• Nenhum resultado encontrado

Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol

N/A
N/A
Protected

Academic year: 2021

Share "Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol"

Copied!
6
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Biotechnology

and

Industrial

Microbiology

Comparative

proteomic

analyses

of

Hyphozyma

roseonigra

ATCC

20624

in

response

to

sclareol

Xiuwen

Wang

a

,

Xiaohua

Zhang

a

,

Qingshou

Yao

a

,

Dongliang

Hua

b

,

Jiayang

Qin

a,∗

aBinzhouMedicalUniversity,Yantai,China

bShandongAcademyofSciences,EnergyResearchInstitute,KeyLaboratoryforBiomassGasificationTechnologyofShandongProvince,

Jinan,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29July2017 Accepted3April2018 Availableonline24April2018 AssociateEditor:SolangeI. Mussatto Keywords: Comparativeproteomic Hyphozymaroseonigra Sclareol Sclareolglycol Ambroxide

a

b

s

t

r

a

c

t

Sclareolisanimportantintermediateforambroxidesynthesisindustries.Hyphozyma roseon-igraATCC20624wastheonlyreportedstraincapableofdegradingsclareoltothemain productofsclareolglycol,whichistheprecursorofambroxide.Todate,knowledgeis lack-ingabouttheeffectsofsclareoloncellsandtheproteinsinvolvedinsclareolmetabolism. ComparativeproteomicanalyseswereconductedonthestrainH.roseonigraATCC20624by usingsclareolorglucoseasthesolecarbonsource.Atotalof79up-regulatedproteinspots witha>2.0-folddifferenceinabundanceon2-Dgelsundersclareolstressconditionswere collectedforfurtheridentification.Seventyspotsweresuccessfullyidentifiedandfinally integratedinto30proteins.Theup-regulatedproteinsundersclareolstressareinvolvedin carbonmetabolism;andnitrogenmetabolism;andreplication,transcription,and transla-tionprocesses.Eighteenup-regulatedspotswereidentifiedasaldehydedehydrogenases, whichindicatingthataldehydedehydrogenasesmightplayanimportantroleinsclareol metabolism.Overall,thisstudymaylaythefundamentalsforfurthercellengineeringto improvesclareolglycolproduction.

©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Sclareol,aditerpenealcoholisolatedfromSalviasclarea(Clary sage),canbeappliedtomedicine,cosmetics,healthproducts, flavorsandfragrances,andpesticides.1–3 Themain

applica-tion of sclareol is forsynthesizing high-end substitutes of ambergrisintheperfumeindustry.4Giventhesupplyshortage

andpriceinflationofambergris,anumberofsubstituteshave

Correspondingauthorat:CollegeofPharmacy,BinzhouMedicalUniversity,Yantai264003,China.

E-mail:qinjy@bzmc.edu.cn(J.Qin).

been developed.Ambroxideisthemostappreciated substi-tuteofambergrisandisobtainedfromthesemi-synthesisof sclareol.5–7Sclareolcanbetransformedtoambroxidethrough

redoxandcyclization,duringwhichsclareolglycoland sclare-olideareimportantintermediates(Fig.1).Thus,thebiological productionofsclareol glycolorsclareolide tocomplete the biosynthesispathwayhasgained muchinterestdue tothe increasingdemandofnaturalfragrances.

Numerousstrainsreportedlytransformsclareol,whereas most strains merely introduce hydroxyl at the main ring

https://doi.org/10.1016/j.bjm.2018.04.001

1517-8382/©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

sclaroel

sclaroelide

ambroxide

CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 OH OH OH A TCC 20918 chem ical con version chemical con v ersion Cr yptococcus albidus OH O O O Hyphozyma roseonigra ATCC 20624 H3C H 3C H3C H3C

sclaroel glycol

Fig.1–Diagramofconversionfromsclareoltoambroxide.

ratherthanmodifythebranchedchain.Onlyfewstrainscan transformsclareoltosclareolglycolorsclareolide.

Cryptococ-cusalbidusATCC 20918converts sclareoltosclareolide ata

highyieldofmorethan 100g/Landhasbeen exploitedfor industrialization.8Todate,HyphozymaroseonigraATCC20624,

which can exist inboth yeast-like and filamentous forms, isthe onlyreported straincapableofdegrading sclareol to the mainproduct ofsclareol glycol.9 However, the explicit

conversionmechanism from sclareolto sclareolglycol and otherproductshasnotbeenreported.Knowledgeisalso lack-ingabouttheeffectsofsclareoloncellgrowth,considering thatsclareolisalabdanediterpenewithahighantimicrobial activity.10Theseproblemshinderthefurtherimprovementof

conversionrateandtheexpandedapplicationofthe biotech-nology.H.roseonigraATCC20624cansurviveinbasicinorganic saltmediumwithsclareolasthesole carbonsourceand is thereforeagood candidateforexploringthe mechanismto someextent.

Inthepresentstudy,comparativeproteomicanalyseswere conductedonthestrainH.roseonigraATCC20624,withsclareol orglucoseasthesolecarbonsource.Thedifferenceinprotein expressionbetweenthetwoconditionsisexpectedtoenrich ourknowledgeonsclareolstressinmicroorganisms.

Material

and

methods

Microorganismandcultivationconditions

H.roseonigraATCC20624waspurchasedfromATCC(MD,USA)

andgrownonyeast-maltmedium(perliter:3gyeastextract, 3gmaltextract,10gglucose,and5gtryptoneatpH6.2)at24◦C and180rpm.Theseedculturewasincubatedintwokindsof basicinorganicsaltmedium(BSM)containingsclareol(BSMS) orglucose(BSMG)tomonitorthecellgrowthrates.

The modified BSM medium contained (per liter) 2.44g KH2PO4,14.04gNa2HPO4·12H2O,2gNH4Cl,0.2gMgCl2·6H2O,

1mgCaCl2·2H2O, 0.01g yeastextract, 5mL metal ion

mix-ture,and0.2mLvitaminmixture.Meanwhile,themetalion mixtureincluded(perliter)0.5gFeCl2·4H2O,0.5gMnCl2,0.1g

NaMoO4·2H2O, 0.05g CuCl2, and 120mM HCl.The vitamin

mixturecontained(perliter)2gcalciumpantothenate,1g cre-atine,2gnicotinicacid,2gpyridoxamine,2.5mgcobalamin,

and1gpara-aminobenzoicacid.

Tween 80 (0.8%,v/v)and sclareol (2mM)were added to BSMmediumtopreparetheBSMSmedium,whereasglucose (1.33mM)wasaddedtoBSMmediumtoproducethe BSMG medium.CellsgrownintheBSMGmediumwereruninparallel withthesamplesintheBSMSmedium.

Preparationofproteinextractsandcomparativeproteomic analysis

Cellsintheexponentialgrowthphasewere harvestedfrom 50mLculturesbycentrifugationat4000×gfor10minat4◦C. Thecellpelletswerefrozeninliquidnitrogenandstoredat −80◦Cuntilproteomeanalysis.

Comparative proteomic analysis by 2-Dgel was carried outasdescribedinliterature.11Cellsweresuspendedinlysis

bufferof2DE(SangonCo.,Shanghai,China)andultrasonically disruptedat80–100Wfor3min.Thedebriswasremovedby centrifugationandthesupernatantwasincubatedovernight withice-coldacetone.Aftercentrifugationat12,000×g and 4◦Cfor30min,theprecipitatedproteinsweresolubilizedin samplelysisbuffer.Totalproteinconcentrationswere deter-minedusingtheNon-interferenceProteinAssayKit(Sangon Co.,Shanghai,China).Proteinspotsonthegelswere visual-izedbysilverstaininginaccordancewiththeprotocol.12Each

setofsampleswasindependentlyanalyzedintriplicate. Analysesof2-Dgels

2-Dgelswerescannedataresolutionof300dotsperinch(dpi) byanImageScannerIII(GEhealthcare).Statistically signifi-cantdifferenceswerediscernedbyperformingStudent’sttest. Protein spots showingsignificant changes in up-regulation and down-regulation were extracted, digested, rehydrated, and identified in a 5800 Plus MALDI TOF/TOFTM analyzer (AppliedBiosystems).Datawereacquiredinapositivemass spectrometry(MS)reflectorbyusingaCalMix5standardto calibratetheinstrument(ABI5800CalibrationMixture).

Results

GrowthcharacteristicsofH.roseonigraATCC20624

ThegrowthratesofH.roseonigraATCC20624onmedia con-tainingdifferentsclareolconcentrations(2,6,and10mM)were investigated.ThegrowthcurvesofH.roseonigraATCC20624 onmediacontaining2and6mMsclareolweresimilar,and theopticaldensity(OD600)of2.23±0.11for2mMsclareoland

2.41±0.05for6mMsclareolwereobtainedat120h.Duringthe first50hincubation,H.roseonigraATCC20624grewwellonthe mediumcontaining10mMsclareol,andprolongedcultivation timesresultedinretardedgrowthrates(Fig.2A).Glucoseis acarbon sourcepreferred bymostmicroorganisms. Hence,

(3)

B

A

2.5 1.5 2.0 2 mM BSMS 1.33 mM BSMG 10 mM 6 mM 2 mM 1.0 OD 600 OD 600 0.6 0.4 0.2 0.0 10 20 30 5 15 25 0 0.0 100 140 Time (h) Time (h) 120 80 60 40 20 0 0.5 0.8

Fig.2–Effectsofsclareolstressonthecellgrowthof

HyphozymaroseonigraATCC20624.(A)Effectsofsclareolon

cellgrowth.(B)GrowthcurvesofH.roseonigraATCC20624 inBSMSandBSMGmedia.Experimentswereperformedin triplicate.Errorbarsrepresentthestandarddeviationsof themeansofthreeindependentexperiments.

thecellgrowthonthemediumcontaining1.33mMglucose wasalsoinvestigated;thisconcentrationwassettoprovide the same number of moles of carbon asthat lost if 2mM sclareolwascompletelytransformedtosclareolglycol.The cellmassofsclareolculturesreachedthesamevalueobserved asthoseintheglucoseculturesduringthefirst12h cultiva-tion.H.roseonigraATCC20624alsogrewmuchfasteronthe mediumwithglucosethaninthatwithsclareolfrom12hto 15h(Fig.2B).However,furtherincubationinglucosedecreased cellgrowth,andtheOD600valueofH.roseonigraATCC20624

ontheglucose-containingmediumreached0.53±0.04at24h. Interestingly,thegrowthofH.roseonigraATCC20624 contin-uedtoincreaseafter15hofcultivationinBSMSmedium.This resultindicatesthepredominantsclareol-tolerantcapacityof

H.roseonigraATCC20624.CellsculturedinBSMGmediumand

BSMSmediumwerecollectedat12handusedforsubsequent proteomicanalyses.Atthistimepoint,sclareolhadnotbeen completelyconvertedtosclareolglycol(Supplementarydata, Fig.I).

Proteinexpressionalterationsinresponsetosclareolstress TheglobalproteomicresponseofH.roseonigraATCC20624to sclareolwasprofiledby2-Dgelelectrophoresis.Glucose cul-tureswerethenusedasthecontrolgroup,whereassclareol cultureswere adoptedas the experimentalgroup.In three independentexperiments,proteinabundanceswereanalyzed usingthePDQuestsoftware.Proteinabundanceswere signif-icantlyaltered(p<0.05)in117spots(TableS1andFig.3)from theBSMSandBSMGmedia.Thischangesuggeststhatsclareol affectedthefungus’scellularphysiology.Amongthesespots, 79up-regulatedspotswitha>2.0-folddifferenceinabundance on 2-D gels were collected for furthermass spectrometric

identification. Seventy spots were successfully recognized, whereasseveralspotswereidentifiedasthesameproteinafter OmicsBeananalysis.Finally,70proteinspotswereintegrated into30proteins(Table1).

Discussions

Many ofthedifferentiallyexpressedproteinsinTable1are commontoseveralcategories.Approximately27%ofthe dif-ferentiallyexpressedproteinsbelongedtocarbonmetabolism, followedby10%belongingtothemetabolicpathwayand10% belonging toproteinprocessingin theendoplasmic reticu-lum. Meanwhile, 3%of the proteinseach belonged to the cellcycle,phagosomeformation,DNAreplication,glutathione metabolism, peroxisome formation, lysine degradation, ␤-alanine metabolism, antibioticbiosynthesis, and glyoxylate metabolism.

Theproteinsinvolvedincarbonmetabolism(including gly-colysisandthecitricacidcycle),suchasfructosebisphosphate aldolase (FBA),enolase(ENO),citratesynthase(CIT),malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and phosphoenolpyruvatecarboxykinase,wereallup-regulatedin responsetosclareolstress.Notably,thefoldchangeofMDH, whichcatalyzestheconversionofmalateandoxaloacetate,13

wasthelargest,atapproximately111folds.Theobserved up-regulationoftheseproteinsindicatedthattheH. roseonigra

ATCC 20624 cells expressedadditionalenzymes forcarbon metabolismtometabolizesclareolmoreefficientlythanusual. Additionally, sclareol stress induced significant changes in theexpressionofaldehydedehydrogenases(ALDHs).ALDHs, generally considered as a superfamily of NADP-dependent enzymesandparticipatinginaldehydemetabolism,catalyze the oxidation of exogenous aldehydes into corresponding carboxylic acids.14 Theup-regulated ALDHsmay protectH.

roseonigraATCC20624fromdamageinducedbyactive

alde-hydes.Eighteenup-regulatedspotswereidentifiedasALDHs, whichindicatedthat ALDHsmay playanimportantrolein sclareolmetabolism.

Besidestheabove-mentionedproteinnarrative,twoother proteins, that is, heatshock proteins SSB2 and SSA2, were found up-regulated (2.58 and 7.96 fold increases, respec-tively). SSB2and SSA2aremolecularchaperonesbelonging tothe70kDaheat-shockproteins(Hsp70s).Thetwoenzymes exhibited low intrinsic ATPase activities inthe native pro-tein,whereastheisolatedATPasedomainsmanifestedmuch greater ATPase activities.15 Both proteinsparticipateinthe

transportofpolypeptidesbutfunctiondistinctly.Furthermore, proteinsactingoncellularprocesses,suchasthenicotinicacid transporter(TNA),meioticrecombinationprotein(REC),DNA replicationlicensingfactor(MCM),andeukaryotictranslation initiation factor(HYP) wereup-regulated.Thisfinding indi-catesthatsclareolstressalsoforcedH.roseonigraATCC20624 tostrengthenitslifeactivities.

H.roseonigraATCC20624alsoexpressedadditional

struc-tural proteins, such as actins, structural maintenance of chromosomes protein4,and flocculation proteinFLO11,to surviveundersclareolstress.Threeproteins,thatis,78kDa glucose-regulated protein homolog, GTPase, and ATP syn-thasesubunit␣,werealsoup-regulated.Thisproteinhomolog

(4)

Fig.3–ComparativeproteomicprofilingofH.roseonigraATCC20624exposedto(A)1.33mMglucoseand(B)2mMsclareol. Thedifferentiallyexpressedproteinswerelabeledwithspotnumbers.Experimentswereperformedintriplicate.

(5)

Table1–Proteinsidentifiedbymassspectrometry.

Spotnumbera Proteinidentification Foldchangeb

2007,5722,6117,7208,7209,7210,7315, 4720,5122,7113,2017,2019,7712,5719, 7608,3111,5817,6109

Aldehydedehydrogenase(ALD5) 11.62,3.37,33.63,2.40,2.91,2.97,5.00, 2.85,3.23,3.67,12.66,9.35,4.30,8.81,2.70, 6.52,4.82,3.86

5806,6119,7108 Nicotinicacidtransporter(TNA1) 2.91,8.25,3.50

8114 Meioticrecombinationprotein(REC114) 4.43

3109 Polyamineoxidase(FMS1) 2.33

6014 Histone-lysineN-methyltransferase

(SET1)

3.76

6212 Peroxisomal2,4-dienoyl-CoAreductase

(SPS19)

4.89

6213 Enolase1(ENO1) 3.54

6215,6306 Transcriptionalregulator(URE2) 4.10,4.16

6313 Citratesynthase,mitochondrial(CIT1) 3.35

6319,7114,7118,6320 DNAreplicationlicensingfactor(MCM3) 11.15,4.81,8.72,10.35

7014 MitochondrialperoxiredoxinPrx1(PRX1) 6.12

119,6118 Actin(ACT1) 2.89,2.89

5115 Heatshockprotein(SSB2) 2.58

3003,122,313,121 Fructose-bisphosphatealdolase(FBA1) 3.59,3.74,3.16,3.91

134 Saccharopepsin(PEP4) 3.16

1215 78kDaGlucose-regulatedprotein

homolog(KAR2)

6.97

2218 Structuralmaintenanceofchromosomes

protein(SMC4)

2.60

3816 GTPase(MTG2) 6.52

4005 Heatshockprotein(SSA2) 7.96

1312,4409,4818,5010,7110,6312 Malatedehydrogenase(MDH1) 3.10,4.58,6.37,110.69,7.80,6.54

5117 Flocculationprotein(FLO11) 3.40

7812 PeroxisomalcatalaseA(CTA1) 3.89

8112 Acetyl-coenzymeAsynthetase2(ACS2) 5.39

2006,6118,8314,1223 NADP-dependent3-hydroxyacid

dehydrogenase(YMR226C)

2.40,2.40,16.42,4.60

1312 Succinatedehydrogenase(SDH1) 6.19

2117 Eukaryotictranslationinitiationfactor

(HYP2) 3.48 5716 Glutaminesynthetase(GLN1) 6.13 6009 Cerevisin(PRB1) 17.27 28,2712,6012,7012,7013 Phosphoenolpyruvatecarboxykinase (PEPCK1) 13.54,5.45,15.45,13.45,9.74

7108,7112 ATPsynthasesubunit(ATP1) 5.59,16.42

a ConsistentwiththeproteinnumberasshowninFig.3.

b FoldchangesinproteinexpressionwerecalculatedusingthecellsfromtheBSMGmediumasreference.

is active as a homodimer and exhibits ATPase activity. Meanwhile, GTPase is required for mitochondrial protein synthesis.16Theup-regulationoftheseproteinsimpliesthat

H.roseonigraATCC20624cangenerateadditionalATPorGTPby

expressingadditionalenzymesrelatedtoenergymetabolism whenexposedtosclareolstress.

Conclusions

In summary, the results indicated that proteins involved in carbon metabolism; nitrogen metabolism; and replica-tion,transcription,andtranslationprocessesareup-regulated whensclareolisthesolecarbonsourcerelativetothatwhen glucose is the sole carbon source. Some of the identified proteins are known to serve heat-inductive functions and play general roles in cross-protecting cells against diverse stressconditions.These cross-protectingproteinsmay play

importantrolesinthesclareoltoleranceofH.roseonigraATCC 20624.Overall,thepresentstudymaylaythefundamentalsfor furthercellengineeringtoimprovesclareolglycolproduction.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This work was supported bythe National Natural Science Foundation of China (31200078), the Shandong Province Science and Technology Project (No. ZR2017MC023 and 2015GSF117034),andtheJinanYouthScienceandTechnology StarProject(No.201406021).

(6)

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,atdoi:10.1016/j.bjm.2018.04.001.

r

e

f

e

r

e

n

c

e

s

1.BhatiaSP,McgintyD,LetiziaCS,ApiAM.Fragrancematerial reviewonsclareol.FoodChemToxicol.2008;46:S270–S274. 2.LiF,TaoF.Recentadvancesinbiotechnologicalproductionof

sclareol.GuangzhouChemInd.2015;43:5–7.

3.WangL,HeHS,YuHL,etal.Sclareol,aplantditerpene, exhibitspotentantiproliferativeeffectsviatheinductionof apoptosisandmitochondrialmembranepotentiallossin osteosarcomacancercells.MolMedRep.2015;11:4273–4278. 4.PanXW,HanL,ZhangYH,ChenDF,SimonsenHT.Sclareol

productioninthemossphyscomitrellapatens,and observationsongrowthandterpenoidbiosynthesis.Plant BiotechnolRep.2015;9:149–159.

5.ArandaG,LallemandJY,MammoumiA,AzeradR.Microbial hydroxylationofsclareolbyMucorplumbeus.TetrahedronLett. 1991;32:1783–1786.

6.BarreroAF,Alvarez-ManzanedaEJ,AltarejosJ,SalidoS, RamosJM.Synthesisofambrox®from(−)-sclareoland (+)-cis-abienol.Tetrahedron.1993;49:10405–10412.

7.SchalkM,PastoreL,MirataMA,etal.Towardabiosynthetic routetosclareolandamberodorants.JAmChemSoc. 2012;134:18900–18903.

8.FarboodMI,MorrisJA,DowneyAE.Processforproducingdiol andlactoneandmicroorganismscapableofsame.1990;US Patent4,970,163.

9.FarboodMI,WillisBJ.Processforproducingdiolandfuran andmicroorganismcapableofsame.1986;USPatent 4,798,799.

10.TrikkaFA,NikolaidisA,AthanasakoglouA,etal.Iterative carotenogenicscreensidentifycombinationsofyeastgene deletionsthatenhancesclareolproduction.MicrobCellFact. 2015;14:60–79.

11.WangH,WangL,YangH,etal.Comparativeproteomic insightsintothelactateresponsesofhalophilicSalinicoccus roseusW12.SciRep.2015;5:13776.

12.ShevchenkoA,WilmM,VormO,MannM.Mass

spectrometricsequencingofproteinsfromsilver-stained polyacrylamidegels.AnalChem.1996;68:850–858. 13.SteffanJS,McAlister-HennL.Structuralandfunctional

effectsofmutationsalteringthesubunitinterfaceof mitochondrialmalatedehydrogenase.ArchBiochemBiophys. 1991;287:276–282.

14.MarchittiSA,BrockerC,StagosD,VasiliouV.Non-P450 aldehydeoxidizingenzymes:thealdehydedehydrogenase superfamily.ExpertOpinDrugMetabToxicol.2008;4:697–720. 15.Lopez-BuesaP,PfundC,CraigEA.Thebiochemical

propertiesoftheATPaseactivityofa70-kDaheatshock protein(Hsp70)aregovernedbytheC-terminaldomains. ProcNatlAcadSciUSA.1998;95:15253–15258.

16.DattaK,FuentesJL,MaddockJR.TheyeastGTPaseMtg2pis requiredformitochondrialtranslationandpartially suppressesanrRNAmethyltransferasemutant,mrm2.Mol BiolCell.2005;16:954–963.

Referências

Documentos relacionados

Therefore, both the additive variance and the deviations of dominance contribute to the estimated gains via selection indexes and for the gains expressed by the progenies

The Sugarcane Expressed Sequence Tag (SUCEST) transcriptome project has allowed the identification of sev- eral orthologues genes in other species that have been shown to

Fresh matter weight (FW) and dry matter weight (DW) seedlings of different cultivars of cowpea, submitted to salt stress.. Petrolina,

Quanto ao impacto sobre o meio ambiente, pode-se afirmar que o uso das rotatórias é predominante para aqueles que estavam na pista e entraram na cidade ou aqueles que

A conventional estimate is that 1 RPKM (reads per kb per million reads) of mRNA represents approximately one transcript copy per cell in human cells [14].. If we liberally estimate

(2008) Global gene expression patterns and induction of innate immune response in human laryngeal epithelial cells in response to Acinetobacter baumannii outer membrane protein

In addition, recru- descence of infection has been observed in the first seven days or in infections in which the parasitemia is not con- trolled in the

Dado estes pontos conclusivos do estudo, há o entendimento de que empreendimentos solidários como o estudado apresentam diversos impactos econômicos e sociais