. CaCO3 (s) CaO (s) + CO2 (g)

[CaCO3] = constante [CaO] = constante

Kc = [CO2] = Kp = PCO 2

A concentração de sólidos e líquidos puros não estão incluídos na expressão para a constante de equilíbrio.

[CaO][CO2] [CaCO3] Kc

= [CaCO3] [CaO] Kc

x

(25)

25 PCO

2 = Kp

CaCO3 (s) CaO (s) + CO2 (g)

PCO

(26)

Example

26

14.5

Escreva a expressão da constante de equilíbrio Kc, e KP se for possível, para cada um dos seguintes sistemas heterogéneos: (a) (NH4)2Se(s) 2NH3(g) + H2Se(g)

(b) AgCl(s) Ag+(aq) + Cl-(aq) (c) P4(s) + 6Cl2(g) 4PCl3(l)

(27)

Example

27

14.5

Solução

(a) Como (NH4)2Se é um sólido, a constante de quilibrio Kc é dada por:

Kc = [NH3]2[H2Se]

Como alternativa, podemos exprimir a constante de equilibrio KP em função das pressões parciais de NH3 e H2Se:

Estratégia Omitimos quaisquer sólidos ou líquidos puros na expressão da constante de equilíbrio, porque as suas atividades são a unitárias.

K

P

P

3 2

2

(28)

Example

28

14.5

(b) Neste caso, o AgCl é um sólido e por isso a constante de equilíbrio é dada por:

Kc = [Ag+][Cl-]

Como não há gases presentes, não existe expressão KP. (c) Verificamos que P4 é um sólido e PCl3 é um líquido, por isso

omitem-se da expressão da constante de equilíbrio. Portanto, Kc é dado por:

K

c 6

2

1

=

(29)

Example

29

14.5

Como alternativa, podemos exprimir a constante de equilíbrio em função da pressão de Cl2:

K

P

p Cl

1

=

2 6

(30)

Example

30

14.6

Considere o seguinte equilíbrio heterogéneo:

CaCO3(s) CaO(s) + CO2(g)

A 800°C, a pressão do CO2 é 0,236 atm. Calcule (a) KP e (b) Kc para a reação a esta temperatura.

(31)

Example

31

Estratégia

Lembre-se que os sólidos puros não aparecem na expressão da constante de equilíbrio. A relação entre KP e Kc é dada pela Equação (14.5).

Solução

(a) Usando a Equação (14.8) escrevemos: KP = PCO

2= 0,236

(32)

Example

32

14.6

(b) Da Equação (14.5), sabemos que: KP = Kc(0,0821T)Δn

Neste caso, T = 800 + 273 = 1073 K e Δn = 1, por isso substituimos estes valores na equação e obtemos:

0,236 = Kc(0,0821 x 1073) Kc = 2,68 x 10-3

(33)

33 A + B C + D C + D E + F A + B E + F Kc

= [C][D] [A][B] Kc

′ ′

= [E][F] [C][D] [E][F] [A][B] Kc = Kc

Kc′′ Kc Kc = Kc

x Kc

′′

Se uma reação pode ser expressa como a soma de duas ou mais reações, a constante de equilíbrio da reação global é dada pelo produto das constantes de equilíbrio das reações individuais.

(34)

34 N2O4 (g) 2NO2 (g) = 4,63 x 10-3 K = [NO2] 2 [N2O4] 2NO2 (g) N2O4 (g) K = [N2O4] [NO2]2

= 1 K = 216

Quando a equação da reação reversível é escrita no sentido oposto, a constante de equilíbrio é o inverso da constante de equilíbrio inicial.

(35)

Example

35

A reação para a produção de amoníaco pode ser escrita numa de várias maneiras:

(a) N2(g) + 3H2(g) 2NH3(g) (b) N2(g) + H2(g) NH3(g) (c) N2(g) + H2(g) NH3(g)

Escreva a expressão da constante de equilíbrio para cada uma das formulações. (Exprima as concentrações das espécies intervenientes em mol/L.)

(d) Como se relacionam as constantes de equilíbrio umas com as outras?

14.7

1 2 3 2 1 3 2 3

(36)

Example

36

14.7

Estratégia

São dadas três equações diferentes para o mesmo sistema reaccional. Recordar que a expressão da constante de equilíbrio depende de como a equação é acertada, isto é, dos coeficientes estequiométricas utilizados na equação.

(37)

Example

37 Solução (a) (b) (c)

14.7

2 3 2 2

[NH ]

=

[N ][H ]

3 a

K

3 2 2

[NH ]

=

[N ] [H ]

1 3 2 2 b

K

3 2 2

[NH ]

=

[N ] [H ]

2 3 1 3 c

K

(38)

Example

38

14.7

=

=

or

2 3 3 2 3 2 a b a c b

c b

c

K

K

K

K

K

K

K

K

(d)

(39)

39

Regras para Escrever as

Expressões da Constante de Equilíbrio

1. Na fase condensada, as concentrações das espécies reagentes são expressas em M. Na fase gasosa, as concentrações podem ser expressas em M ou em atm.

2. As concentrações de sólidos puros, líquidos puros e solventes não aparecem nas expressões da constante de equilíbrio.

3. A constante de equilíbrio (Kc ou KP) é uma quantidade

adimensional.

4. Ao atribuirmos um valor à constante de equilíbrio, devemos especificar a equação química acertada e a temperatura.

5. Se uma reação pode ser expressa como a soma de duas ou mais reações, a constante de equilíbrio da reação global é dada pelo produto das constantes de equilíbrio das reações individuais.

(40)

40

Cinética Química e Equilíbrio Químico

A + 2B AB2 kf kr velocidadef = kf [A][B]2 velocidader = kr [AB2] Equilíbrio velocidadef = velocidader kf [A][B]2 = k r [AB2] kf kr [AB2] [A][B]2 = Kc =

(41)

41 O quociente de reação (Qc) é calculado substituindo as concentrações iniciais dos reagentes e produtos na expressão da constante de equilíbrio (Kc).

SE

Qc < Kc O sistema evolui da esquerda para a direita até atingir o equilíbrio

Qc = Kc O sistema está em equilíbrio

(42)

Example

42

14.8

No início de uma reação, há 0,249 moles de N2, 3,21 x 10-2 moles H2 e 6,42 x 10-4 moles NH3 num vaso reaccional de 3,50 L a 375°C. Se a constante de equilíbrio (Kc) da reação:

N2(g) + 3H2(g) 2NH3(g)

é 1,2 a esta temperatura, diga se o sistema está em equilíbrio. Caso não esteja, preveja em que sentido irá evoluir a reação.

(43)

Example

43

14.8

Estratégia

São-nos dados os valores iniciais dos gases (em moles) num recipiente de capacidade conhecida (em litros), por isso podemos calcular as suas concentrações molares e, seguidamente, o quociente de reação (Qc). Como é que uma comparação de Qc com Kc nos permite determinar se o sistema está ou não em equilíbrio e em que sentido vai a reação prosseguir para atingir o equilíbrio?

(44)

Example

44

14.8

Solução

As concentrações iniciais das espécies presentes na reação são

2 o 2 o 3 o 0.249 mol [N ] = = 0.0711 3.50 L 3.21 10 mol [H ] = = 9.17 10 3.50 L 6.42 10 mol [NH ] = = 1.83 10 3.50 L        M M M 2 3 4 4

(45)

Example

45

14.8

Em seguida escrevemos

Como Qc é menor do que Kc (1,2), o sistema não está em equilíbrio. O resultado será um aumento na concentração de NH3 e uma diminuição nas concentrações de N2 e H2. Isto é, a reação vai evoluir da esquerda para a direita, até se atingir o equilíbrio. -4 2 3 -3 3 2 2 [NH ] (1.83 × 10 ) = = 0.611 [N ] [H ] (0.0711)(9.17 × 10 ) o c o oQ 2 3

(46)

46

Cálculo das Concentrações de Equilíbrio

1. Exprimir as concentrações de todas as espécies no equilíbrio em função das concentrações iniciais e de uma única incógnita x, que representa a variação da concentração.

2. Escrever a expressão da constante de equilíbrio em função das concentrações no equilíbrio. Conhecendo o valor da constante de equilíbrio, resolver em ordem a x. 3. Depois de resolver em ordem a x, calcular as

(47)

Example

47

14.9

Introduziu-se num recipiente de aço inox, com a capacidade de 1,00 L, uma mistura de 0,500 mol H2 e 0,500 mol I2 a 430°C. A constante de equilíbrio Kc da reação H2(g) + I2(g) 2HI(g) é 54,3 a esta temperatura. Calcule as concentrações de H2, I2, e HI no equilíbrio.

(48)

Example

48

14.9

Estratégia

São-nos dados os valores iniciais dos gases (em moles) num recipiente de capacidade conhecida (em litros), por isso podemos calcular as suas concentrações molares. Inicialmente como não HI estava presente, o sistema não poderia estar em equilíbrio. Portanto, algum H2 reagiria com a mesma quantidade de I2 (porquê?) para formar HI até estabelecer o equilíbrio.

(49)

Example

49

14.9

Passo 1: A estequiometria da reação, 1 mol H2 reage com 1 mol I2 para dar 2 mol HI. Seja x a quantidade de que de que diminui a concentração (mol/L) de H2 e de I2 no equilíbrio. Então a concentração de HI no equilíbrio deve ser 2x. Resumindo as variações nas concentrações: H2 + I2 2HI Initial (M): 0,500 0,500 0,000 Change (M): - x - x + 2x Equilibrium (M): (0,500 - x) (0,500 - x) 2x

Solução Seguimos o procedimento anterior para calcular a

(50)

Example

50

14.9

Passo 2: A constante de equilíbrio é dada por:

Substituindo, obtemos:

Determinando a raiz quadrada de ambos os membros da equação, obtemos: 2 2 2 [HI] = [H ][I ] c K 2 (2 ) 54.3 = (0.500 - )(0.500 - ) x x x 2 7.37 = 0.500 - = 0.393 x x x M

(51)

Example

51

14.9

Passo 3: No equilíbrio, as concentrações são:

[H2] = (0,500 – 0,393) M = 0,107 M [I2] = (0,500 – 0,393) M = 0,107 M

[HI] = 2 x 0,393 M = 0,786 M

Verificação Pode confirmar as suas respostas cálculando

Kc utilizando as concentrações no equilíbrio. Lembre-se que Kc é uma constante para uma reação em particular a uma dada temperatura.

(52)

Example

52

Para a mesma reação e à mesma temperatura, como no Exemplo 14.9, H2(g) + I2(g) 2HI(g), suponhamos que as concentrações iniciais de H2, I2 e HI são 0,00623 M, 0,00414 M e 0,0224 M, respectivamente. Calcule as concentrações dessas espécies em equilíbrio.

(53)

Example

53

14.10

Estratégia

A partir das concentrações iniciais, podemos calcular o quociente de reação (Qc) para ver se o sistema está ou não em equilíbrio, e em que sentido a reação irá avançar para alcançar o equilíbrio. Uma comparação da Qc com Kc permite-nos também determinar se haverá um decréscimo em H2 e I2 ou Hl à medida que o equilíbrio é estabelecido.

(54)

Example

54

Solução

Primeiro, calcula-se Qc como se segue:

Dado que Qc (19,5) é menor do que Kc (54,3), conclui-se que a reação prosseguirá da esquerda para a direita, até que o equilíbrio seja atingido (ver Figura 14.4), isto é, haverá uma diminuição de H2 e I2 e um acréscimo na de HI.

14.10

2 2 2 [HI] (0.0224) = = = 19.5 [H ] [I ] (0.00623)(0.00414) c Q 2 0 0 0

(55)

Example

55

14.10

Passo 1: Consideremos x e o decréscimo nas concentrações (mol/L) de H2 e I2 no equilíbrio. Com base na estequiometria da reação é fácil ver que o aumento da concentração de HI deve ser 2x. Em seguida escrevemos:

H2 + I2 2HI

Inicial (M): 0,00623 0,00414 0,0224

Variação (M): - x

- x

+ 2x

(56)

Example

56

14.10

Passo 2: A constante de equilíbrio é:

Não é possível resolver esta equação pelo método expedito da raiz quadrada, pois as concentrações iniciais de [H2] e [I2] são diferentes. Em vez disso, aplicamos a propriedade distributiva:

54,3(2,58 x 10-5 – 0,0104x + x2) = 5,02 x 10-4 + 0,0896x + 4x2 Substituindo, obtemos: 2 2 2 [HI] = [H ][I ] c K 2 (0.0224 + 2 ) 54.3 = (0.00623 - )(0.00414 - ) x x x

(57)

Example

57

Agrupando os termos, obtém-se:

50,3x2 – 0,654x + 8,98 x 10-4 = 0

Esta é uma equação quadrática da forma ax2 + bx + c = 0. A solução para uma equação quadrática (ver Apêndice 4) é:

Neste caso temos a = 50,3, b = -0,654 e c = 8,98 x 10-4, pelo que:

14.10

2 - ± - 4 = 2 b b ac x a 2 -4 0.654 ± (-0.654) - 4(50.3)(8.98 × 10 ) = 2 × 50.3 = 0.0114 or = 0.00156 x x M x M

(58)

Example

58

14.10

A primeira solução é fisicamente impossível, porque as quantidades de H2 e I2 que teriam reagido seriam maiores do que as presentes inicialmente. A segunda solução dá a resposta correta. Repare que na resolução de equações quadráticas deste tipo, há uma resposta que é sempre fisicamente impossível, por isso a escolha do valor a usar para x é fácil.

Passo 3: As concentrações no equilíbrio, são:

[H2] = (0,00623 – 0,00156) M = 0,00467 M [I2] = (0,00414 – 0,00156) M = 0,00258 M [HI] = (0,0224 + 2 x 0,00156) M = 0,0255 M

(59)

Example

59

Verificação

Pode verificar as respostas por meio do cálculo de Kc utilizando as concentrações de equilíbrio. Lembre-se que Kc é uma constante para uma reação em particular a uma dada temperatura.

(60)

60

Se uma perturbação externa é aplicada a um sistema em equilíbrio, o sistema ajusta-se, de tal forma que a ação dessa perturbação é parcialmente compensada para o sistema atingir uma nova posição de equilíbrio.

O Princípio de Châtelier

N2 (g) + 3H2 (g) 2NH3 (g) adição NH3 O equilíbrio desloca-se para a esquerda para compensar a variação

• Variações na Concentração

(61)

61

• Variação Contínua na Concentração

Variação

Deslocamento do Equilíbrio para

Aumento da concentração de produto(s) esquerda Diminui a concentração de produto(s) direita Diminui a concentração de reagente(s)

Aumento da concentração de reagente(s) direita esquerda aA + bB cC + dD Adição Adição Remoção Remoção

O Princípio de Châtelier

(62)

Example

62

14.11

A 720°C, a constante de equilibrio Kc para a reação N2(g) + 3H2(g) 2NH3(g)

é 2,37 x 10-3. Numa da experiência, as concentrações de equilibrio são [N2] = 0,683 M, [H2] = 8,80 M e [NH3] = 1,05 M. Suponha que se adiciona um pouco de NH3 à mistura de modo a aumentar a sua concentração para 3,65 M. (a) Use o princípio de Le Châtelier para prever em que sentido ocorre a reação até que se atinja um novo equilibrio. (b) Confirme a sua previsão calculando o quociente reacional Qc e comparando o seu valor com o de Kc.

(63)

Example

63

Estratégia

(a) Qual é a perturbação aplicada ao sistema? Como se ajusta o sistema para compensar a perturbação?

(b) No instante em que se adiciona um pouco de NH3, o sistema deixa de estar no equilíbrio. Como se calcula Qc para a reação neste instante? Diga como a comparação de Qc com Kc, nos indica qual o sentido da reação até atingir o equilíbrio.

(64)

Example

64

14.11

Solução

(a) A perturbação aplicada ao sistema é a adição de NH3. Para compensar esta perturbação, algum do NH3 reage para produzir N2 e H2 até que um novo equilíbrio seja estabelecido. Por conseguinte, a reação desloca-se da direita para a esquerda, isto é,

(65)

Example

65

14.11

(b) No instante em que se adiciona algum NH3, o sistema deixa de estar em condições de equilíbrio. O quociente de reaccional é determinado por:

Uma vez que este valor é maior do que 2,37 x 10-3, a reação ocorrerá no sentido da direita para a esquerda até Qc igualar Kc. 2 3 0 3 2 0 2 0 2 3 [NH ] = [N ] [H ] (3.65) (0.683)(8.80) = 2.86 10 c    Q 2

(66)

Example

66

14.11

A Figura 14.8 mostra, de uma forma qualitativa a variação nas concentrações das espécies reagentes.

(67)

67

• Variações no Volume e Pressão

A (g) + B (g) C (g)

Variação

Aumento de pressão Lado com o menor número moles de gás

Diminuição de pressão Lado com o maior número moles de gás

Diminuição de volume

Aumento de volume Lado com o maior número moles de gás

Lado com o menor número moles de gás

O Princípio de Châtelier

(68)

Example

68

14.12

Considere os seguintes sistemas em equilíbrio: (a) 2PbS(s) + 3O2(g) 2PbO(s) + 2SO2(g) (b) PCl5(g) PCl3(g) + Cl2(g)

(c) H2(g) + CO2(g) H2O(g) + CO(g)

Preveja o sentido da reação global, em cada um dos casos, como consequência de um aumento da pressão (diminuição do volume) no sistema, a temperatura constante.

(69)

Example

69

Estratégia

Uma variação na pressão pode afetar o volume de um gás, mas não o de um sólido porque os sólidos (e os líquidos) são muito menos compressíveis. A perturbação aplicada é o aumento da pressão. De acordo com o princípio de Le Châtelier, o sistema ajustar-se-á de modo a compensar essa perturbação. Ou seja, o sistema ajustar-se-á para diminuir a pressão. Isto pode conseguir-se por deslocamento do equilíbrio para o lado da equação onde existem poucas moles de gás. Recordar de que a pressão é diretamente proporcional às moles de gás: PV = nRT

então P n.

14.12

(70)

Example

70

Solução

(a) Considere apenas as moléculas no estado gasoso. Na equação acertada, existem 3 moles de reagentes gasosos e 2 moles de produtos gasosos. Portanto, a reação global deslocar-se-á no sentido dos produtos (para a direita) quando a pressão for aumentada.

(b) O número de moles de produtos é 2, e o de reagentes é 1, portanto a reação global irá se deslocar para a esquerda, no sentido da formação dos reagentes.

(c) O número de moles de produtos é igual ao número de moles de reagentes, por isso uma variação de pressão não tem efeito sobre o equilíbrio.

(71)

Example

71

14.12

Verificação

A previsão, em cada um dos casos, está de acordo com o princípio de Le Châtelier.

(72)

72

• Variações na Temperatura

Variação Rx Exotérmica

Aumenta a temperatura K decresce

Diminui a temperatura K aumenta

Rx Endotérmica K aumenta K decresce frio quente N2O4 (g) 2NO2 (g)

O Princípio de Châtelier

(73)

73

O catalisador baixa Ea em ambos os sentidos das reações. O catalisador não altera a constante de equilíbrio, nem a posição de equilíbrio de um sistema em equilíbrio.

• Adição de Catalisador

• não altera K

• não desvia a posição de equilíbrio do sistema

• o sistema atinge o equilíbrio mais rapidamente

(74)

74

Variação Desvio Equilíbrio Constante de Equilíbrio Variação da

Concentração sim não

Pressão sim* não

Volume sim* não

Temperatura sim sim

Catalisador não não

* Dependente do número de moles relativas de reagentes e produtos gasosos

(75)

Example

75

Considere o seguinte processo de equilíbrio entre o tetrafluoreto dinitrogénio (N2F4) e o difluoreto de nitrogénio (NF2):

N2F4(g) 2NF2(g) ΔH° = 38,5 kJ/mol Preveja as alterações no equilibrio

(a) se mistura reaccional for aquecida a volume constante; (b) Se algum gás N2F4 for removido da mistura reaccional

temperatura e volume constantes;

(c) Se a pressão da mistura reaccional diminuir, temperatura constante; e

(d) um catalisador for adicionado à mistura reaccional.

(76)

Example

76

14.13

Estratégia

(a) O que indica o sinal de ΔH° sobre a variação de entalpia (endotérmic ou exotérmica) para a reação direta?

(b) A remoção de parte de N2F4 aumentaria ou diminuiria o valor de Qc da reação?

(c) Como varia o volume do sistema ao diminuir a pressão?

(d) Qual é a função de um catalisador? Como é que este afeta um sistema reaccional que não se encontre em equilíbrio? E em equilíbrio?

(77)

Example

77

14.13

Solução

(a) A perturbação aplicada ao sistema é a energia térmica adicionada. Repare que a reação N2F4 → 2NF2 é um processo endotérmico (ΔH° > 0), que absorve calor da vizinhança. Consequentemente, podemos pensar no calor como um reagente

calor + N2F4(g) 2NF2(g)

O sistema irá ajustar-se para remover parte da energia térmica adicionada através da reação de decomposição (da esquerda para a direita).

(78)

Example

78

14.13

A constante de equilibrio

irá, consequentemente, crescer com o aumento da temperatura porque a concentração de NF2 aumentou e a de N2F4 decresceu. Relembrar que a constante de equilíbrio é uma constante apenas para uma temperatura determinada. Se a temperatura for mudada, então a constante de equilíbrio mudará também.

2 2 2

[NF ]

=

[N F ]

c

K

4

(b) Neste caso, a perturbação é a remoção do gás N2F4. O sistema ajustar-se-á de modo a repor parte do N2F4 removido. Consequentemente, no sistema, a reação favorável será da direita para a esquerda até que o equilíbrio seja restabelecido. Como resultado, algum NF2 por combinação formará N2F4.

(79)

Example

79

14.13

Comentário

Neste caso a constante de equilíbrio permanece inalterada porque a temperatura é mantida constante. Pode parecer que Kc deveria mudar porque NF2 por combinação produz N2F4. Recorde-se, no entanto, de que parte de N2F4 foi inicialmente removida. O sistema ajusta-se apenas para repor algum do N2F4 que foi removido, pelo que, a quantidade global de N2F4 diminuiu. Na verdade, ao mesmo tempo que o equilíbrio é restabelecido, as quantidades de NF2 e N2F4 diminuem. Observando a expressão da constante de equilíbrio, vemos que dividindo um numerador menor por um denominador menor dá o mesmo valor de Kc.

(80)

Example

80

(c) A perturbação aplicada é a diminuição da pressão (que é acompanhada pelo aumento do volume do gás). O sistema irá ajustar-se de modo a fazer desaparecer a perturbação, aumentando a pressão. Recorde-se que a pressão é diretamente proporcional ao número de moles do gás. Na equação acertada vemos que a formação de NF2 a partir de N2F4 irá aumentar o número total de moles de gases e, portanto, da pressão. Consequentemente, o sistema vai mudar a reação da esquerda para a direita, para restabelecer o equilíbrio. A constante de equilíbrio permanecerá inalterada porque a temperatura é mantida constante.

(81)

Example

81

14.13

(d) A função de um catalisador é o de aumentar a velocidade da reação. Se um catalisador é adicionado a um sistema reaccional não no estado de equilíbrio, o sistema atingirá o equilíbrio mais rapidamente do que se não tiver sido sujeito a esta perturbação. Se um sistema já está em equilíbrio, tal como neste caso, a adição de um catalisador não afeta nem as concentrações de NF2 e N2F4 ou a constante de equilíbrio.

(82)

82 Química em Ação

A Vida a Altitudes Elevadas e a Produção de Hemoglobina

Kc = [HbO2] [Hb][O2]

(83)

83

Química em Ação: O Processo Haber

Referências

Documentos relacionados

K c = constante de equilíbrio em função da concentração dos participantes em mol/L. IV – Em um equilíbrio gasoso, se o número de moléculas dos reagentes for igual ao número

O desenvolvimento das interações entre os próprios alunos e entre estes e as professoras, juntamente com o reconhecimento da singularidade dos conhecimentos

No dimensionamento das armaduras longitudinais, foi necessário 30% a mais de área de aço de reforço, quando somadas os valores de área para armadura positiva e negativa..

Entre o roseiral e o parque, num lugar sombrio, solitário e verde, havia um pequeno jardim rodeado de árvores altíssimas que o cobriam com os seus ramos.. No

A Sementinha dormia muito descansada com as suas filhas. Ela aguardava a sua longa viagem pelo mundo. No entanto, sempre vivera junto ao pomar do António Seareiro e até

Os caçadores tinham estendido uma grossa corda ligada a uma rede, no caminho por onde o leão costumava passar, de maneira que, quando o leão tropeçou na corda, a rede caiu-- lhe em

Combinaram encontrar-se às 21h

Quero ir com o avô Markus buscar a Boneca-Mais-Linda-do-Mundo, quero andar de trenó, comer maçãs assadas e pão escuro com geleia (17) de framboesa (18).... – Porque é tão