• Nenhum resultado encontrado

Preliminary studies of new strains of Trametes sp. from Argentina for laccase production ability

N/A
N/A
Protected

Academic year: 2021

Share "Preliminary studies of new strains of Trametes sp. from Argentina for laccase production ability"

Copied!
11
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Preliminary

studies

of

new

strains

of

Trametes

sp.

from

Argentina

for

laccase

production

ability

María

Isabel

Fonseca

,

Marcos

Raúl

Tejerina,

Silvana

Soledad

Sawostjanik-Afanasiuk,

Ernesto

Martin

Giorgio,

Mónica

Lucrecia

Barchuk,

Pedro

Darío

Zapata,

Laura

Lidia

Villalba

LaboratoriodeBiotecnologíaMolecular,MódulodeBioquímicayFarmacia,FacultaddeCienciasExactasQuímicasyNaturales,UNaM, Posadas,Misiones,Argentina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22April2012

Accepted6June2015

Availableonline2March2016

AssociateEditor:MiguelJuan

Beltran-Garcia

Keywords:

Whiterotfungi

Trametes

Laccase

Manganeseperoxidase

Cu2+response

a

b

s

t

r

a

c

t

Oxidativeenzymessecretedbywhiterotfungicanbeappliedinseveraltechnological

pro-cesseswithinthepaperindustry,biofuelproductionandbioremediation.Thediscoveryof

nativestrainsfromthebiodiverseMisiones(Argentina)forestcanprovideusefulenzymes

forbiotechnologicalpurposes.Inthiswork,weevaluatedthelaccaseandmanganese

per-oxidasesecretionabilitiesoffournewlydiscoveredstrainsofTrametessp.thatarenative

toMisiones.Inaddition,thecopperresponseandoptimalpHandtemperatureforlaccase

activityinculturesupernatantsweredetermined.

TheselectedstrainsproducedvariableamountsoflaccaseandMnP;whenCu2+wasadded,

bothenzymesweresignificantlyincreased.Zymogramsshowedthattwoisoenzymeswere

increasedinallstrainsinthepresenceofCu2+.StrainBshowedthegreatestresponseto

Cu2+addition,whereasstrainAwasmorestableattheoptimaltemperatureandpH.Strain

Ashowedinterestingpotentialforfuturebiotechnologicalapproachesduetothesuperior

thermo-stabilityofitssecretedenzymes.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In recent years, many innovative technologies have been

developed to reduce pollution and generate ecologically

friendly energy. Searching for new promising

microorgan-isms with significant enzymatic secretion systems has

providedinnovativebiotechnologicalresources.Theprovince

ofMisioneshasoneofthehighestbiodiversitiesinArgentina,

Correspondingauthor.

E-mail:biotecmol2010@gmail.com(M.I.Fonseca).

andtogetherwiththeYungasregion,theseregionsarethe

bio-logicallyrichestnaturalareasofArgentina.However,thestudy

offungi,especiallymicrofungi,hasbeenneglected,andmany

fungiawaitextensivestudies.Thiswonderfulnaturalareais

amycologist’sparadise.1Manywhiterotfungi(WRF)species

growinforestareasofMisionesandproduceacomplex

sys-temofligninolyticenzymeswithbiotechnologicalpotential.

Ligninperoxidase(Lip),manganeseperoxidase(MnP)and

laccase (Lac) are the most widely distributed ligninolytic

http://dx.doi.org/10.1016/j.bjm.2016.01.002

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

enzymes.2–4Thesynthesisoftheseenzymesisregulatedby

variousfactors,andheavymetalssignificantlyaffectenzyme

production.5–7TemperatureandpHalsogreatlyinfluencethe

activityandthermostabilityofthesecretedenzymes.8

Principallydue tothe polymorphism ofBasidiomycetes,

diversetaxonomicalcriteriahavebeenusedtoclassifythese

fungi; therefore, the correct name for many taxa used in

variousstudieshaveremainedunclear.9,10However,the

phy-logeneticdiversityofstrainsisrelatedtotheenvironmental,

ecologic, geographic and geneticconditions inwhich they

live.11 Molecular techniques are useful tools to study the

phylogenyand intraspecificgeneticvariations, andprovide

essential information for understanding enzyme variation

amongstrains ofthe same fungal species.9,12 Theinternal

transcribedspace (ITS)regionsofribosomalDNAhavealso

beenusedtoanalyzevariousgeneraandspeciesoffungi.13–15

The sequences of these regions are more diverse among

species than within species.16 The aim of this work was

to evaluate the laccase and manganese peroxidase

secre-tion abilities of new strains of Trametes sp. isolated from

Misiones, Argentina. The effect of the addition of Cu2+,

the thermostability, and the optimal pH and temperature

of laccase activity in the culture supernatants were also

analyzed.

Materials

and

methods

Microorganismsandcultureconditions

WhiterotfungistrainsA,B,C,andEwereprovidedbythe

Cul-tureCollectionoftheFacultyofForestry,NationalUniversityof

Misiones,Argentina;thestrainsweresubjectedtomolecular

phylogeneticclassificationasdescribedbelow.Stockcultures

weremaintainedonmaltagarat4◦C.

Toprepareliquidinocula,eachfunguswasgrownfor5–7

daysonmaltagarplates (MEA:20gL−1agar,12.7gL−1malt

extract),and36-mm2agarplugswerethencutfromtheagar

andtransferredto100-mLErlenmeyerflaskscontaining20mL

ofmedium(ME:12.7gL−1maltextractand5gL−1cornsteep

liquor)andincubatedat29◦Cinsteady-stateconditions.

Biomassandproteindetermination

Biomassgrowthwasdeterminedbymeasuringthemycelium

dry weight, and proteinsin the conditioned mediumwere

measuredusingtheBradfordmethod.

Liquid medium was separated from the supernatant

mycelium by filtering through fiberglass filters (GF/C) in a

Büchnerfunnelandfrozenat−20◦Cuntiluse.Biomassdry

weightwasdeterminedbymeasuringthedifferencebetween

thefiberglassfilter(GF/C)weightbeforefiltrationandafter

fil-trationandsubsequentdryingat80◦Cuntilaconstantweight

wasattained.

Proteinwasdeterminedusingamicro-testbasedonthe

Bradford technique (BioRad) following the manufacturer’s

instructions;bovineserumalbuminwasusedasthestandard.

Secreted protein concentrations are expressed in units of

␮g/mL.

Enzymeassays

Laccase(EC1.10.3.2)activitywasmeasuredat30◦Cusing1mL

of5mM2,6-dimethoxyphenol(DMP)in0.1Msodiumacetate

buffer pH 3.6 and 50␮L of filtered supernatant mycelium.

Absorbancewasmonitoredat469nm(E469=27.5mM−1cm−1)

using aShimadzuUV-3600spectrophotometer. Onelaccase

activityunitwasdefinedastheamountofenzymerequired

tooxidize1␮molofDMPperminat30◦Candisexpressedin

unitsofUmL−1.7

Manganese peroxidase (EC 1.11.1.13) activity was

mea-sured at 30◦C using 2.5mLof 0.1M phenol red in sodium

dimethylsuccinatebufferpH4.5and50␮Loffiltered

super-natant mycelium. The reaction was initiated using 20␮L

of 0.2mM H2O2. Absorbance was monitored at 610nm

(E610=22mM−1cm−1)usingaShimadzuUV-3600

spectropho-tometer.OneMnPactivityunitwasdefinedastheamountof

enzymerequiredtooxidize1␮molofphenolredperminat

30◦CandisexpressedinunitsofUmL−1.17

Polyacrylamidegelelectrophoresis

To identify the number of isoenzymes involved in Cu2+

induction, thecrude enzymewas subjectedtonative

poly-acrylamide gel electrophoresis (ND-PAGE) and denaturing

polyacrylamide gelelectrophoresis(SDS-PAGE)in7.5%gels.

AfterresolvingtheproteinsusingND-PAGE,thegelwas

incu-batedin0.1Msodiumacetatebuffercontaining5mMDMP

beforedetectinglaccaseactivity.18Afterincubatingthegelfor

5min,thedyesolutionwasdiscarded;thegelwas

immedi-atelyscanned usinga scanner(HPDeskjetF300All-in-One

series).

Themolecular weight oftheisoenzymes was evaluated

using 7.5%SDS-PAGEincluding amolecular weightmarker

(Kaleidoscope, BioRad).SDSwasremovedbyincubatingthe

gelin50mMsodiumacetatecontaining0.2%TritonX-100and

thenstainingwith5mMDMPtodetectlaccaseactivity.19

Determinationofthethermostabilityandoptimal temperatureandpHoflaccaseactivityinculture supernatants

Thelaccaseactivityintheculturesupernatantswastested

atpH3.6–5.6in50mMsodium–acetatebufferusingDMPas

substrate.AfterdeterminingtheoptimumpH,laccaseactivity

wasmeasuredintherange10–80◦C.

Thethermostabilitywasevaluatedattheoptimalvaluesof

pHandTusingculturesupernatantsthathadbeenincubated

for7h.

DNAextraction

Fungimyceliawerefilteredandwashedwith0.1MTris–HCl

pH 8 and 0.02M EDTA. DNA was extracted inbuffer

solu-tion (100mM Tris–HCl pH 8, 1.5M NaCl, 50mM EDTA pH

8) at 60◦C containing 0.1mgmL−1 proteinase K, 10mM

␤-mercaptoethanoland2%SDS.TheDNAwaspurifiedwith

chloroform,isoamylalcohol(24:1)and3Mpotassiumacetate

(3)

ITSamplificationandsequencinganalysis

ITS-1(partialsequence),the5.8SrRNAgene,ITS2,andthe

28SrRNAgene(partialsequence)region,(ITS1-5.8S-ITS2-28S),

were amplified and sequenced; the sequences were then

depositedinGenBank.

The genes were amplified using the primer sequences

describedbyWhiteetal.16PCRwascarriedoutin20-␮L

reac-tionscontaining1×KClbuffer,2.5mMMgCl2,200␮MdNTPs,

10pmol ofeach primer, 0.5U Taq polymeraseand 25ngof

DNA. ThePCR program was as follows: 4min at 94◦C; 35

roundsof40s94◦C,40s50◦C,and40s72◦C;andfinal

exten-sionfor10minat72◦C.Allfragmentswerethensubmittedto

asequencingservice(Macrogen,Korea).

All sequences were analyzed using Chromas Lite 2.01,

BLASTn, BioEdit and CLUSTAL W before phylogenetic tree

construction.Phylogeneticanalysiswascarriedoutusingthe

T.N.T.program.20 Gaps(indels) were treatedas a 5th state

becausetheyrepresentedinsertion–deletionevents.The

anal-ysisincluded42sequences,andDaedaleopsistricolor,Hexagonia

nitidaand H.mimeteswereusedasoutgroups.4,21,22 Because

thedatasetwasreduced,theheuristicsearcheswere

imple-mentedusing1000RAS,savingonetreeperTBR.Toassessthe

supportfortheidentifiedgroups, bootstrapand parsimony

jack-knifinganalyseswereperformed.23 Boththe bootstrap

andjack-knifeanalysesincluded1000resampledmatrices.For

eachresampledmatrix,weperformed100RAS+TBRcycles.

Statisticalanalysis

Two-wayANOVAandBonferroni’sposttestwereperformed

usingGraphPadPrism4.00forWindows(GraphPadSoftware,

SanDiego,CA,USA).

Results

Culturalcharacteristicsandphylogeneticstudiesofnew Trametesstrains

Inthiswork,weworkedwithfourstrainsofwhiterotfungi

thatwere characterizedasmembers ofthe Trametesgenus.

ThefourstrainsshowedwhitemyceliadevelopmentonMEA

but exhibited differentculturalcharacteristics: strainsA, C

andEshowedcotton-likecolonies,whereasstrainBshowed

colonieswithsmoothersurfaces(Fig.1).

To conduct phylogenetic studies, we determined the

nucleotidesequenceoftheITS1-5.8S-ITS2-28Sregionofstrain

A (538bp), strain B (548bp), strain C (547bp), and strain

E(475bp);eachfungusexhibited97%sequenceidentitywith

Strain A

Strain B

Strain C

Strain E

Fig.1–CulturalcharacteristicsofTrametessp.strainsonMEA.Fungiweregrownfor7daysonmaltagarplates (20gL−1agar,12.7gL−1maltextract).Lettersindicatestraincodes.

(4)

Fig.2–ITSregionof5.8SrDNAphylogeneticrelationships betweenstrains.Groupsupportwasassessedusing1000 bootstrappingandparsimonyjack-knifingreplicates. Numbersabovebranchescorrespondtojack-knifesupport. Bootstrapsupportsaregiveninparentheses.

Trameteshirsuta,TrametesversicolorandTrametesvillosa.Blast

andFungiBarcode(http://www.fungalbarcoding.org)searches

showed that the fungi were closely related to the genus

Trametesamongtheexaminedbasidiomycetes.Basedonthe

resultsofthe Blastsearch,subsequent phylogenicanalysis

was performedusing mainlyspeciesfrom thegenus

Tram-etes. Sequencesobtainedfromallstrains weredepositedin

GenBank underthe followingaccess numbers:HM222419.2

(strainA);HM622150.1(strainB);HM622151.1(strainC)and

HM622153.1(strainE).

Aphylogenictreewasobtainedfromoverlappingdatasets

of the ITS region(Fig. 2).Informative sites (definedby the

presenceofanygaps,ambiguitysymbols,andnonconsensus

sequenceateachsite)includedthoseat88/612.After

remov-ing poorly alignedpositions anddivergent regions ofDNA,

the ITSsequences were aligned over 612 characters, 88 of

whichwereparsimoniouslyinformative.Parsimonyanalysis

resultedin80equallyparsimonioustreesthatwere185steps

long.Bothbootstrapandjack-knifeprocessesyieldednearly

thesametopology,andtheirsupportvalueswerevery

simi-lar.Theresultingtreesshowedthatallstrainsstudiedinthis

workformedamonophyleticcladethatwascloselyrelatedto

T.villosa.

Biomass,andproteinandoxidativeenzymesecretion

Thebiomassandsecretedproteinintheliquidmediumwere

significantly different among the strains (Fig. 3). Strain A

showedasignificantincreaseinbiomasswithdaysofculture

(p<0.001).All strainssecretedsimilar quantitiesofprotein,

andthehighestcontentswerefoundoncultureday10.

To verify thelaccaseand MnPsecretion patterns ofthe

analyzedstrains,allfungiwereculturedfor7daysinliquid

mediumcontainingmaltextract.Thestrainssecretedlaccase

todifferingextents(Table1).StrainsAandCshowedthe

high-estamountsoftotallaccase,andstrainCshowedthehighest

0.15

A

B

60 40 20 0 6 8 10 12 0.10 0.05 0.00 6 8 10 Culture day References

Strain A Strain B Strain C Strain E Culture day

Biomass (g)

Secreted proteins

(µg/ml)

12 14 14

Fig.3–Biomass(a)andsecretedproteins(b)ofTrametessp.strains.AllstrainswereculturedonMEmediumfor14daysat 29◦CandpH4.8.Biomassaccumulationandamountofsecretedproteinsweredeterminedforallsub-strainsat7,10and14 culturedays.Allexperimentswerecarriedoutintriplicate.

(5)

3500 3000 2500 2000 1500 1250 Enzimatic activity (U mL − 1)

Strain A

Strain B

Strain C

Strain E

1000 750 500 250 7 7 0 0.2 0.5 0 0.2 0.5 0 0.20.5 10 14 10 Culture day Day Cu++ 7 0 0.2 0.5 0 0.2 0.5 0 0.20.5 10 14 Day Cu++ 14 7 10 Culture day 14 7 7 0 0.2 0.5 0 0.2 0.5 0 0.20.5 10 14 10 Culture day Day Cu++ 7 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5 10 14 Day Cu++ 14 7 10 Culture day 14 0 3500 3000 2500 2000 1500 1250 Enzimatic activity (U mL − 1) 1000 750 500 250 0 3500 3000 2500 2000 1500 1250 Enzimatic activity (U mL − 1) 1000 750 500 250 0 3500 3000 2500 2000 1500 1250 Enzimatic activity (U mL − 1) 1000 750 500 250 0

Fig.4–EffectofCu2+onlaccaseactivityinthestudiedTrametessp.strains.AllstrainswereculturedonMEfor14daysinthe

presenceorabsence()of0.2mM( )and0.5mMCu2+().TheexperimentswerecarriedoutinMEmedium,andenzyme activitywasmeasuredon7,10,and14daysofculture(uppergraphs).Alldeterminationswerecarriedoutintriplicate,and theresultsareexpressedasUmL−1.LaccaseisoenzymesweredetectedusingND-PAGEanalyseswithDMP(lowergraphs).

Table1–LaccaseandMnPsecretionbyTrametessp. strains. Laccase MnP Enzymaticactivity UmL−1 Enzymaticactivity UmL−1 StrainA 190.74±15.33 60.42±29.32 StrainB 78.76±12.74 37.44±19.74 StrainC 325.00±19.05 Undetectable StrainE 19.65±4.21 Undetectable StrainsweregrownonMEundersteady-stateconditionsat29◦C andpH4.5.

Enzymaticactivitiesweremeasuredonday7ofcultureintriplicate. Dataareshownasmedians±SD.Determinationswerecarriedout intriplicate.

productionoflaccaseperunitofbiomassproduction(Ug−1of mycelia).OnlystrainsAandBshoweddetectablequantities ofMnPontheday7ofculture.

EffectoftheadditionofCu2+onlaccaseandmanganese

peroxidaseactivity

Previouslypublisheddatashowedthatthe additionofCu2+

increases laccaseactivity in Basidiomycetes.To verify that thisalsooccursinthenewlydiscoveredstrains,laccase activ-itywasmeasuredintheabsenceandpresenceof0.2mMand 0.5mMCu2+.TheexperimentswerecarriedoutinMEmedium,

andenzymeactivitywasmeasuredondays7,10and14of culture(Fig.4).

(6)

Strain A

500 400 300 200 Enzimatic activity (U mL − 1) 150 100 50 0 7 10 14 Culture day 500 400 300 200 Enzimatic activity (U mL − 1) 150 100 50 0 7 10 14 Culture day 500 400 300 200 Enzimatic activity (U mL − 1) 150 100 50 0 7 10 14 Culture day 500 400 300 200 Enzimatic activity (U mL − 1) 150 100 50 0 7 10 14 Culture day

Strain B

Strain C

Strain E

Fig.5–EffectofCu2+onMnPactivityinTrametessp.strains.AllstrainswereculturedonMEAfor14daysinthepresenceor

absence()of0.2mM( )and0.5mMCu2+().TheexperimentswerecarriedoutinMEmedium,andenzyme

measurementsweremadeondays7,10and14ofculture(uppergraphs).Alldeterminationswerecarriedoutintriplicate, andtheresultsareexpressedasUmL−1.

Theaddition ofCu2+ ledtoasignificantincreasein

lac-case secretion in all strains (p<0.05). Maximum secretion

occurred upon the addition of0.2mMCu2+ tostrains A, B

andE.StrainCexhibitedmaximallaccasesecretionuponthe

additionof0.5mMCu2+.StrainBrespondedmoststronglyto

Cu2+inductiononday7ofculture(3085.5UmL−1;i.e.,39.5-fold

greaterthanthesecretionwithoutCu2+(78.7UmL−1)).Strain

ErespondedmoststronglytoCu2+inductiononday10of

cul-ture(1104.5UmL−1);i.e.,33.2-foldgreaterthanthesecretion

withoutCu2+(33.2UmL−1);p<0.001).However,strainsAand

Cexhibitedonly4.67-foldinductionbyCu2+.StrainAsecreted

891UmL−1oflaccaseinthepresenceofCu2+and191UmL−1

initsabsence.StrainCsecreted1519UmL−1oflaccaseinthe

presenceofCu2+and325UmL−1initsabsence.

Aprevious report described that the number oflaccase

isoenzymesvariesamongBasidiomycetes.7 Toexaminethe

presenceoflaccaseisoenzymesandtheirdifferentialresponse

toCu2+induction,ND-PAGEanalyseswithDMPwerecarried

out(Fig.4).Zymogramanalysisshowedaclearincreaseinthe

densityoftwolaccasebandsforallstrainsinthepresenceof

Cu2+.TheupperbandsappearedforstrainsA,BandEonlyin

thepresenceofCu2+,whereasstrainCshowedanupperband

intheabsenceofCu2+.UsingSDS-PAGEwithDMPdetection,

weestablishedthemolecularweightofthedetectedlaccase

bands:70kDaforthelowerbandand140fortheupperband.

WealsodeterminedMnPactivitiesunderbasalconditions

without theadditionofexogenousMn2+ inthepresenceof

0.2or0.5mMCu2+.AllstrainsshowedaclearincreaseinMnP

secretioninthepresenceofCu2+ (p<0.05).StrainBshowed

thehighestresponsetotheadditionofCu2+onday7of

cul-tureday;similaramountsofMnPweresecretedusingboth

Cu2+ concentrations(357.4UmL−1;9.5-foldhigherthanthat

intheabsenceofCu2+ (37.4UmL−1)).StrainAshowedhigh

MnPsecretioninthepresenceof0.2mMofCu2+ onday10

ofcultureday(102.7UmL−1;1.7-foldhigherthanthatinthe

absenceofCu2+ (58.6UmL−1)).StrainsCandEonlysecreted

MnP(invariableamounts)inthepresenceofCu2+(Fig.5).

ThermostabilityandtemperatureandpHoptimafor laccaseactivity

WedeterminedtheoptimalTandpHforlaccaseactivityin

culturesupernatantsinthepresenceandabsenceofCu2+.

Cul-turesupernatantsofallstrainsexhibitedmaximalactivityat

55◦CinthepresenceofCu2+.IntheabsenceofCu2+,strains

AandEexhibitedmaximalactivity at55◦C,strainB

exhib-itedmaximalactivityat50◦C,andstrainCexhibitedmaximal

activityat45◦C(Fig.6).

CulturesupernatantslackingCu2+ didnotshowany

(7)

6000 4000 2000 150 Enzymatic activity U L − 1 100 50 0 15 20 25 30 35 40 45 Temperature (°C) 50 55 60 65 70 75 6000 4000 2000 150 Enzymatic activity U L − 1 100 50 0 15 20 25 30 35 40 45 Temperature (°C) 50 55 60 65 70 75 80 6000 4000 2000 150 Enzymatic activity U L − 1 100 50 0 15 20 25 30 35 40 45 Temperature (°C) 50 55 60 65 70 75 6000 4000 2000 150 Enzymatic activity U L − 1 100 50 0 15 20 25 30 35 40 45 Temperature (°C) 50 55 60 65 70

Fig.6–EffectoftemperatureonlaccaseactivityinculturesupernatantsofTrametessp.strains.Allstrainswereculturedon MEfor14daysintheabsence(triangle)orpresenceof0.5mMCu2+().Theexperimentswereconductedbetween10and

80◦C.AlldeterminationswerecarriedoutintriplicateusingDMPassubstrate,andtheresultsareexpressedasUmL−1.

supernatantsincludingCu2+exhibitedmaximallaccase

activ-ityatpH3.6;themaximalactivityinthepresenceofCu2+was

greaterthanthatintheabsenceofcopper(13-foldforstrainA

(p<0.001),300-foldforstrainB(p<0.001),140-foldforstrainC

(p<0.001),and100-foldforstrainE(p<0.001);Fig.7).

To measure the thermostability of the enzyme, culture

supernatantswereincubated for7hatthe optimalpHand

T.Residuallaccaseactivitywasestimatedbasedonthe

high-estvalueobtained(100%).StrainAhadahalf-lifeof300minin

culturesupernatantsincludingCu2+andahalf-lifeof120min

insupernatantsincludingCu2+.StrainsB,CandEhada

half-life of 40min inthe presenceand in the absence of Cu2+

(Table2).

Discussion

In this work, weevaluated oxidativeenzymes secreted by

four newlydiscovered Trametesstrainsand focusedon

lac-case activity.These strains showed differences inbiomass

Table2–ResiduallaccaseactivityinculturesupernatantsincubatedatoptimaltemperatureandpH.

Time(min) Residualenzymaticactivity

StrainA StrainB StrainC StrainE

With0.5mM ofCu2+ Without Cu2+ With0.5mM ofCu2+ Without Cu2+ With0.5mM ofCu2+ Without Cu2+ With0.5mM ofCu2+ Without Cu2+ 0 100 100 100 100 100 100 100 100 20 91 113 82 92 63 65 81 92 40 55 97 58 61 52 47 69 32 60 59 96 31 58 43 54 36 7 120 56 51 36 13 31 12 23 8 180 52 49 32 14 30 – 18 – 240 48 36 27 – 17 – 10 – 300 56 32 29 – 13 – 10 – 360 40 31 26 – 13 – 6 – 420 45 – 24 – – – 6 –

(8)

4000 3000 2000 1000 150 100 50 0 Enzymatic activity U L –1 pH pH pH pH 3.63.8 4 4.24.44.64.8 5 5.25.45.6 4000 3000 2000 1000 150 100 50 0 Enzymatic activity U L –1 3.63.8 4 4.24.44.64.8 5 5.25.45.6 4000 3000 2000 1000 150 100 50 0 Enzymatic activity U L –1 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 4000 3000 2000 1000 150 100 50 0 Enzymatic activity U L –1 3.63.8 4 4.24.44.64.8 5 5.25.45.6

Fig.7–EffectofpHonlaccaseactivityinculturesupernatantsofTrametessp.strains.AllstrainswereculturedonMEfor14 daysintheabsence(triangles)orpresenceof0.5mMCu2+().TheexperimentswereconductedinthepHrange3.6–5.6

using0.1Msodiumacetatebuffer.AlldeterminationswerecarriedintriplicateoutusingDMPassubstrate,andtheresults areexpressedasUmL−1.

production,levelsofsecretedproteinsandlevelsofthemain

oxidativeenzymelaccase.

TheITS1 and ITS2 regions, which are separated bythe

conservedshort5.8SrRNA,mayexhibitnucleotidevariations

becausetheirtranscriptsareexcisedfromthefinalrRNA

frag-ments.Consequently,wedecidedtostudythesesequences.

Sequencesarecommonlyusedtoinferphylogenetic

relation-shipsofcloselyrelatedspeciesandtoassessthevariability

presentwithinapopulation;e.g.,amonggeographically

dis-tantisolates(ecotypes).10 Althoughaphylogenetic analysis

oftheITS1-5.8S-ITS2-28S regionsrevealed that the studied

strainsare closelyrelatedtothe T.villosacladebranch, we

wereonlyabletoidentifythestrainsatthegenuslevel.T.

vil-losawasrecentlyisolatedinGuadeloupeandArgentina.4More

extensiveITStreeswere constructedusingall theavailable

ITS1-5.8S-ITS2sequencesofgoodqualitythatwere520–560nt

inlengthfromTrametesspp.andmembersofcloselyrelated

genera(datanotshown);thesetreesindicatethatthesestrains

might representdivergent isolatesof the speciesT. villosa.

Finally,toclarifythetaxonomicpositionofthestrains,itwill

benecessarytocomplementourmolecularstudieswith

clas-sicalgeneticanalysis; e.g.,basedon matingexperiments.24

TheTrametesspeciesidentifiedandstudiedinthisworkare

relatedtothethirdcladeobtainedbyWeltietal.,4

compris-ingagroupofspecimensfromTrametespubescenstoT.hirsute.

Three distinct sub-clades have been identified within this

clade,andthesub-cladeofinterestherecomprisesgenuine

Trametesspecies(i.e.,withstrictlyporoidhymenophores):T. versicolor,T.hirsuta,T.ochracea,T.suaveolensandT.chineseclose

toT.junipericola,T.socotrana,T.pubescensandT.villosa.Mostof

thesespecies,exceptforT.socotranaandT.villosa,arefoundin

temperateareas.

In other fungal species, such as Trametes trogii,

previ-ousdata indicatedthatconcentrations ofCu2+ upto1mM

are associated withincreased mycelial growth.25 However,

the response toCu2+ isaffected byconcentration because,

atextremely high doses,decreased fungal growth leadsto

decreasedlaccaseactivity.Ramsayetal.26foundthatin

Tri-chodermavirensandRoseaclonostachys,highconcentrationsof

toxic metals,such asCu2+, decrease the carbon utilization

rate.26ThiseffectmightoccurbecausethepresenceofCu2+

decreasestheabilityoffungitouseresourcessuchascarbon

thatcanthereforenotbeusedforfungal nutrition.27Some

authors have suggestedthat fungidevelop mechanismsto

protectthemagainstthetoxiceffectofions;suchmechanisms

includetheimmobilizationoftheseionsthroughthe

intra-cellularandextracellularproductionoforganicacid-chelating

compoundsandsiderophores.28

Some authors have demonstrated a close association

between proteinsecretion andenzyme activity.29 Ourdata

showed an average correlation between secreted proteins

and laccase activity,indicating that proteinconcentrations

are not a good indicator of enzyme activity; thus,laccase

activity measurementsare warranted. Itis usefultoreport

enzymeactivity inrelationtobiomasslevels(expressedas

Ug−1ofmycelium)30becausethisparametercanrevealthe

trueincreaseinenzymeactivityaccountingforfungalgrowth.

(9)

laccasesecretion didnotalways followacommon pattern;

thus,generalizationsusedtopredictthebehaviorofagiven

fungusareimpeded.31

IntermsoftheeffectofCu2+ onlaccaseproduction,our

results are comparableto those obtained in other studies

onT.trogii(Levinetal.,2001),25 Pleurotusostreatus5,32 andT.

pubescens33;inthesespecies,enzymeactivitywasincreased

inthepresenceofCu2+.EnzymeactivitywasaffectedbyCu2+

concentrations,andactivitywashigheratlower

concentra-tions,asforstrainsA,BandE.Someauthorshavedescribed

howCu2+ interactswiththeACE transcription factor-1and

thereby induce lac gene expression.34,35 However, not all

lac genes respond equally to this transcription factor and

somegenesmightberegulatedbyalternativeroutes.These

datacouldexplainthepresenceofCu2+-inducibleand

non-inducible isoenzymes.Our study foundtwo Cu2+-inducible

laccaseisoenzymeswithdifferentresponsestoCu2+,as

pre-viouslydescribed.7,11,36Allstrainsshowedanincreaseinthe

activityofbothisoenzymesinthepresenceofCu2+.Thisisin

agreementwiththeclusteringresultsobservedinthe

phylo-geneticstudy.

MnPactivitywasaffectedinallstrainsbythepresenceof

Cu2+.Thiscouldbeduetoametalresponseelement-binding

transcriptionfactor,consistentwithpreviousdataindicating

thepossibleregulationofMnPbyextracellularconcentrations

ofmetalions, suchasCu2+ andMn2+.37–39 Inthis context,

Alvarezetal.35observedaneffectofCu2+ontheexpression

ofgenes encodingligninolytic laccase(lcs) and manganese

peroxidase(mnp)inCeriporiopsissubvermispora.

Enzymaticactivity isaffected byproteins, mineralsand

chemicalsthatarepresentinculturesupernatants.40,41 The

thermostabilityandthepHandtemperatureoptimaof

isoen-zymesshouldbedeterminedunderspecificconditions.41–45

OurdatashowedthatlaccaseactivitywasmaximalatpH3.6,

consistentwithreporteddata.46Thisvalueissomewhatlower

thantheusualpHrangeforenzymeactivity(between4and

6).2,47

Strain B did not show significant variation in enzyme

activityacrossthestudiedpHrange,indicatingthe

biotech-nologicalpotentialofthisstraintoperformunderacidicpH

bioprocessconditions.Similarresultshavebeenreportedby

Sathishkumaretal.48

Theoptimaltemperatureforlaccaseactivityinthe

pres-ence of Cu2+ was 55C, consistent with published data.49

However,wefoundsomedifferencesinculturesupernatants

lackingCu2+(strainsBandC);thesedifferencesmightbedue

todifferencesinglycosylationamongtheisoenzymes.46

Thermostability is a desired property for industrial

enzymeapplicationbecauseitreducesthedemandforfresh

enzyme.50,51Ourdataindicatedextendedlaccasestabilityin

strainAattheoptimaltemperatureandpH;50%laccase

activ-ityremainedat4h,and40%activityremainedat7h.

Inconclusion, all strains were affected by the presence

ofCu2+,which increasedlaccaseand MnPactivity.Laccase

increasesoccurred in thesame strain due tothe presence

oftwoisoenzymesthatrespondtoCu2+.StrainAwasvery

responsive to Cu2+ and presented good thermostability,

demonstratingitspotentialforfuturebiotechnological

appli-cations. This work constitutes a biochemical study of the

potential of newly discovered strains of WRF that secrete

laccase and their response to the presence of Cu2+. This

and previous studies6,7,52 aimed to evaluate the capacity

of newly discovered native fungi to produce enzymes for

biotechnologicalapplications.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

PartoftheexperimentalworkwasfundedbytheSecretaría

de Ciencia yTecnologíade laUniversidadNacional(grants

forinnovationprojects).MIFisacareermember,EMGhasa

postdoctoralstudiesfellowship,andSSSAandMLBhave

fel-lowshipsfordoctoralstudiesfromtheConsejoNacionalde

InvestigacionesCientíficasyTécnicas(CONICET-Argentina).

r

e

f

e

r

e

n

c

e

s

1.WrightJE,WrightAM.ChecklistofthemycobiotaofIguazú

NationalPark(Misiones,Argentina).BolSocArgentBot.

2005;40:1–2.

2.Ca ˜nasAI,CamareroS.Laccasesandtheirnaturalmediators:

biotechnologicaltoolsforsustainableeco-friendlyprocesses.

BiotechnolAdv.2010;28:694–705.

3.LundellTK,MäkeläMR,HildénK.Lignin-modifyingenzymes

infilamentousbasidiomycetesecological,functionaland

phylogeneticreview.JBasicMicrobiol.2010;50:5–20.

4.WeltiS,MoreauPA,FavelA,etal.Molecularphylogenyof

Trametesandrelatedgenera,anddescriptionofanewgenus

Leiotrametes.FungalDiv.2012;55:47–64.

5.BaldrianP,GabrielJ.LignocellulosedegradationbyPleurotus

ostreatusinthepresenceofcadmium.JFEMSMicrobiolLett.

2003;220:235–240.

6.PreusslerCA,ShimizuE,VillalbaLL,ZapataPD.Inducción

concobredelaenzimalacasaenelhongodepudrición

blancaTrametesvillosa(Sw.:Fr.)Kreisel.RevCienciaTecnol.

2009;12:9–16.

7.FonsecaMI,ShimizuE,ZapataPD,VillalbaLL.

Laccase-producingabilityandtheinducingeffectofCopper

onlaccaseproductionofwhiterotfunginativefrom

Misiones(Argentina).EnzymeMicrobTechnol.2010;46:

534–539.

8.FarinasCS,LoyoMM,BaraldoAJ,TardioliPW,NetoVB,Couri

S.Findingstablecellulaseandxylanase:evaluationofthe

synergisticeffectofpHandtemperature.NewBiotechnol.

2010;27:810–815.

9.ZervakisGI,MoncalvoJM,VilgalysR.Molecularphylogeny,

biogeographyandspeciationofthemushroomspecies

Pleurotuscystidiosusandalliedtaxa.Microbiology.

2004;150:715–726.

10.HildenK,HakalaTK,MaijalaP,LundellTK,HatakkaA.Novel

thermotolerantlaccasesproducedbythewhite-rotfungus

Physisporinusrivulosus.ApplMicrobiolBiotechnol.

2008;77:301–309.

11.DibaK,MirhendiSH,KordbachehP,JalalizandN.Single

strandconformationpolymorphismanalysisofPCR

amplifiedrDNAtodifferentiatemedicallyimportant

Aspergillusspecies.IranianJPublicHealth.2008;37: 52–59.

(10)

12.AtkinsSD,ClarkIM.Fungalmoleculardiagnostics:amini

review.JApplGenet.2004;45:3–15.

13.NagyLG,KocsubéS,PappT,VágvölgyiC.Phylogenyand

characterevolutionofthecoprinoidmushroomgenus

ParasolaasinferredfromLSUandITSnrDNAsequencedata.

Persoonia.2009;22:28–37.

14.ChenY,PriorBA,ShiG,WangZ.ArapidPCR-basedapproach

formolecularidentificationoffilamentousfungi.JMicrobiol.

2011;49:675–679.

15.SunJ,NajafzadehMJ,ZhangJ,VicenteVA,XiL,DeHoogGS.

MolecularidentificationofPenicilliummarneffeiusingrolling

circleamplification.Mycoses.2011;54:751–759.

16.WhiteTJ,BrunsSB,LeeTD,TaylorJW.In:InnisMA,Gelfand

DH,SminskyJJ,WhiteTJ,eds.Amplificationanddirect

sequencingoffungalribosomalRNAgenesforphylogenetics.San

Diego,CA:AcademicPublishers;1990:315–322.

17.KuwaharaM,GlennJK,MorganMA.GoldSeparationand

characterizationoftwoextracellularH2O2dependent

oxidasesfromlignolyticculturesofPhanerochaete

chrysosporium.FEBSLett.1984;69:247–250.

18.ManchenkoP.Handbookofdetectionofenzymeson

electrophoreticgels.USA:CRCPressInc.;1994.

19.MurugesanK,NamIH,KimYM,ChangYS.Decolorizationof

reactivedyesbyathermostablelaccaseproducedby

Ganodermaluciduminsolidculture.EnzymeMicrobTechnol.

2007;40:1662–1672.

20.GoloboffPA.Analyzinglargedatasetsinreasonabletime:

solutionforcompositeoptima.Cladistics.1999;15:

415–428.

21.KoKS,JungHS.MolecularphylogenyofTrametesandrelated

genera.AntonievanLeeuwenhoek.1999;75:191–199.

22.Tomˇsovsk ´yM,KolaríM,Pa ˇzoutováS,HomolkaL.Molecular

phylogenyofEuropeanTrametes(Basidiomycetes,

Polyporales)speciesbasedonLSUandITS(nrDNA)

sequences.NovaHedwigia.2006;82:269–280.

23.MoncalvoJM,LutzoniFM,RehnerSA,JohnsonJ,VilgalysR.

Phylogeneticrelationshipsofagaricfungibasedonnuclear

largesubunitribosomalDNAsequences.SystBiol.

2000;49:278–305.

24.KauserudH,SætreGP,SchmidtO,DecockC,SchumacherT.

Geneticsofself/nonselfrecognitioninSerpulalacrymans.

FungalGenetBiol.2006;43:503–510.

25.LevinL,JordanA,ForchiassinF,VialeA.Degradationof

anthraquinonebluebyTrametestrogii.RevArgMicrobiol.

2001;33:223–228.

26.RamsayLM,SayerJA,GaddGM.Stressresponsesoffungal

coloniestowardstoxicmetals.In:GowNAR,RobsonGD,

GaddGM,eds.Thefungalcolony.Cambridge:Cambridge

UniversityPress;1993:179–200.

27.FominaM,KarlR,GaddGM.Nutritionalinfluenceonthe

abilityoffungalmyceliatopenetratetoxicmetal-containing

domains.MycolRes.2003;107:861–871.

28.YudithG,MachucaA.Theeffectofcopperonthegrowthof

wood-rottingfungiandablue-stainfungus.WorldJMicrobiol

Biotechnol.2008;24:31–37.

29.MousoN,PapinuttiL,ForchiassinF.Efectocombinadodel

cobreypHinicialdelmediodecultivosobrelaproducción

delacasaymanganesoperoxidasaporStereumhirsutum

(Willd)Pers.RevIberoamMicol.2003;20:176–178.

30.ManubensA,CanessaP,FolchC,AvilaM,SalasL,Vicu ˜naR.

Manganeseaffectstheproductionoflaccaseinthe

basidiomyceteCeriporiopsissubvermispora.FEMSMicrobiolLett.

2007;275:139–145.

31.FonsecaMI,Fari ˜naJ,SanabriaN,VillalbaLL,ZapataPD.

Influenceofcultureconditionsonlaccaseproduction,

growthandisoenzymespatternsinnativewhiterotfungi

fromtheMisionesrainforest(Argentina).BioResources.

2013;8:2855–2866.

32.PalmieriG,CennamoG,FaracoV,AmoresanoA,SanniaG,

GiardinaP.Atypicallaccaseisoenzymesfromcopper

supplementedPleurotusostreatuscultures.EnzymeMicrob

Technol.2003;33:220–230.

33.GalhaupC,WagnerH,HinterstoisserB,HaltrichD.Increased

productionoflaccasebythewood-degradingbasidiomycete

Trametespubescens.EnzymeMicrobTechnol.2002;30: 529–536.

34.CamareroS,GarciaO,VidalT,etal.Anefficientbleachingof

non-woodhigh-qualitypaperpulpusinglacasse-mediator

system.EnzymeMicrobTechnol.2004;35:113–120.

35.AlvarezJM,CanessaP,MancillaRA,PolancoR,Santibá ˜nez

PA,Vicu ˜naR.Expressionofgenesencodinglaccaseand

manganese-dependentperoxidaseinthefungusCeriporiopsis

subvermisporaismediatedbyanACE1-likecopper-fist

transcriptionfactor.FungalGenetBiol.2009;46:104–111.

36.DantánGonzálezE,ViteVallejoO,MartínezAnayaC,Méndez

SánchezM,GonzálezMC,PalomaresLA.Productionoftwo

novellaccaseisoformsbyathermotolerantstrainof

Pycnoporussanguineusisolatedfromanoil-pollutedtropical

habitat.Folch-MallolJIntMicrobiol.2008;11:163–169.

37.BrownJA,JeffreyK,GlennT,MichaelH.Manganeseregulates

expressionofmanganeseperoxidasebyPhanerochaete

chrysosporium.JBacteriol.1990;172:3125–3130.

38.BoganB,SchoenikeB,LamarR,CullenD.Expressionoflip

genesduringgrowthinsoilandoxidationofanthraceneby

Phanerochaetechrysosporium.ApplEnvironMicrobiol.

1996;62:3697–3703.

39.GettemyJM,LiD,AlicM,GoldMH.Truncated-genereporter

systemforstudyingtheregulationofmanganeseperoxidase

expression.CurrGenet.1997;31:519–524.

40.PalmieriG,GiardinaP,BiancoC,FontanellaB,SanniaG.

Copperinductionoflaccaseisoenzymesintheligninolytic

fungusPleurotusostreatus.ApplEnvironlMicrobiol.

2000;66:920–924.

41.RajendranK,AnnuarMSM,KarimMAA.Optimizationof

nutrientlevelsforlaccasefermentationusingstatistical

techniques.Asia-PacJMolBiol.2011;19:73–81.

42.FarnetAM,CriquetS,TaggerS,GilG,LePetitJ.Purification,

partialcharacterization,andreactivitywitharomatic

compoundsoftwolaccasesfromMarasmiusquercophilus

strain17.CanJMicrobiol.2000;46:189–194.

43.GorbatovaON,StepanovaEU,KorolevaOV.Studiesofsome

biochemicalandphysicochemicalpropertiesofaninducible

formofextracellularlaccasefromthebasidiomyceteCoriolus

hirsutus.ApplBiochemMicrobiol.2000;36:272–277.

44.GalhaupC,HaltrichD.Enhancedformationoflaccase

activitybythewhite-rotfungusTrametespubescensinthe

presenceofcopper.ApplMicrobiolBiotechnol.2001;56:225–232.

45.RodríguezS,TocaJL.Industrialandbiotechnological

applicationsoflaccases:areview.BiotechnolAdv.

2006;24:500–513.

46.ShleevSV,MorozovaOV,NikitinaOV,etal.Comparisonof

physico-chemicalcharacteristicsoffourlaccasesfrom

differentbasidiomycetes.Biochimie.2004;86:693–703.

47.VillalbaLL,FonsecaMI,GiorgioM,ZapataPD.Whiterotfungi

laccasesforbiotechnologicalapplications.RecentPatDNA

GeneSeq.2010;4:106–112.

48.SathishkumarP,MurugesanK,PalvannanTJ.Productionof

laccasefromPleurotusfloridausingagro-wastesandefficient

decolorizationofReactiveblue198.BasicMicrobiol.

2010;50:360–367.

49.Niku-PaavolaM,FagerstromR,KruusK,ViikariL.

Thermostablelaccasesproducedbyawhite-rotfungusfrom

Peniophoraspecies.EnzymeMicrobTechnol.2004;35: 100–102.

50.JordaanJ,LeukesWD.Isolationofathermostablelaccase

(11)

mesophilicwhite-rotfungus.EnzymeMicrobTechnol.

2003;33:212–219.

51.NakataniM,HibiM,MinodaM,OgawaJ,YokozekiK,Shimizu

S.Twolaccaseisoenzymesandaperoxidaseofacommercial

laccase-producingbasidiomycete,Trametessp.Ha1.New

Biotechnol.2010;27:317–323.

52.ShimizuE,VelezRuedaJO,ZapataPD,VillalbaLL.Relación

entredegradacióndecolorantesyoxidacióndelignina

residualcausadosporGanodermaapplanatumyPycnoporus

sanguineusenellicornegrokraft.RevCienTecnol.

Referências

Documentos relacionados

Thermostability and organic cosolvent tolerance assays of the laccase produced at 37 °C indi- cated that the enzyme possessed fair thermostability with 50% of its initial activity at

As for the production of sperm, Duroc boars were inferior compared with Swedish Landrace and Large White boars, since their ejaculate volume was lower (P&lt;0.001) by 18.24

O volume seminal, concentração de espermatozóides, número de espermatozóides por ejaculado, número de montas por ejaculação e o tempo de reacção perante uma égua em

The influence of commercial catalase preparations (fungal and bovine origin) on laccase and peroxidase activity assays was evaluated using enzymatic extracts

Present study showed the ability of combined approach using laccase as remediation tool for the oxidation of xenobiotic compounds from the environment. Broad substrate

Laccase is one of the most important ligninolytic enzyme of the genus and the induction of laccase by phenolic compounds has been well described in several species,

PALAVRAS-CHAVE: surfactante não iônico; atividade enzi- mática; interferente endócrino. ABSTRACT: Bisphenol-A is currently considered an environmental pollutant, capable