• Nenhum resultado encontrado

Selection, isolation, and identification of fungi for bioherbicide production

N/A
N/A
Protected

Academic year: 2021

Share "Selection, isolation, and identification of fungi for bioherbicide production"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Selection,

isolation,

and

identification

of

fungi

for

bioherbicide

production

Angélica

Rossana

Castro

de

Souza

a

,

Daiana

Bortoluzzi

Baldoni

b

,

Jessica

Lima

a

,

Vitória

Porto

a

,

Camila

Marcuz

a

,

Carolina

Machado

a

,

Rafael

Camargo

Ferraz

d

,

Raquel

C.

Kuhn

a

,

Rodrigo

J.S.

Jacques

b

,

Jerson

V.C.

Guedes

c

,

Marcio

A.

Mazutti

a,∗ aUniversidadeFederaldeSantaMaria(UFSM),Departamentodeengenhariaquímica,SantaMaria,RS,Brazil

bUniversidadeFederaldeSantaMaria(UFSM),Departamentoemciênciadosolo,SantaMaria,RS,Brazil cUniversidadeFederaldeSantaMaria(UFSM),Departamentodeprotec¸ãodeplantas,SantaMaria,RS,Brazil dUniversidadeFederaldoPampa,Sant’AnadoLivramento,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19August2015

Accepted2May2016

Availableonline4October2016

AssociateEditor:FernandoDini

Andreote Keywords: Bioprospecting Diaporthe Bioproduct Liquidfermentation

a

b

s

t

r

a

c

t

Production ofa bioherbicide forbiological controlof weedsrequires a series ofsteps,

fromselectionofasuitablemicrobialstraintofinalformulation.Thus,thisstudyaimed

toselectfungiforproductionofsecondarymetaboliteswithherbicidalactivityusing

bio-logicalresourcesoftheBrazilianPampabiome.Phytopathogenicfungiwereisolatedfrom

infectedtissuesofweedsinthePampabiome.Aliquidsyntheticculturemediumwasused

forproductionofmetabolites.Thephytotoxicityoffungalmetaboliteswasassessedvia

bio-logicaltestsusingtheplantCucumissativusL.,andthemostpromisingstrainwasidentified

bymolecularanalysis.Thirty-ninefungiwereisolated,and28presentedsomephytotoxic

symptomsagainstthetargetplant.FungusVP51belongingtothegenusDiaportheshowed

themostpronouncedherbicidalactivity.TheBrazilianPampabiomeisapotentialresource

forthedevelopmentofnewandsustainablechemicalcompoundsformodernagriculture.

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Brazilhostsapproximately20%ofthewholeworld’s

biolog-icaldiversity, whichcanbeemployedasaresourceforthe

developmentofnewandsustainableecosystemmanagement

toolsand opportunitiesforbioprospecting.1 Thislarge

bio-diversityisdistributedwithinsixbiomes.Amongthose,the

Pampabiome,whichisrestrictedtopartofRioGrandedoSul

Correspondingauthor.

E-mail:mazutti@ufsm.br(M.A.Mazutti).

State,presentsdistinctcharacteristicsofvegetation,climate,

andsoiltypes,makingitauniqueecosystemontheplanet,

capableofmaintainingahighplantandanimaldiversity.

How-ever,PampaistheleastknownBrazilianbiomeintermsofits

biodiversity.2

Despiteitsimportance,Brazilianmicrobialdiversityisstill

considered largely unknown. Discovery of microorganisms

for use as a source of commercially exploitable products

maysupportprogramsfocusedontheapplicationof

biosyn-http://dx.doi.org/10.1016/j.bjm.2016.09.004

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

theticorbiodegradationprocesses.1,3Fungirepresentapart

ofthemicrofloraofnaturalecosystemsandmaybepromising

sourcesfortheproductionofvariouscompounds.Itis

esti-matedthatthereareabout150,300–263,900fungalspeciesin

Brazil.4Evidenceshowingthatbiologicalsourcescanprovide

naturalproductswithphytotoxic activity opensanew

per-spectiveforthepreservationofmicrobialspeciesinthePampa

biome.

Phytopathogenicfungiproducetoxinsthatmayplayarole

inthedevelopmentofplantdiseases.Weedsareasignificant

problemincropproduction,andtheirmanagementiscrucial

formodernagriculturetoavoidyieldlossesandtoensurefood

safety.Traditionalchemicalcontroloptionsarelimiteddueto

ecodegradation,healthhazards,andthedevelopmentof

her-bicideresistanceinweeds.5Herbicide-resistantweedsarethe

mainprobleminweedcontrolduetothenumberofweed

bio-typesresistanttoherbicidesthatconstantlyincreasesbythe

continuoususeofthe sameproductsforyears.6Inthelast

20years,nochemicalhasbeensynthesizedwithadifferent

modeofactionthanthosediscoveredsofar.7Suchcompounds

couldpresentaconsiderablepotentialasmodelsfor

develop-ingherbicideswithnewmodesofaction.8,9

Basedontheseaspects,themainobjectiveofthisworkwas

toisolatefungifromthePampabiomefortheproductionof

bioactivemoleculeswithherbicidalactivity.Thirty-nine

phy-topathogenicfungiwereisolated fromplantsofthe Pampa

biome.Theproductionofmetaboliteswasperformedinliquid

syntheticculturemedia.Thephytotoxicityofthefungiwas

assessedviabiologicaltests,andthemostpromisingstrain

wasidentifiedbymolecularanalysis.

Materials

and

methods

Isolationandselectionofmicroorganisms

Phytopathogenicfungiwereisolatedfrominfectedtissuesof

weedsofirrigatedriceandrangelandsatthreelocationsofthe

BrazilianPampabiome.Table1presentsthelocationsofthe

collectionsitesaswellastheweedscollectedateachlocation.

Thestrategyusedforcollectionwasbasedonselectingweeds

withsomesymptomsofinfection.Collectionwascarriedout

from December 2012toApril 2013indifferentareas ofthe

Pampabiome.Thesampleswerestoredpackedinplasticbags

andmaintainedat4◦CduringtransportationtotheLaboratory

ofBioprocesseswheretheisolationoffungiwascarriedout.

EachinfectedtissuewastransferredtoaPetridishcontaining

potatodextroseagar(PDA)andincubated at28◦Cforseven

daysinthedark.Afterthis,eachsamplewassubculturedthree

timestoobtainapureculture,whichwastransferredtoaPDA

slantinatesttubeandstoredat4◦C.

Liquidfermentation

Thegrowthofallphytopathogenicfungiisolatedinthe

pre-viousstepwascarriedoutinaliquidmedium,aimingatthe

productionofbioactivemoleculeswithherbicidalaction.For

thepre-inoculumproduction,myceliumfromeachtesttube

containingonefunguswasinoculatedonPDAinaPetridish

andincubatedforeightdaysat28◦C,whichwassufficientfor

thefungalgrowthtocovertheentiresurfaceoftheagar.

After-wards,theagarsurfaceinthePetridishwaswashedwith5mL

ofautoclavedwater,andthesuspensionwastransferredfor

fermentation.

Thefermentationswerecarriedoutin250-mLErlenmeyer

flasks containing125mLoffermentation mediumat28◦C,

120rpm for seven days (Innova 44R, New Brunswick). The

mediumwascomposedof(gL−1):glucose,10.0;yeastextract,

7.5;peptone,10.0;(NH4)2SO4,2.0;FeSO4·7H2O,1.0;MnSO4·H2O,

1.0;andMgSO4,0.5,andtheinitialpHwasadjustedto6.0.10

Afterthefermentation,cellswereseparatedby

centrifu-gationat4000rpmfor10min(Eppendorf,model5804R),and

thesupernatantwasfilteredthrougha0.45-␮mpolyvinylidene

fluoride(PVDF)membrane.Thefilteredsamplewasusedto

evaluateitsbioherbicidalactivityinthebioassay.Eachofthe

39fungiwasconsideredadifferentbioherbicide.

The activity of the bioherbicides obtained from the

phytopathogenic fungi was demonstrated using

cucum-ber (Cucumis sativus L., variety Wisconsin), a target plant

frequently used in bioassays of herbicides. A completely

Table1–Geographicalcoordinatesofcollectionpointsaswellastheinfectedweedscollectedforisolationoffungi.

Local Coordinates Infectedweed

Latitude Longitude

DonaFrancisca(DF) −29.634086 −53.353015 Commelinaerecta(Commelinaceae)

Solanumpaniculatum(Solanaceae)

Sagittariamontevidensis(Alismataceae)

Solanumerianthum(Solanaceae)

RestingaSeca(RS) −29.845675 −53.402069 Ipomoeatriloba(Convolvulaceae)

Sorghumhalepense(Poaceae)

VilaParaíso(VP) −29.325004 −54.958734 Conocliniummacrocephalum(Asteraceae)

Passifloraedulis(Passifloraceae)

Solanumstipulaceum(Solanaceae)

Solanumamericanum(Solanaceae)

Baccharisdracuntifolia(Asteraceae)

Eryngiumhorridum(Apiaceae)

(3)

randomizeddesign,composedof39treatments(eachselected

strainwas considered onetreatment) and four repetitions,

whereeachrepetitionrepresentedatraycontaining20

pro-pylene vessels with a volume of 200mL of a commercial

substrate(MacPlant®)withoutanytreatment,wasemployed.

Threeseedsweresownineachvessel, andafterthe

emer-gence, only one plant was maintained in each vessel and

transferredattheseedlingstagetoagreenhouselocatedat

theFederalUniversityofSantaMaria.Theseedsusedinthe

experimentwereobtainedfromalocalmarket anddidnot

undergoanytreatmentbeforeseeding.

Avolumeof30mLoffermentedbrothwasappliedatthe

sametimetoeachbioassayusingagardensprayer.Control

assayswereperformedusingtheculturemediuminsteadof

thefermentedbroth.After21days,plantinjurywasvisually

estimatedasapercentageofgrowthreductionincomparison

withtheuntreatedcontrols, where100%represented

com-pleteplantdeathand0%representednoeffect.11Inaddition,

other parameters were also investigated, including (i) the

heightoftheplant;(ii)thelengthoftheroot;(iii)freshweight

oftheaerialandrootparts;and(iv)dryweightoftheaerial

androotparts,whichwereevaluatedaftertheapplicationof

abioherbicide.

All treatments were normalized by dividing the value

obtainedinthetreatmentbythevalueobtainedinthecontrol

test. Basedontheplantdevelopment,the followingresults

wereobtained:“−”forinhibitionbetween0and0.95,“N”fora

zeroornon-significanteffect(0.95–1.05),and“+”foragrowth

effect(higherthan1.05).Alldataweresubjectedtotheanalysis

ofvariance(ANOVA)andtoTukey’stest(p<0.05)tocompare

themeans.

Fungalidentification

Themostpromisingfungusfortheproductionofa

bioherbi-cidewasidentified.FungalDNAwasextractedfromaliquots

Table2–Inhibitoryeffectofthefermentedbrothobtainedafterfermentationofeachisolatedfungusonthetargetplant (C.sativus).

Treatment Height(cm) Freshweight(g) Dryweight(g) Phytotoxiceffect

Aerial Root Aerial Root Aerial Root

DF11 1.23 (+) 0.98 N 1.30 (+) 1.20 (+) 0.81 (−) 1.00 N 0 DF12 0.73 (−) 0.96 N 0.69 (−) 1.63 (+) 0.78 (−) 0.78 (−) 40 DF13 0.78 (−) 0.78 (−) 0.63 (−) 1.40 (+) 0.73 (−) 0.85 (−) 30 DF21 0.60 (−) 0.94 (−) 0.65 (−) 0.93 (−) 0.69 (−) 0.83 (−) 40 DF23 0.74 (−) 1.51 (+) 0.73 (−) 1.19 (+) 0.71 (−) 0.81 (−) 10 DF24 0.73 (−) 1.08 (+) 0.59 (−) 1.52 (+) 0.70 (−) 0.65 (−) 30 DF25 1.09 (+) 0.91 (−) 1.10 (+) 1.82 (+) 1.27 (+) 1.03 N 20 DF3 1.05 N 0.98 N 0.94 (−) 1.07 (+) 0.89 (−) 0.84 (−) 10 DF41 1.05 (+) 0.91 (−) 0.96 N 1.07 (+) 1.05 N 1.23 (+) 0 DF42 1.13 (+) 1.21 (+) 1.22 (+) 1.62 (+) 1.02 N 1.35 (+) 0 RS11 0.77 (−) 0.89 (−) 0.80 (−) 1.20 (+) 0.85 (−) 0.83 (−) 10 RS12 1.01 N 0.94 (−) 0.84 (−) 1.06 (+) 0.77 (−) 1.17 (+) 0 RS13 0.71 (−) 1.02 N 0.73 (−) 1.64 (+) 0.77 (−) 0.83 (−) 30 RS22 1.24 (+) 1.01 N 1.05 (+) 1.15 (+) 1.23 (+) 1.28 (+) 0 RS24 1.21 (+) 0.95 (−) 1.19 (+) 1.33 (+) 1.12 (+) 1.05 (+) 0 RS25 0.69 (−) 1.00 N 0.83 (−) 0.88 (−) 1.04 N 1.24 (+) 30 RS26 0.64 (−) 0.90 (−) 0.68 (−) 1.43 (+) 0.66 (−) 0.78 (−) 20 VP11 1.11 (+) 0.94 (−) 1.22 (+) 1.54 (+) 1.20 (+) 1.62 (+) 0 VP14 1.19 (+) 1.10 (+) 1.15 (+) 1.62 (+) 1.12 (+) 1.32 (+) 10 VP21 1.05 N 0.95 (−) 1.12 (+) 1.40 (+) 1.02 N 1.17 (+) 0 VP22 1.19 (+) 1.10 (+) 1.26 (+) 1.24 (+) 1.20 (+) 0.99 N 0 VP23 1.08 (+) 0.94 (−) 1.39 (+) 2.45 (+) 1.23 (+) 1.03 N 0 VP41 0.96 N 0.54 (−) 1.05 N 0.98 N 0.79 (−) 0.91 (−) 20 VP43 0.88 (−) 0.50 (−) 0.91 (−) 0.99 N 0.68 (−) 0.85 (−) 20 VP44 0.98 N 0.45 (−) 1.00 N 1.13 (+) 0.76 (−) 1.04 N 10 VP45 0.84 (−) 0.57 (−) 0.92 (−) 0.98 N 0.75 (−) 0.70 (−) 40 VP51 0.65 (−) 0.82 (−) 0.89 (−) 0.80 (−) 0.64 (−) 0.78 (−) 60 VP52 0.92 (−) 0.83 (−) 0.92 (−) 0.70 (−) 0.75 (−) 0.73 (−) 20 VP53 0.74 (−) 1.50 (+) 1.05 N 1.57 (+) 1.04 N 1.04 N 20 VP55 0.77 (−) 0.79 (−) 0.74 (−) 0.74 (−) 0.75 (−) 0.89 (−) 30 VP56 1.22 (+) 0.98 N 1.11 (+) 1.28 (+) 1.12 (+) 1.68 (+) 40 VP62 0.83 (−) 1.32 (+) 1.02 N 1.51 (+) 0.95 N 2.08 (+) 10 VP63 0.89 (−) 0.58 (−) 0.94 (−) 1.29 (+) 0.85 (−) 1.19 (+) 20 VP68 0.89 (−) 1.50 (+) 1.20 (+) 1.78 (+) 1.11 (+) 1.11 (+) 20 VP72 0.91 (−) 1.26 (+) 1.06 (+) 1.62 (+) 0.81 (−) 1.44 (+) 10 VP73 0.89 (−) 1.10 (+) 0.93 (−) 1.10 (+) 0.90 (−) 0.96 N 30 VP76 1.47 (+) 0.91 (−) 1.39 (+) 1.48 (+) 1.44 (+) 1.32 (+) 0 VP81 0.94 (−) 1.21 (+) 0.98 N 1.13 (+) 0.73 (−) 0.73 (−) 10 VP88 1.07 (+) 1.12 (+) 0.90 (−) 0.60 (−) 0.83 (−) 0.83 (−) 10

(4)

ofgrowthintheliquidmediumusingtheZRFungal/Bacterial

DNAMiniPrepkit(Zymo Research).Afterextractionoftotal

DNA,theinternaltranscribedspacer1(ITS1)-5.8SrDNA-ITS2

regionofnuclearribosomalDNAwasamplifiedwithprimers

ITS1 and ITS4. The reaction of amplification was carried

outaccordingtoBaldonietal.12Amplificationofthecorrect

fragmentwas verifiedbyelectrophoresis ina1.5%agarose

gelwith1×Tris–borate–ethylenediaminetetraaceticacid(TBE)

buffer.TheDNAfragmentswerestainedwithBlueGreen

Load-ing Dye I® (LGC Biotecnologia, Cotia, Brazil) and analyzed

inultravioletlight.Theproductsofpolymerasechain

reac-tion (PCR) were purified using the GenElute PCR Clean-Up

Kit®(Sigma,St.Louis,MO,USA)followingthemanufacturer’s

instructions.Sequencingofthesampleswascarriedoutusing

theABI PRISM3100GeneticAnalyzer(Applied Biosystems).

The sequenced fragments were analyzed by the program

StadenPackage2.0.0btoobtainaconsensussequence.13The

consensussequence was deposited to GenBank (accession

number KU523580), and a comparative search of GenBank

sequenceswascarriedoutusingtheBLASTntool.The

addi-tionalsequencesretrievedfrom GenBankincludedthoseof

Brazilianspeciesdescribedforthisgenus.14Forthe

identifica-tionofthefungus,allthesequenceswerealignedusingthe

programBioEditv.7.2.5withtheClustalWalgorithm.15

Thephylogenywasreconstructedbymaximumlikelihood

basedontheanalysisoftheITSregionusingMEGA5.0.16A

total of1000bootstrap replicateswere usedforthe

recon-struction.TheKimuratwo-parameternucleotide-substitution

modelwasusedwithModelTestrunwithuniformratesand

partial deletion (95%) parameters.17 Thesequences of

Dia-portheambigua(KC343015)andDiaporthellacorylina(KC343004)

wereusedastheoutgroups.18,19

Results

and

discussion

In this work,39 phytopathogenic fungi were isolated from

weeds of the Pampa biome. Table 2 presents the results

obtainedinthebioassays.Twenty-eightfungishowed

phyto-toxiceffectsagainstthetargetplant,andthemostpronounced

effect was shown byfungusVP51 withan activity of60%.

Otherfungi(DF12,DF21,VP45,andVP56)alsoshowed

activ-ityatthelevelof40%.Thesesamefungialsoproducedgood

results in the growth inhibition ofaerial parts of the

tar-get,withareductionoftheheightandfreshweightaround

35–40%relativetothecontrol.Thegrowth inhibitionofthe

rootpartwaslesspronouncedincomparisonwiththeaerial

part.Generally,theinhibitionwasaround20%,anditdidnot

C

D

B

A

(5)

Table3–ComparisonofmeanamongtheeffectsoftreatmentsontheaerialandrootpartsofC.sativus.

Treatment Aerial Root

Height(cm) Freshweight(g) Dryweight(g) Height(cm) Freshweight(g) Dryweight(g)

DF21 0.604b 0.648b 0.688a 0.938a 0.933a 0.835a

VP51 0.650b 0.885ab 0.638a 0.824a 0.803a 0.776a

VP52 0.923a 0.922a 0.746a 0.827a 0.703a 0.733a

VP55 0.771ab 0.742ab 0.755a 0.791a 0.738a 0.889a

Differentletters(a,b)inthecolumnrepresentasignificantdifferenceat95%(p<0.05–Tukeytest).

resultintheplantdeath.Thelowherbicidalactivitymightbe relatedtothefactthattheactivemetabolitewassignificantly dilutedinthecrudeextract.However,itisimportantto con-siderthatabioherbicidemaynotnecessarilycausethesame effectonplantsasachemicalherbicide.Bioherbicideshave thepotential toprovidea competitive advantagefor grow-ingseedlingsthroughtheinfectionanddelayofthegrowth ofweedseedlings.20

Fig.1showssomeeffectsonaerialparts,suchasyellowing,

leafspots,andblight.Themostpronouncedeffectsonaerial

partswereobtainedwithfungiVP76,DF24,andVP51,which

arepresentedinFig. 1(A–C),respectively, whereitis

possi-bletocomparetheireffectswiththatofthecontrol(Fig.1D).

TheblastingsymptomseeninFig.1AandCwasalsonoticed

byChungetal.21whenevaluatingthepotentialofa

bioher-bicidefrom Plectosporiumtabacinumforgrowth inhibitionof

Sagittariatrifolia.Berneretal.22reportedthatoneofthe

phy-totoxicsymptomscausedbyfungiofthegenusCercosporella

wassmallbrownspotsonleaves.

Leafspots(Fig.1B)wereobservedinthefirst72hafterthe

applicationoftheDF24bioherbicide.Theseplantspresented

mild, irregularlydistributedlesions,havingadarkgreento

darkbrowncolor,whichwerelimitedtothesprayedleaves.

Theyellowingaroundthespotsbecamewidespreadintheleaf

blade,formingnecrosisfromthetipsandedgesofthesheet.

Theleavesthatemergedaftertheinoculationwerefreeofthe

disease.Theleafspoteffects,followedbyyellowing,werealso

describedbyYandocetal.23whoanalyzedtheeffectsofthe

fungiBipolarissacchariandDrechsleragiganteaonthecontrol

plantImperatacylindrical.

Similarsymptomswere reportedbyother authorswhen

a fermented broth was used for weed control. Inhibition

ofgrowth was alsoaphytotoxic effect ofbacterialisolates

on weeds, as observed by Weissmann et al.24 Gronwald

etal.25 obtainedareductionof31%inplantheight,

report-ing that the inhibition of growth was an important factor

in determining the action of a bioherbicide. Walker and

Tilley26alsoobservedareductioninthedryweightofSenna

Table4–Specimensincludedinthisstudy.AccessionGenbanknumbersinboldreferredtotheITSsequencesobtained fromDiaporthesp.inPampabioma,SouthernBrazil.

Species Strain Locality GenBankcode

DiaportheactinidiaeN.F.Sommer&Beraha ICMP:13683 NewZealand KC145886

Diaportheactinidiae JL2 China KT163360

DiaportheambiguaNitschke CBS187.87 Italy KC343015

DiaporthecitriF.A.Wolf CBS199.39 Italy KC343051

Diaporthecitri CBS199.39 Italy KC343051

DiaportheendophyticaR.R.Gomes,C.Glienke&Crous LGMF935 Brazil KC343070

Diaportheendophytica LGMF928 Brazil KC343068

DiaporthekongiiR.G.Shivas,S.M.Thompson&A.J.Young 042 KR024725

Diaporthekongii 021 KR024720

DiaporthemelonisBeraha&M.J.O’Brien CBS507.78 USA KC343142

Diaporthemelonis CBS435.87 Indonesia KC343141

DiaporthemiriciaeR.G.Shivas,S.M.Thompson&Y.P.Tan BRIP55662c Australia KJ197283

Diaporthemiriciae BRIP54736j Australia KJ197282

Diaporthephaseolorum(Cooke&Ellis)Sacc. M69 Brazil JQ936148

Diaporthephaseolorum 8.1.1 Ecuador KP133195

DiaportheschiniR.R.Gomes,C.Glienke&Crous CBS133181 Brazil NR111861

Diaportheschini B125 Brazil KR812222

Diaporthesp. VP51 Brazil KU523580

DiaporthetecomaeSacc.&P.Syd. CBS100547 Brazil KC343215

DiaportheterebinthifoliiR.R.Gomes,C.Glienke&Crous CBS133180 Brazil NR111862

Diaportheterebinthifolii B135 Brazil KR812223

Diaporthevexans(Sacc.&P.Syd.)Gratz CBS127.14 USA KC343229

DiaporthellacorylinaLar.N.Vassiljeva CBS121124 China KC343004

PhomopsisdiacheniiSacc. PH10-1 Lithuania KR870866

Phomopsisdiachenii PH1 CzechRepublic KR870844

PhomopsisfoeniculiDuManoir&Vegh PH03 Germany KR870843

(6)

obtusifoliatreatedwithabrothfermentedbyMyrothecium ver-rucaria.

Todetermine themost potentialtreatment forthe

pro-ductionofbioherbicides,somefungi(DF21,VP51,VP52,and

VP55)showingthehighestherbicidalactivityandthehighest

inhibitionoftheheightandweightofplantswerescreened.

Todetermine ifthere were differences amongthesefungi,

thedatafromTable2wereanalyzedbyANOVA,followedby

Tukey’s test (p<0.05). Theresults are compiled in Table3.

For the aerialpart, fungiDF21 and VP51showed the most

pronounced inhibitory effects on the plant height, which

werestatisticallydifferentfromthoseshownbytheothers.

Regardingfreshweight,theeffectshownbyfungusDF21was

statisticallydifferentfromthoseshownbytheothers,whereas

therewerenoverifiedsignificantdifferencesintheeffectson

dryweight,aswellasrootparts.Basedontheseresults,itcan

beinferredthatthefungishowedeffectsmainlyontheaerial

partsofthetarget,andthemostprominentwasVP51.This

fungusdemonstratedconsiderablephytotoxicityandaffected

morphologyofthetarget.Forthisreason,itwasselectedfor

molecularidentification.

ThemolecularanalysisoftheITS1-5.8S-ITS2regionofVP51

showeditshighsimilaritytothespeciesDiaportheschini(100%),

D.terebinthifolii(99%),andD.phaseolorum(99%)(Table4),among

thenucleotidesequencesavailableintheNationalCenterfor

BiotechnologyInformation(NCBI)database.However,no

sig-nificantdivergencesamongthesespecieswerefoundinthis

regiontoallowidentificationofVP51atthespecieslevel.The

phylogeneticcladeformeddidnotsupportthespecies

sepa-ration(lowbootstrapvalues)(Fig.2).

Therefore,thisresultisnotsufficienttoprovidefull

identi-fication, andatthis time,itisonlypossibletosay thatthe

fungusbelongs tothe genus Diaporthe.Gomes et al.14

sug-gestedredefiningtheclassificationofthespecieswithinthe

genus Diaporthebased onmorphological and cultural

char-acteristics,thematingtype,andDNAsequencestoobtaina

satisfactorydelineationofthespecieswithinthegenus

Dia-porthe.

The genus Diaporthe (anamorph: Phomopsis) belongs to

the phylum Ascomycota,subphylum Pezizomycotina, class

Sordariomycetes,orderDiaporthalescharacterizedassexual

fungi. However, some fungi in this genus present asexual

Diaporthe citri KC343051 Diaporthe citri KC343051 Diaporthe tecomae KC343215 Diaporthe vexans KC343229 Phomopsis diachenii KR870866 Phomopsis diachenii KR870844 Phomopsis foeniculi KR870843 Phomopsis foeniculi KR870842 Diaporthe melonis KC343142 Diaporthe melonis KC343141 Diaporthe kongii KR024725 Diaporthe kongii KR024720 Diaporthe phaseolorum JQ936148 Diaporthe phaseolorum KP133195 Diaporthe terebinthifolii NR111862 Diaporthe terebinthifolii KR812223 Diaporthe schini NR111861 Diaporthe schini KR812222 Isolate VP51 Diaporthe endophytica KC343070 Diaporthe endophytica KC343068 Diaporthe actinidiae KC145886 Diaporthe actinidiae KT163360 Diaporthe miriciae KJ197283 Diaporthe miriciae KJ197282 Diaporthe ambigua KC343015 Diaporthella corylina KC343004 0.02 99 98 65 79 100 91 99 99 75 96

Fig.2–PhylogeneticreconstructionoftheDiaporthesp.obtainedfromITS1-5.8S-ITS2sequences.Bootstrapvalues(in%)are frommaximumlikelihood(ML)analysis(1000bootstraps).Onlybootstrapvaluesofatleast50%areshown.

(7)

forms, leading to difficulty in identifying members of this

genusatthespecieslevel.Diaporthespp.areoftendescribed

asproducersofenzymes andsecondarymetabolites27 with

the potential as antibiotics,28 fungicides,29 and anticancer

agents,30 as well as that for preventing herbivory and

forbiologicalcontrolofweeds.31,32 Ethyl

2,4-dihydroxy-5,6-dimethylbenzoate, phomopsilactone,33 phomopxanthone A

andB,34taxol,30phomopsichalasin,35lactones,29nonenolides,

phomonol,phomotone,36andphomophenearesomeofthe

compoundsproducedbymembersofthegenus.

Someofthecompounds listed aboveshowed herbicidal

activity.PhomentrioloxinBcausedsmallnecroticspotsona

numberofplantspecies,whereasgulypyroneAcausedleaf

necrosis on Helianthus annuus plantlets.30 Cimmino et al.8

testedseveralcompoundsproducedinliquidcultureby

Pho-mopsissp.(teleomorph:Diaporthegulyae)forthecontrolofthe

annualweedCarthamuslanatus.

Conclusions

Inthiswork,39 fungiwere isolatedfromthePampabiome

withthegoalofobtainingbiomoleculeswithherbicidal

activ-ityagainstweeds.Twenty-eightfungicausedsomephytotoxic

symptoms,but themostpronouncedeffectswere obtained

withfungiDF21,VP51,VP52,andVP55.Amongthose, VP51

showedthehighestherbicidalactivityandwassubjectedto

molecularidentification.ThenucleotidesequenceofVP51was

comparedwithsequencesavailableintheNCBIdatabase,and

thefunguswasidentifiedasbelongingtothegenusDiaporthe,

membersofwhichhavealreadybeenreportedasproducers

ofbioherbicides.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsthankCAPES-CoordinationfortheImprovement

ofHigherEducationPersonnelandCNPQ-NationalCouncilfor

ScientificandTechnologicalDevelopmentforthescholarships

andthe StateDepartmentofDevelopment and Investment

Promotion(SDPI-RS)forthefinancialsupportofthiswork.

r

e

f

e

r

e

n

c

e

s

1.PylroVS,RoeschLFW,OrtegaJM,etal.Brazilianmicrobiome project:revealingtheunexploredmicrobial

diversity—challengesandprospects.MicrobEcol. 2014;67:237–241.

2.LupatiniM,JacquesRJS,AntoniolliZI,etal.Land-usechange andsoiltypearedriversoffungalandarchaealcommunities inthePampabiome.WorldJMicrobiolBiotechnol.

2013;29:223–233.

3.SetteLD,PagnoccaFC,RodriguesA.Microbialculture collectionsaspillarsforpromotingfungaldiversity, conservationandexploitation.FungalGenetBiol.2013;60:2–8.

4.ValenciaEY,ChambergoFS.Mini-review:Brazilianfungi diversityforbiomassdegradation.FungalGenetBiol. 2013;60:9–18.

5.BjawaAA,MahajanG,ChauhanBS.Nonconventionalweed managementstrategiesformodernagriculture.WeedSci. 2015;63:723–747.

6.GreenJM.Currentstateofherbicidesinherbicide-resistant crops.PestManagSci.2014;70:1351–1357.

7.DukeSO.Whyhavenonewherbicidemodesofaction appearedinrecentyears?PestManagSci.2012;68:5022–5512.

8.CimminoA,AndolfiA,ZonnoMC,etal.Phomentrioloxin,a fungalphytotoxinwithpotentialherbicidalactivity,andits derivatives:astructure–activityrelationshipstudy.JAgric FoodChem.2013;61:9645–9649.

9.VarejãoEVV,DemunerAJ,BarbosaLCA,etal.Thesearchfor newnaturalherbicides–strategicapproachesfor

discoveringfungalphytotoxins.CropProtec.2013;48:41–50.

10.SouzaARC,BaldoniDB,LimaJ,etal.Bioherbicideproduction byDiaporthesp.isolatedfromtheBrazilianPampabiome. BiocatalAgricBiotechnol.2015;4:575–578.

11.FransR,CrowleyH.Experimentaldesignandtechniquesfor measuringandanalyzingplantresponsestoweedcontrol practices.In:SouthernWeedScienceSociety.Researchmethodsin weedscience.3aed.Clemson;1986:29–45.

12.BaldoniDB,CoelhoG,JacquesRJS,etal.Brownrotting funguscloselyrelatedtoPseudomeruliuscurtisii(Boletales) recordedforthefirsttimeinSouthAmerica.Mycosphere. 2012;3:533–541.

13.StadenR,JudjeDP,BonfieldJK.Managingsequencing projectsintheGAP4environment.In:KrawetzSA,Womble DD,eds.Introductiontobioinformatics.Atheoreticalandpractical approach.Totawa:HumanPressInc.;2003.

14.GomesRR,GlienkeC,VideiraSIR,etal.Diaporthe:agenusof endophytic,saprobicandplantpathogenicfungi.Persoonia. 2013;31:1–41.

15.HallTA.BioEdit:auser-friendlybiologicalsequence alignmenteditorandanalysisprogramforWindows 95/98/NT.NucleicAcidsSympSer.1999;41:95–98.

16.TamuraKD,PetersonN,PetersonG,etal.MEGA5:molecular evolutionarygeneticsanalysisusingmaximumlikelihood, evolutionarydistance,andmaximumparsimonymethods. MolEvolGenetAnal.2011;28:2731–2739.

17.PosadaD,CrandallKA.MODELTEST:testingthemodelof DNAsubstitution.BioinformaticsApplicationsNote. 1998;14:817–818.

18.HuangF,UdayangaD,WangX,etal.EndophyticDiaporthe associatedwithCitrus:aphylogeneticreassessmentwith sevennewspeciesfromChina.FungalBiol.2015;119: 331–347.

19.GaoY,SuY,SunW,Cai.Diaporthespeciesoccurringon LithocarpusglabrainChina,withdescriptionsoffivenew species.FungalBiol.2015;119:295–309.

20.HetheringtonSD,SmithHE,ScanesMG,etal.Effectsofsome environmentalconditionsontheeffectivenessofDrechslera avenacea(CurtisexCooke)Shoem.:apotentialbioherbicidal organismforAvenafatuaL.BiolControl.2002;24:103–109.

21.ChungYR,KooSJ,KimHT,etal.Potentialofanindigenous fungus,Plectosporiumtabacinum,asamycoherbicidefor controlofarrowhead(Sagittariatrifolia).PlantDis. 1998;82:657–660.

22.BernerDK,EskandariFM,BraunU,etal.Cercosporellaacroptili andCercosporellacentaureicolasp.nov–Potentialbiological controlagentsofRussianknapweedandyellowstarthistle, respectively.Mycologia.2005;97:1122–1128.

23.YandocCB,CharudattanR,ShillingDG.EvaluationofFungal pathogensasbiologicalcontrolagentsforcogongrass (Imperatacylindrica).WeedTechnol.2005;19:19–26.

24.WeissmannR,UgglaC,GerhardsonB.Fieldperformanceofa weed-suppressingSerratiaplymuthicastrainappliedwith

(8)

conventionalsprayingequipment.BioControl. 2003;48:725–742.

25.GronwaldJW,PlaisanceK,IdeDA,etal.Assessmentof Pseudomonassyringaepv.tagetisasabiocontrolagentfor Canadathistle.WeedSci.2002;50:397–404.

26.WalkerHL,TilleyAM.EvaluationofanisolateofMyrothecium verrucariafromsicklepod(Sennaobtusffolia)asapotential mycoherbicideagent.BiolControl.1997;10:104–112.

27.DaiJ,KrohnK,FloerkeU,etal.Novelhighlysubstituted birarylethers,phomopsinesD-G,isolatedfromendophytic fungusPhomopsissp.fromAdenocarpusfoliolosus.EurJOrg Chem.2005;23:5100–5105.

28.LinX,HuangY,FangM,etal.Cytotoxicandantimicrobial metabolitesfrommarinelignicolousfungi,Diaporthesp. FEMSMicrobiolLett.2005;251:53–58.

29.WuSH,ChenYW,ShaoSC,etal.Ten-memberedlactones fromPhomopsissp.,anendophyticfungusofAzadirachta indica.JNatProd.2008;71:731–734.

30.KumaranRS,HurB.Screeningofspeciesoftheendophytic fungusPhomopsisfortheproductionoftheanticancerdrug taxol.BiotechnolApplBiochem.2009;54:21–30.

31.AndolfiA,BoariA,EvidenteM,etal.GulypyronesAandB andPhomentrioloxinsBandCproducedbyDiaporthegulyae, apotentialmycoherbicideforsaffronthistle(Carthamus lanatus).JNatProd.2015;78:623–629.

32.AshGJ,StodartB,SakuanrungsirikulS,etal.Genetic characterizationofanovelPhomopsissp.,aputative biocontrolagentforCarthamuslanatus.Mycologia. 2010;102:54–61.

33.SilvaGH,TelesHL,TrevisanHC,etal.Newbioactive metabolitesproducedbyPhomopsiscassiae,anendophytic fungusinCassiaspectabilis.JBrazChemSoc.

2005;16:1463–1466.

34.IsakaM,JaturapatA,RuksereeK,etal.PhomoxanthonesA andB,novelxanthonedimersfromtheendophyticfungus Phomopsisspecies.JNatProd.2001;64:1015–1018.

35.TanRX,ZouWX.Endophytes:arichsourceoffunctional metabolites.NatProdRep.2001;18:448–459.

36.LiY,WangM,HuangY,etal.Secondarymetabolitesfrom Phomopsissp.A123.Mycology.2010;1:254–261.

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Torna-se relevante discutir algumas limitações deste estudo, como sendo a duração do processo, pelo que futuramente seria pertinente o desenvolvimento de estudos sobre o

The lesser mealworm or little beetle, Alphitobius diaperinus (Panzer) is the most important poultry-house pest in Brazil, where it successfully breeds, feeds, and develops in

Infere-se que, durante graduação, a oferta de orientações sobre assuntos em que os resultados apontaram problemas éticos no atendimento, como cobrança de honorários, atendimento de

Os diretórios de empresas são bases de dados de empresas com um papel bastante importante, tanto no âmbito de prospeção de mercado como na divulgação da empresa. São

The aim of this work was to select the fungi from the soil or decomposing plants, with the components for good production of pectinases and to evaluate the effects of

The objective of this work was the selection of lignocellulolytic fungi and the evaluation of the enzyme production of these microorganisms, cultivated

It was observed that the conidia yield, as well as its concentration, might vary according to the method used in the solid fermentation, incubation time, grain size