• Nenhum resultado encontrado

Rio Grande do Sul state Santa Catarina state Atlantic Ocean Guarapuava Cantagalo Paraná state

N/A
N/A
Protected

Academic year: 2019

Share "Rio Grande do Sul state Santa Catarina state Atlantic Ocean Guarapuava Cantagalo Paraná state"

Copied!
6
0
0

Texto

(1)

ww w . r b e n t o m o l o g i a . c o m

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

Biology,

Ecology

and

Diversity

Constant

fluctuating

asymmetry

but

not

directional

asymmetry

along

the

geographic

distribution

of

Drosophila

antonietae

(Diptera,

Drosophilidae)

Marcelo

Costa

a,∗

,

Rogério

P.

Mateus

a

,

Mauricio

O.

Moura

b aDepartamentodeCiênciasBiológicas,UniversidadeEstadualdoCentroOeste,Guarapuava,PR,Brazil bDepartamentodeZoologia,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27February2015 Accepted9September2015 Availableonline9October2015 AssociateEditor:MárcioR.Pie

Keywords:

Developmentalinstability GeneralizedProcrustesAnalysis Geographicalvariation Geometricmorphometrics Shape

a

b

s

t

r

a

c

t

Thepopulationdynamicsofaspeciestendstochangefromthecoretotheperipheryofitsdistribution. Therefore,onecouldexpectperipheralpopulationstobesubjecttoahigherlevelofstressthanmore centralpopulations(thecenter–peripheryhypothesis)andconsequentlyshouldpresentahigherlevelof fluctuatingasymmetry.Totestthesepredictionswestudyasymmetryinwingshapeoffivepopulationsof Drosophilaantonietaecollectedthroughoutthedistributionofthespeciesusingfluctuatingasymmetryas aproxyfordevelopmentalinstability.Morespecifically,weaddressedthefollowingquestions:(1)what typesofasymmetryoccurinpopulationsofD.antonietae?(2)Doestheleveloffluctuatingasymmetry varyamongpopulations?(3)Doesperipheralpopulationshaveahigherfluctuatingasymmetrylevelthan centralpopulations?Weused12anatomicallandmarkstoquantifypatternsofasymmetryinwingshape infivepopulationsofD.antonietaewithintheframeworkofgeometricmorphometrics.Netasymmetry –acompositemeasureofdirectionalasymmetry+fluctuatingasymmetry–variedsignificantlyamong populations.However,oncenetasymmetryofeachpopulationisdecomposedintodirectionalasymmetry andfluctuatingasymmetry,mostofthevariationinasymmetrywasexplainedbydirectionalasymmetry alone,suggestingthatpopulationsofD.antonietaehavethesamemagnitudeoffluctuatingasymmetry throughoutthegeographicaldistributionofthespecies.Wehypothesizethatlarvaldevelopmentin rottingcladodesmightplayanimportantroleinexplainingourresults.Inaddition,ourstudyunderscores theimportanceofunderstandingtheinterplaybetweenthebiologyofaspeciesanditsgeographical patternsofasymmetry.

©2015SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Anyspeciesisfacedwithavarietyofclimatesandenvironments throughoutitsgeographicaldistribution,resultingindifferent lev-elsofstressandselectivepressures(Brownetal.,1996;Bridleand Vines,2007).Thesefactorscanaffectgeneticandphenotypictraits, thusgeneratingclinesordiscontinuitiesthroughoutthe distribu-tion(HoffmannandShirriffs,2002).

Modelsof morphologicaldevelopmenthave emphasizedthe interactionofavarietyofcomponentsinanorganismto gener-ateafunctionalstructureunderasetofconditions(Klingenberg et al., 1998). However, stressing factors such as variation in nutrition,temperature,populationdensity,pollutants,andhabitat

∗ Correspondingauthor.

E-mail:marcelokosta@yahoo.com.br(M.Costa).

fragmentationcanleadtodevelopmentalinstability(DI)(Moller andSwaddle,1997;Lensetal.,1999;Hoskenetal.,2000).Giventhat suchperturbationswillbevisibleatthelevelofthephenotype,the presenceofphenotypicchangescanindicatetheextenttowhich anorganismis respondingtoitsstressors(Hoskenetal.,2000). In this context, thepattern of symmetry of bilateralstructures hasbeenwidelyusedasamarkerfordevelopmentalinstability (MollerandSwaddle,1997).Giventhatbothsidesofanorganism areunderthecontrolofthesamegeneticpathwaysduring develop-ment,onemightexpectthatanydeviationfromsymmetrymightbe theproductoflocaldisturbancesthatwouldbreakdevelopmental homeostasis(Hoskenetal.,2000;Breukeretal.,2006).

The asymmetrycan bedescribed bythe frequency distribu-tionofthedifferencebetweentheleftandtherightsidesofthe individualsofapopulation(PalmerandStrobeck,1986).In gen-eral,therearethreemaintypesofbilateralasymmetry:fluctuating asymmetry (FA), directional asymmetry (DA) and antisymme-try(AS)(PalmerandStrobeck,1986,1992,2003;Palmer,1994).

http://dx.doi.org/10.1016/j.rbe.2015.09.004

(2)

FAis a modelof variation in which deviations fromsymmetry are distributed close to a mean of zero, and are random and non-directional.Alternatively,deviationscanbedistributed pref-erentiallyinonedirection,thusgeneratingDA,inwhichthereisa tendencyfortheexcessivedevelopmentofonespecificsidein rela-tiontotheother,leadingtoadistributionwiththeaveragedeviates beingsignificantlydifferentfromzero(Palmer,1994).Finally,ASis foundwheneveronesideisusuallygreaterthantheother,yetthe positionofthelargersidevariesrandomlyinapopulation,leading toabimodaldistributionofthedifferencesbetweentheleftand rightsidesofthebody(PalmerandStrobeck,1992;Palmer,1994). Ofallthreetypesofasymmetry,FAhasbeenconsideredasa measureofDI,giventhatitreflectstheinabilityofanorganism tocopewithstressingfactorsandtheresultingperturbations dur-ingdevelopment(Palmer,1994;KlingenbergandMcIntyre,1998). ContrarytoFA, othertypesofasymmetryarecausedinpartby eithergeneticorenvironmentalfactorsandarethereforeharderto associatewithDI,nortobeusedasaproxytomeasureit(Palmer andStrobeck,2003).However,thethreetypesofasymmetryare related,withacontinuumbetweenthem(Grahametal.,1998;Kark, 2001).Therefore,thetransitionfromFAtoDAorAScanindicate severeinstabilityduringdevelopment(Grahametal.,1998),yet theserelationshipshavenotbeenfullyunderstood.Althoughthe relationshipbetweenFAandthemechanismscausingstressisalso unclear,withsometestsprovidingconflictingresults(Hoffmann etal.,2005;VangestelandLens,2011),theFAhasbeenconsidered agoodindicatorofDIandthus,actasabiomarkerto environmen-talstress(Beasleyetal.,2013;Lazi ´cetal.,2013;Lezcanoetal., 2015).

Thepopulationdynamicsofaspeciestendstochangefromthe coretotheperipheryofitsdistribution(Brownetal.,1996;Lens

etal.,1999).Therefore,onecouldexpectperipheralpopulations tobesubjecttoahigherlevelofstressthanmorecentral popula-tions(thecenter–peripheryhypothesis)andconsequentlyshould presentahigherlevelofFA(Kark,2001).Onespatialpatternof asymmetrywasdetectedinthepartridgeAlectorischukar(Gray, 1830),whichshowedanincreaseintheproportionofasymmetric individualsinperipheralpopulations,aswellashigherlevelsofDA andAS(Kark,2001).However,inthesamegeographical region, twospecies ofEuchloebutterfliesdidnot differwithrespectto thelevelofasymmetrybetweenpopulationsinthecenterandthe peripheryoftheirranges(Karketal.,2004), suggestingthatthe responseofasymmetryinrelationtogeographicalvariationcould varydependingonthestudiedorganismanditshabitat.

Thereisstrongevidencesupportinglatitudinalvariationin sev-eralmorphological traitsin Drosophila,including bodysize and wingsizeandshape(HoffmannandShirriffs,2002;Griffithsetal., 2005). However, most of these studies have been carried out usingcosmopolitanspecies,whereaslittleisknownaboutspecies withrangesrestrictedtospecifictypesofhabitat(Griffithsetal., 2005).Oneparticularlymodelsysteminthisrespectisthe cacto-phylicspeciesDrosophilaantonietaeTidon-SklorzandSene,2001.

D.antonietaeisendemictoSouthAmericafoundfromSouthand Southeast Brazil tothe eastern edge of theArgentinean Chaco (ManfrinandSene,2006).Itsdistributionisassociatedwith frag-ments of xerophytic vegetation that include the cactus Cereus hildmannianusK.Schum(MateusandSene,2003;ManfrinandSene, 2006).ThelarvaeofD.antonietaedevelopwithinrottingcladodes, feedingontheyeastpresentin thisenvironment(Pereiraetal., 1983;ManfrinandSene,2006).

Despitetheconsiderablegeographicaldistancebetweenthese populationsandthelimitedcapacityfordispersalinD.antonietae,

Rio Grande do Sul state Santa Catarina state

Atlantic Ocean Guarapuava

Cantagalo Paraná state

Brazil

Itirapina Serrana São Paulo state

Santiago

0 100 200

km

N

Fig.1.LocationsofthesampledpopulationsofDrosophilaantonietae.Serrana(21◦14S,4734W),Itirapina(2216S,4748W),Guarapuava(2517S,5153W),Cantagalo

(3)

Fig.2.RepresentationofthewingofDrosophilaantonietaeindicatingtheposition ofthe12anatomicallandmarks.

thereisstilluncertaintyregardingtheirlevelofisolation(Manfrin andSene,2006;MateusandSene,2007).Localpopulationsdisplay highgeneticvariabilityandmoderategeneticdiversity,leadingto hypothesessuggestingeitheramoderatelevelofgenefloworshort periodsofdifferentiationfollowedbythemaintenanceofancestral polymorphism(MateusandSene,2007).Ingeneral,populationsof

D.antonietaearefragmentedandhavelowadditivegenetic vari-ance(MateusandSene,2007).Giventhatthefragmentationcould produceDI(Lenset al.,1999), itis possiblethat thesame sce-narioappliestothefragmentedpopulationsofD.antonietae.Also, asfragmentationoccursalongthegeographicaldistributionofD. antonietaeit isalsopossiblethatthelevelof DIvariesspatially aspredictedbythecenter–peripheryhypothesis.Ifthisscenario holds,itwouldbeexpectedtofindFAinallpopulationssampled and,also,ahigherlevelofFAinperipheralthanincentral popula-tions.Totestthesepredictionswestudyasymmetryinwingshape offivepopulationsofD.antonietaecollectedthroughoutthe distri-butionofthespeciesusingFAasaproxyforDI.Morespecifically, weaddressedthefollowingquestions:(1)whattypesof asymme-tryoccurinpopulationsofD.antonietae?(2)DoesthelevelofFA varyamongpopulations?(3)Doesperipheralpopulationshavea higherFAlevelthancentralpopulations?

Materialandmethods

Specimencollection

Wecollectedatotalof201malesfromfivepopulationsofD. antonietae,namelySerrana(n=22)andItirapina(n=40)locatedin thestateofSãoPaulo(thenorthernmostlimitofthe geographi-caldistributionofthespecies),Guarapuava(n=23)andCantagalo (n=66)locatedinthestateofParaná(thegeographicalcenterof thespeciesdistribution),andSantiago(n=50)locatedinthestate ofRioGrandedoSul(thesouthernmostlimitofthegeographical distributionofthespecies)(Fig.1).Thedrosophilidspecimenswere capturedbyclosedtraps(Penarioletal.,2008)containingbanana andorangebaitsfermentedbyyeast(Saccharomycescerevisiae).

Dataacquisitionandgeometricmorphometrics

We used the right and left wings of males of D. antonietae

asourmorphometricmarkerduetotheeaseofidentificationof homologouslandmarksformedbytheintersectionofveins,and by the extensiveunderstanding of the mechanisms underlying wingdevelopmentinDrosophila (HoffmannandShirriffs, 2002; Griffithset al.,2005).Wingswereremoved,mounted on semi-permanentslides,anddigitallyphotographedunderamicroscope. Twelve type 1 anatomical landmarkswere locatedonthe dor-salsurfaceofthewings(Fig.2)usingthesoftware TPSDig2.16 (Rohlf, 2010).Type1landmarksare characterizedby the inter-sectionofthree structuresand areformedbythejuxtaposition

of tissues (Monteiro and Reis, 1999), which in ourcase corre-spondsto theintersectionof wing veinsof D. antonietae.Each landmarkwasdigitalizedthree timesineach wingbythesame person on differentdays toallow for estimating measurement error.

Landmarkconfigurationswere superimposed using General-izedProcrustesAnalysis(GPA)(KlingenbergandMcIntyre,1998; MonteiroandReis,1999).GPAbeginsbyreflectinglandmark con-figurationsfromoneofthesidesandsuperimposingthembytheir centroid(midpointof aconfigurationofanatomicallandmarks). Thesizeofthecentroid,thesquare-rootofthesumofthesquared distancesfromasetoflandmarktotheircentroid(Monteiroand Reis, 1999), is then scaled toone. Finally, each landmark con-figuration is rotated such that the squared distances between homologouslandmarksareminimized.Asaresultofallofthese cal-culations,thedistancesbetweenthesuperimposedconfigurations ofleftandrightstructurescorrespondtotheextenttowhichthey differinshape,giventhattheyareanapproximationtoProcrustes distances(KlingenbergandMcIntyre,1998).

Statisticalanalyses

Shapeasymmetrywasanalyzedusingconfigurations superim-posedasdependentvariablesinaProcrustesANOVA(Klingenberg andMcIntyre,1998),suchthatthespecimenidentityconsidered asarandomeffectandsideofthebodywasusedasafixedeffect. Inparticular,theamong-speciesmaineffectstandsforindividual shapevariation,theeffectofthesideofthebodycorrespondedto directionalasymmetry(DA),theinteractionbetweenthesideofthe bodyandthespecimenidentitycorrespondedtofluctuating asym-metry(FA)andtheresidualtermcorrespondedtothemeasurement errorinthemodel(Palmer,1994;KlingenbergandMcIntyre,1998; PalmerandStrobeck,2003).IntheProcrustesANOVA,thedegrees offreedomarecalculatedbymultiplyingthenumberofdegreesof freedomofeachfactorbythetotalnumberofdimensionsinshape space(KlingenbergandMcIntyre,1998;MonteiroandReis,1999). Antisymmetry(AS)inwingshapewasanalyzedusingscatterplots ofthedifferencesbetweentheleftandrightsideforeach land-mark.Theformationofclustersofpointsinthisdistributionwould correspondtoabimodaldistributioninthedifferencesbetween theleftandtherightsidesandconsequentlytothepresenceofAS (KlingenbergandMcIntyre,1998;PalmerandStrobeck,2003).

In each individual, shape asymmetry can be measured as thedeviationfromtheperfectsuperimpositionofleftand right configurations(Klingenberg and McIntyre,1998).Therefore, the individualnetasymmetry(NAi)wasestimatedbytheProcrustes distancebetweentheleftandrightconfigurationsofeach individ-ual(Marchandetal.,2003).Ontheotherhand,thepopulationnet asymmetry(NA)wasestimatedbyaveragingindividualnet asym-metries(NAi).GiventhatNAiscomposedofbothFAandDA,NA canbepartitionedintothosetwo typesofasymmetry(Graham etal.,1998; Marchandetal.,2003).Thepopulationestimateof DAwasobtainedbycalculatingtheProcrustesdistancebetween theaverageoftheleftandrightconfigurationsofeachpopulation (Schneideretal.,2003),whereasthedifferencebetweenNAand DAwasconsideredasapopulation-levelestimateofFA(Marchand etal.,2003).Therefore,thevaluesofindividualfluctuating asym-metry(FAi)wereobtainedbycalculatingthedifferencebetween NAiandDAofeachspecimen.

ThedifferencesinthelevelsofNAandFAbetweenpopulations weretestedusingANOVAswithNAiandFAiasresponsevariables, whereaspopulationoforiginandreplicatesaspredictorvariables. Replicates wereaddedtotheANOVAs toestimatetheeffectof measurementerroronthelevelofFA.

(4)

Table1

Analysisof shape asymmetry. Result of ProcrustesANOVA of populations of

Drosophilaantonietae.

Effect DF MS F

Population 80 0.0004897 4.45a

Individual(I) 3920 0.0001101 6.79a

Side(S) 20 0.0005663 34.94a

I*S 4000 0.0000162 4.83a

Error 16,080 0.0000034

ap<0.001.

Results

TheanalyzedpopulationsofD.antonietaeshowedboth direc-tionalasymmetry(DA)and fluctuatingasymmetry(FA)inwing shape(Table1).Thepartitioningofvarianceobtainedfromthe Pro-crustesANOVAindicated thattheeffectof theside ofthebody andtheinteractionbetweenthesideandspecimenidentitywere significant,implyingnotonlythatD.antonietaehasbothDAand FAin wing shape, but also that the level of FA is higher than theerrorterm.However, asymmetryis nothomogeneouswith respecttotheeffectofspecimenidentityandsourcepopulation. Inaddition,theanalysisof ascatterplotof differencesbetween leftandrightsidesdemonstratedthattheanalyzedpopulations do notdisplay AS.TheDA ismainly relatedto adislocation in theanterior–posteriorwingaxis,producedbylandmarks11(wing base),06(posteriorwingmargin)and02(anteriorwingmargin), andin thebase–apex axisfrommovementof thelandmark 04 (Fig.3).

Thelevelof netasymmetry(NA)– composedof thesumof FA and DA, differed only between populations of Serrana and Santiago(F4,596=27.85; p<0.05), whichdisplay thehighest and

the lowest values of NA (0.0193±0.0037 and 0.0174±0.0044, respectively),whereas the remainingpopulations had interme-diatevalues(Fig.4).Ontheotherhand,partitioningNAintoits FAand DA componentsallows for determining which of those typesofasymmetryaccountsforvariationinNAbetween popula-tions.Curiously,therewasnodifferenceinFAbetweenpopulations (F4,596=0.82;p>0.05),suggestingthatpopulationsofD.antonietae

havethesamemagnitudeofFAthroughoutthegeographical dis-tributionofthespecies (Fig.4).Therefore,thedifferencein NA betweenthepopulationsofSerranaandSantiagoisduetoDA,not FA(Fig.4).Again,populationsofSerranaandSantiagoshowedthe highestandthelowestlevelsofDA(0.0087and0.0057),whereas theremainingpopulations had intermediate values (Fig. 4).No significanteffect ofmeasurement errorwasdetectedin theNA analysis (F2,596=16.72; p>0.05), as well as in the FA analysis

(F2,596=16,72;p>0,05),suggestingthatmeasurementerrorinthis

studyisrandomanddoesnotaffecttheoutcomeofasymmetry analyses.

Fig.3.Diagramofthedifferencebetweentheshapeaveragesoftheleftwing (graylines)andrightwing(blacklines),correspondingtodirectionalasymmetry inDrosophilaantonietae.Deformationsmagnified10times.

0.020 a ab ab ab b

0.015

0.010

0.005

0

Ser Iti Gua

Population

Net asymmetry

Can San

Fig.4.Netasymmetrylevel(DA+FA)ofpopulationsofDrosophilaantonietae.DA, directionalasymmetry(lightgray);FA,fluctuatingasymmetry(darkgray);Ser, Serrana;Iti,Itirapina;Gua,Guarapuava;Can,Cantagalo;San,Santiago.Lowercase lettersdenoteshomogeneousgroups(p<0.05)accordingtoaTukeytest.

Discussion

Ourresultsindicatedthat,althoughpopulationsofD. antoni-etae showed both fluctuating and directional asymmetry, net asymmetry(NA=DA+AF)variedsignificantlyamongpopulations. However,mostofthevariationisexplainedbyDAalone,suggesting thatthelevelofFAisnotstructuredgeographicallyinD.antonietae.

Wehypothesizethatlarvaldevelopmentinrottingcladodesmight playanimportantroleinexplainingourresults.

Fluctuatingasymmetry hasbeen associatedwith geographi-caldistributionasanindicatorofdevelopmentalinstability(DI), possiblyreflectingenvironmentalchangesalongthedistribution of a species (Kark, 2001). However, the relationship between asymmetry(basedonmeasurementsoflineartraits)andthe geo-graphicaldistributionofspecieshasbeencontroversial(Jenkins andHoffmann,2000;Kark,2001;Karketal.,2004)becausesome speciesdonotshowthisexpectedspatialpatternofasymmetry (JenkinsandHoffmann,2000;Karketal.,2004),suggestingthat asymmetryvariesdependingonthestudiedorganismandits habi-tat.Jenkinsand Hoffmann(2000)foundthatthepopulationsof

DrosophilaserrataMalloch(1927)alongeasternAustraliaalsodid notshowvariationinthelevelofFAincentralandperipheral popu-lations.Likewise,ourresultsindicatethat,althoughD.antonietae

didshowFA,thedifferencesinNAbetweenpopulationsofSerrana andSantiagocanbeaccountedforbychangesinDAratherthanFA. ThissuggeststhatthelevelofFAisnotstructuredgeographically inD.antonietae,thusindicatingthatotherfactorsrelatedtothe biologyofD.antonietaemightactinoppositiontoenvironmental variationtobufferthelevelofasymmetryfoundinpopulations.

(5)

mighthave“escaped”theenvironmentalvariationduetothelife historyofthespeciesasbeingassociated withahostplant,the cactusC.hildmannianus.ThelarvaeofD.antonietaedevelopwithin decomposingtissuesinsidecladodes,feedingonyeast(Manfrinand Sene,2006).Thesecladodes mightprovideamicroenvironment (Sotoetal.,2007)whereenvironmentalvariationisbuffered,thus decreasingstressduetoenvironmentalfactors.Asimilarscenario hasbeensuggestedtoexplaintheabsenceof asymmetryalong thegeographical distributionof Euchloebutterflies (Karket al., 2004).Ontheotherhand,Gibbsetal.(2003)investigateddirectly themicroclimateindecomposingcladodesintheSonorandesert anddemonstratedthat,althoughcladodesmightbuffertosome extentenvironmentalchanges,theymightneverthelessexperience markedvariationinrelativehumidity.Moreover,thetemperature withincladodemightactuallyexceedtheexternaltemperature, whichcouldsuggestthatthesestructuresarelikelynotanefficient thermicrefugiumforDrosophila.However,theconditionsindeserts (withexposedcladode)mightnotberepresentativeofthe condi-tionsoncactifoundingalleryforestsalongtheParaná,Paraguay, andUruguayriverbasins(ManfrinandSene,2006; Mateusand Sene, 2007). In this case, rotting cladodes are“protected” by a vegetationcover,whichmightfacilitateenvironmentalbuffering andpossiblyactasaclimaticrefugiumforD.antonietae.Finally,it ispossiblethatanotherstressingfactormightbehomogeneously affectingpopulationssuchthattheyexpressasimilarlevelof asym-metry.D.antonietaeismoreviableandhasalowerdevelopment timewhenrearedinculturemediawithexudatesfromthecactus

PilosocereusmachrisiiY.Dawsonincomparisonwithmediafrom itsown hostplant,C. hildmannianus(Soto etal., 2007).Onthe otherhand,thelevelofFAinthewingofD.antonietaeishigher whenrearedinculturemediabasedonC.hildmannianusthanon

P.machrisii(Sotoetal.,2010).Thesecombinedobservationsmight indicatethatC.hildmannianusitselfcouldbeconsideredasa stress-ingfactorforthedevelopmentofD.antonietae.Asaconsequence, allpopulationsofD.antonietaewouldbeunderasimilarlevelof stress,regardlessofgeographicaldistribution,thusleadingto sim-ilarlevelsofresponseintermsofasymmetry.Thisdemonstrates thattheinteractionwithC.hildmannianuscanplayanimportant roleinthepatternofasymmetryobservedbetweenpopulationsof

D.antonietae.

OurresultsarealsoconsistentwiththepresenceofDAin popu-lationsofD.antonietae.Directionalasymmetryisnotarareeffectin Diptera(KlingenbergandMcIntyre,1998;Klingenbergetal.,1998; PélabonandHansen,2008;Sotoetal.,2010),aswellinother inver-tebrate(Grahametal.,1998;Schneideretal.,2003)andvertebrate groups(Kark,2001;Marchandetal.,2003;Loehretal.,2013).In Diptera,Klingenbergetal.(1998)suggestedthatthegeneticbasis ofDAhasbeenconservedoverevolutionarytimeduetothe exist-enceofaleft-rightaxisdeterminingthepositionofimaginaldisks (developmentalprecursorsofwings)oneachsideofthebody.In thecaseofsizeDA,PélabonandHansen(2008)carriedoutareview ofstudiesonDAin insectwings andshowedthatthedirection ofasymmetryisconsistentwithinspecies,butis notconserved athighertaxonomiclevels(including Diptera).It hasbeen sug-gestedthatbothDAandAScanbegeneratedinresponsetoahigh levelofstress,thusprovidingacontinuumbetweenthesetypes ofasymmetry(Grahametal.,1998,butseePalmerandStrobeck, 1992).Theassociationbetweendifferenttypesofasymmetryhas beenfoundinthepartridgeA.chucker(Kark,2001),wherethe pat-ternofsizeasymmetrychangesgeographically(fromthecenterto theperiphery),suchthatperipheralpopulationshavehigherlevels ofasymmetry(FA, DA,andAS) thancentralones.The relation-shipbetweenDAandDIhasalsobeensuggested forDrosophila

bySoto etal.(2010)when investigatingthedevelopmentof D. antonietaeandDrosophilagouveaiTidon-SklorzandSene,2001in culturemediabasedondifferenthostcacti(C.hildmannianusand

P.machrisii).ThepresenceofDAinwingshapewasdetectedwhen eitherspecieswasrearedonC.hildmannianusmedia,butnoton

P.machrisii(Sotoetal.,2010).ThepresenceofDAinpopulations ofD.antonietaeislikelyaproductofanevolutionarilyconserved patterninDipteraandthevariationinDAfoundinthepopulations ofSerranaandSantiagoarepossiblyrelatedtolocal(historicalor ecological)differencesbetweenthesepopulations.

Mappingtheeffectsofperturbationsonphenotypic develop-ment is a complexissue.In general,ourresultssuggested that fluctuating asymmetry in D. antonietaehassimilar levels in all populations,whichsuggestsahomogeneousperturbation.Given thatDAvariesontheedgeofthedistributionofthespecies,we hypothesizethatlocalevolutionaryeffectsondemographymight havegenerated thisdifference.Givethatthecactusisthestage wheredevelopmenttakesplace,thereisapotentialforstresstobe generatedfromthisinteraction.Thus,understandinghow asym-metrypatternsaregeneratedinthissystemwouldentailabetter comprehensionofhowtheplant/herbivoreinteractionoccursand variesbetweenpopulations.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

MC was supported by a graduate scholarship from the Coordenac¸ãode Aperfeic¸oamento de Pessoal de NívelSuperior (CAPES).ThisstudywaspartiallyfundedbygrantstoMOMfrom Conselho de DesenvolvimentoCientífico eTecnológico (CNPq– processes 475461/2007e312357/2006)and toRPM fromSETI/ Fundac¸ãoAraucária(processes103/2005,231/2007and415/2009) andfromFINEP(processes01.05.0420.00/2003and1663/2005).

References

Beasley,D.A.E.,Bonisoli-Alquati,A.,Mousseau,T.A.,2013.Theuseoffluctuating asymmetryasameasureofenvironmentallyinduceddevelopmentalinstability: ameta-analysis.Ecol.Indic.30,218–226.

Breuker,C.J.,Patterson,J.S.,Klingenberg,C.P.,2006.Asinglebasisfordevelopmental bufferingofDrosophilawingshape.PloSone1,e7.

Bridle,J.R.,Vines,T.H.,2007.Limitstoevolutionatrangemargins:whenandwhy doesadaptationfail?TrendsEcol.Evol.22,140–147.

Brown,J.H.,Stevens,G.C.,Kaufman,D.M.,1996.Thegeographicrange:size,shape, boundaries,andinternalstructure.Annu.Rev.Ecol.Evol.Syst.27,597–623. Gibbs,A.G.,Perkins,M.C.,Markow,T.A.,2003.Noplacetohide:microclimatesof

SonoranDesertDrosophila.J.ThermalBiol.28,353–362.

Graham,J.H.,Emlen,J.M.,Freeman,D.C.,Leamy,L.J.,Kieser,J.A.,1998.Directional asymmetryandthemeasurementofdevelopmentalinstability.Biol.J.Linn.Soc. 64,1–16.

Griffiths,J.A.,Schiffer,M.,Hoffmann,A.A.,2005.Clinalvariationandlaboratory adap-tationintherainforestspeciesDrosophilabirchiiforstressresistance,wingsize, wingshapeanddevelopmenttime.J.Evol.Biol.18,13–222.

Hoffmann,A.A.,Shirriffs,J.,2002.GeographicvariationforwingshapeinDrosophila serrata.Evolution50,1068–1073.

Hoffmann,A.A.,Woods,R.E.,Collins,E.,Wallin,K.,White,A.,McKenzie,J.A.,2005. Wingshapeversusasymmetryasanindicatorofchangingenvironmental con-ditionsininsects.Aust.J.Entomol.44,233–243.

Hosken,D.J.,Blanckenhorn,W.U.,Ward,P.I.,2000.Developmentalstabilityinyellow dungflies(Scathophagastercoraria):flutuatingasymmetry,heterozygosityand environmentalstress.J.Evol.Biol.13,919–926.

Jenkins,N.L.,Hoffmann,A.A.,2000.Variationinmorphologicaltraitsandtrait asym-metryinfieldDrosophilaserratafrommarginalpopulations.J.Evol.Biol.13, 113–130.

Kark,S.,2001.Shiftsinbilateralasymmetrywithinadistributionrange:thecaseof thechucarpartridge.Evolution55,2088–2096.

Kark,S.,Lens,L.,VanDongen,S.,Schmidt,E.,2004.Asymmetrypatternsacrossthe distributionrange:doesthespeciesmatter?Biol.J.Linn.Soc.81,313–324. Klingenberg,C.P.,2011.MorphoJ:anintegratedsoftwarepackageforgeometric

morphometrics.Mol.Ecol.Resour.11,353–357.

Klingenberg,C.P.,McIntyre,G.S.,1998.Geometricmorphometricofdevelopmental instability:analyzingpatternsoffluctuatingasymmetrywithProcrustes meth-ods.Evolution52,1363–1375.

(6)

Lazi ´c,M.M.,Kaliontzopoulou,A.,Carretero,M.A.,Crnobrnja-Isailovi ´c,J.,2013.Lizards fromurbanareasaremoreasymmetric:usingfluctuatingasymmetrytoevaluate environmentaldisturbance.PloSone8,e84190.

Lens,L.,Dongen,S.,Wilder,C.M.,Brooks,T.M.,Matthysen,E.,1999.Fluctuating asym-metryincreaseswithhabitatdisturbanceinsevenbirdspeciesofafragmented afrotropicalforest.Proc.R.Soc.Ser.B266,1241–1246.

Lezcano,A.H.,Quiroga,M.L.R.,Liberoff,A.L.,VanderMolen,S.,2015.Marinepollution effectsonthesouthernsurfcrabOvalipestrimaculatus(Crustacea:Brachyura: Polybiidae)inPatagoniaArgentina.Mar.Pollut.Bull.91,524–529.

Loehr,J.,Herczeg,G.,Leinonen,T.,Gonda,A.,VanDongen,S.,Merilä,J.,2013. Asym-metryinthreespinesticklebacklateralplates.J.Zool.289,279–284.

Manfrin,M.H.,Sene,F.M.,2006.CactophilicDrosophilainSouthAmerica:amodel forevolutionarystudies.Genetica126,57–75.

Marchand,H.,Paillat,G.,Montuire,S.,Butet,A.,2003.Fluctuatingasymmetryin bankvolepopulations(RodentiaArvicolinae)reflectsstresscausedby land-scapefragmentationin the Mont-Saint-Michel Bay. Biol. J. Linn. Soc. 80, 37–44.

Mateus,R.P.,Sene,F.M.,2003.TemporalandspatialallozymevariationintheSouth AmericancactophilicDrosophilaantonietae(DipteraDrosophilidae).Biochem. Genet.41,219–233.

Mateus,R.P.,Sene,F.M.,2007.Populationgeneticstudyofallozymevariationin naturalpopulationsofDrosophilaantonietae(Insecta,Diptera).J.Zool.Syst.Evol. Res.45,136–143.

Moller,A.P.,Swaddle,J.P.,1997.Asymmetry,DevelopmentalStabilityandEvolution. OxfordUniversityPress,Oxford.

Monteiro,L.R.,Reis,S.F.,1999.Princípiosdemorfometriageométrica.HolosEditora, RibeirãoPreto.

Palmer,A.R.,1994.Fluctuatingasymmetryanalyses:aprimer.In:Markow,T.A.(Ed.), DevelopmentalInstability:ItsOriginsandEvolutionaryImplications.Kluwer, AcademicPublishers,Dordrecht,pp.335–364.

Palmer,A.R.,Strobeck,C.,1986.Fluctuatingasymmetry:measurement,analysis, patterns.Annu.Rev.Ecol.System.17,391–421.

Palmer,A.R.,Strobeck,C.,1992.Fluctuatingasymmetryasameasureof developmen-talstability:Implicationsofnon-normaldistributionsandpowerofstatistical tests.ActaZool.Fenn.191,55–70.

Palmer,A.R.,Strobeck,C.,2003.Fluctuatingasymmetryanalysisrevisited.In:Polak, M.(Ed.),DevelopmentalInstability(DI):CausesandConsequences.Oxford Uni-versityPress,Oxford,pp.279–319.

Pélabon,C.,Hansen,T.F.,2008.Ontheadaptiveaccuracyofdirectionalasymmetry ininsectwingsize.Evolution62,2855–2867.

Penariol,L.,Bicudo,H.E.M.D.C.,Madi-Ravazzi,L.,2008.Ontheuseofopenorclosed trapsinthecaptureofdrosophilids.BiotaNeotropica8,47–51.

Pereira,M.A.Q.R.,Vilela,C.R.,Sene,F.M.,1983.Notesonbreedingandfeedingsites ofsomespeciesoftherepletagroupoftheGenusDrosophila(Diptera Drosophil-idae).Ciênc.Cult.35,1313–1319.

RDevelopmentCoreTeam,2012.R:ALanguageandEnvironmentfor Statisti-calComputing.RFoundationforStatisticalComputing,Vienna,Availableat http://www.R-project.org/.

Rohlf, F.J., 2010. TPSDig, Digitize Landmarks and Outlines, Version 2.16. State University of New York at Stony Brook, Stony Brook, Available at http://life.bio.sunysb.edu/morph/.

Schneider,S.S.,Leamy,L.J.,Lewis,L.A.,DeGrandi-Hoffman,G.,2003.Theinfluence ofhybridizationbetweenAfricanandEuropeanhoneybees,Apismellifera,on asymmetriesinwingsizeandshape.Evolution57,2350–2364.

Soto,I.M.,Manfrin,M.H.,Sene,F.M.,Hasson,E.,2007.Viabilityanddevelopmental timeinthecactophilicDrosophilagouveaiandDrosophilaantonietae(Diptera: Drosophilidae)aredependentofthecactushost.Ann.Entomol.Soc.Am.4, 490–496.

Soto,I.M.,Carreira,V.P.,Corio,C.,Soto,E.M.,Hasson,E.,2010.Hostuseand devel-opmentalinstabilityinthecactophilicsiblingspeciesDrosophilagouveaiandD. antonietae.Entomol.Exp.Appl.137,165–175.

Imagem

Fig. 1. Locations of the sampled populations of Drosophila antonietae. Serrana (21 ◦ 14 ′ S, 47 ◦ 34 ′ W), Itirapina (22 ◦ 16 ′ S, 47 ◦ 48 ′ W), Guarapuava (25 ◦ 17 ′ S, 51 ◦ 53 ′ W), Cantagalo (25 ◦ 25 ′ S, 52 ◦ 04 ′ W), Santiago (29 ◦ 23 ′ S, 54 ◦ 44 ′ W
Fig. 2. Representation of the wing of Drosophila antonietae indicating the position of the 12 anatomical landmarks.
Fig. 4. Net asymmetry level (DA + FA) of populations of Drosophila antonietae. DA, directional asymmetry (light gray); FA, fluctuating asymmetry (dark gray); Ser, Serrana; Iti, Itirapina; Gua, Guarapuava; Can, Cantagalo; San, Santiago

Referências

Documentos relacionados

C’est ce que fit Vati- can II dans Gaudium et spes dont nous fêtons cette année le 50 ème

O objetivo de seu trabalho foi mapear a visão dos licenciandos em Química de uma instituição de ensino superior sobre o uso destes materias no ensino de

O oxigénio move-se segundo um gradiente de pressão da inspiração para gás alveolar, sangue arterial, leito capilar, líquido intersticial e intracelular para os locais

Feature Vector Orientations Magnitudes Image Realism 3D Buildings, Map Vectors,

Considerando as condições pelas quais o produto passa durante o processo de secagem, objetivou-se com esse trabalho, implementar um modelo de simulação para

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Deus nos deu uma Das plantas se obtém os princípios ativos empregados nos medicamentos.. %utras espécies