• Nenhum resultado encontrado

Biological properties of volatile oil from Brazilian brown propolis

N/A
N/A
Protected

Academic year: 2022

Share "Biological properties of volatile oil from Brazilian brown propolis"

Copied!
4
0
0

Texto

(1)

RevistaBrasileiradeFarmacognosia29(2019)807–810

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Short communication

Biological properties of volatile oil from Brazilian brown propolis

Vitor Hugo Melo de Lima

a

, Karoliny de Cassia Rodrigues Almeida

a

, Cassia Cristina Fernandes Alves

b

, Matheus Leandro Rodrigues

c

,

Antônio Eduardo Miller Crotti

c

, João Matias de Souza

d

, Arthur Barcelos Ribeiro

d

, Iara Silva Squarisi

d

, Denise Crispim Tavares

d

, Carlos Henrique Gomes Martins

e

, Mayker Lazaro Dantas Miranda

f,∗

aInstitutoFederaldeEducac¸ão,CiênciaeTecnologiadoSuldeMinasGerais,CampusPousoAlegre,PousoAlegre,MG,Brazil

bInstitutoFederaldeEducac¸ão,CiênciaeTecnologiaGoiano,CampusRioVerde,RioVerde,GO,Brazil

cDepartamentodeQuímica,FaculdadedeFilosofia,CiênciaseLetrasdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

dNúcleodePesquisasemCiênciasExataseTecnológicas,UniversidadedeFranca,Franca,SP,Brazil

eDepartamentodeMicrobiologia,InstitutodeCiênciasBiomédicas,UniversidadeFederaldeUberlândia,Uberlândia,MG,Brazil

fInstitutoFederaldeEducac¸ão,CiênciaeTecnologiadoTriânguloMineiro,CampusUberlândiaCentro,Uberlândia,MG,Brazil

a r t i c l e i n f o

Articlehistory:

Received7May2019 Accepted27July2019

Availableonline5September2019

Keywords:

Apismellifera Resin

Balsamicsubstances Volatiles

Apitherapy

a b s t r a c t

Propolis,isabeeproductcollectedfromexudatesandflowerbudsofseveralplants,hasstrongaroma andseveralbiologicalapplications.Thisstudyaimedatevaluatingthechemicalcompositionandin vitroantioxidant,antibacterialandcytotoxicpropertiesofvolatileoilfromBrazilianbrownpropolis.It wasextractedbyhydrodistillationandanalyzedbygaschromatography-flameionizationdetectionand gaschromatography-massspectrometry.Volatileoilfrombrownpropolisexhibitedstrongantibacterial activityagainstH.pylori(MIC3.25␮g/ml),Mycobacteriumtuberculosis(MIC50␮g/ml)andM.avium(MIC 62.5␮g/ml).ItwasevaluatedinvitroforantioxidantactivitybyDPPH(IC5025.0␮g/ml)andABTS(IC50

30.1␮g/ml)methods.Itscytotoxicpropertywasevaluatedinnormal(humanfibroblasts,GM07429A) andtumor(MCF-7-humanbreastadenocarcinoma;HeLa-humancervicaladenocarcinomaandM059J- humanglioblastoma)celllines.IC50valueswere81.32␮g/mlforGM07429Aand85.00,129.40and84.12

␮g/mlforMCF-7,HeLaandM059Jcells,respectively.Threemajordereplicatedcomponentsofvolatileoil frombrownpropoliswereacetophenone(15.2%),nerolidol(13.3%),andspathulenol(11.6%).Ourresults contributetoabetterunderstandingofthechemicalandbiologicalpropertiesofBrazilianbrownpropolis andprovideevidenceforitspotentialmedicinaluse.

©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Propolisisaresinoussubstancethatbeesproducebygather- ingmaterialfromdifferenttypesofplants.Theyuseitasasealant toprotecttheirhivesfrominvasiveorganisms.Majorconstituents ofpropolisincludephenoliccompoundswhicharerepresentedby flavonoids,phenolicacidsandtheiresters;theyattributepromis- ingbiologicalactivities,suchasantimicrobial,anti-inflammatory andantioxidantones,topropolis.Eventhoughthechemicalcom- positionofpropolismayvary,itusuallycomprises50%ofresinand plantbalm,30%ofwax,10%ofvolatileoils,5%ofpollenand5%of othersubstances,suchasorganicresidues(Wagh,2013).

Correspondingauthor.

E-mail:maykermiranda@iftm.edu.br(M.L.Miranda).

Wideapplicationofpropolistomodernmedicinehasdrawn increasing attention to its chemical composition. Its composi- tionincludeschemicalconstituentsthatprotectorganismsagainst chronicdiseases causedby oxidativestress,suchascancerand metabolic disorders. Thus, this natural product has promising antioxidantpotentialsinceitactsasabodydefenseagentagainst freeradicalsthatarefoundinallorganisms(Calegarietal.,2017).In addition,previousinvitrostudieshavedemonstratedthatextracts ofpropoliscouldinhibitthegrowthofMycobacteriumtuberculosis aswellassynergisetheeffectofestablishedantituberculardrugs suchasisoniazid(Alietal.,2018).

Thecytotoxicactivityofpropolishasalsodrawnresearchers’

interest worldwide, since studies have proven that it may be appliedasanutritionalsupplementduringcancertreatments.Sev- eralreportshaveshowncytotoxiceffectsofpropolisfromdifferent

https://doi.org/10.1016/j.bjp.2019.07.004

0102-695X/©2019SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

808 V.H.Limaetal./RevistaBrasileiradeFarmacognosia29(2019)807–810

originsandtheirfractionsinseveralcancercelllines(Pratsinisetal., 2010;Borgesetal.,2011).

Literature hasreported advancesin theuse of propolis and itscomponents,mainlyregardingitspromisingandspecificanti- Helicobacterpyloriactivity.Somestudiesshowthatgastriccancer isstronglyrelatedtoinfectioncausedbytheHelicobacterpylori;

itleadstoaninflammatoryprocess,withconsequentinductionof oxidativestress,andtopre-neoplasticconditions(Boyanovaetal., 2005).Itshouldbeemphasizedthatseveralbiologicalactivities describedbytheliteraturerefertoextractsfrompropolis,rather thanfromitsvolatileoils.Asaresult,itshouldalsobehighlighted thatthisstudyisthefirstreportofantioxidant,anti-Helicobacter pylori,antimycobacterial andcytotoxicproperties of volatileoil extractedfromatypeofBrazilianbrownpropolis.

Considering the well-known pharmacological potential of volatileoilfromBrazilianbrownpropolis(Fernandesetal.,2015), thisstudyaimedtoevaluatethechemicalcompositionandinvitro antioxidant,antibacterialandcytotoxicpropertiesofsamplescol- lectedinBordadaMata,inthesouthofMinasGerais(MG)state, Brazil.

Materialandmethods

Freshbrownpropolis(500g)producedbyApismelliferaL.inthe AtlanticForestregioninBordadaMata,MG,waspurchasedfrom ApiárioKarina(BordadaMata,MG,Brazil)onJune15th,2017.

Volatile oil from brown propolis (EOP) was obtained by hydrodistillationfor3hinaClevenger-typeapparatusandstored at4CuptoGC–MS,GC-FIDandbioassays.Gaschromatography- flameionizationdetectionand gaschromatography–massspec- trometryanalyseswereperformedbyShimadzuQP2010Plusand GCMS2010 Plus(Shimadzu Corporation,Kyoto, Japan) systems.

GC–MSand GC-FID conditions and theidentification of chemi- calconstituentsofEOPwerecarried outinagreementwiththe methodologyproposedbyLemesetal.(2018).

Free radical scavenging activity of 2,2- diphenyl-1-picrylhydrazyl (DPPH) and azino-bis (ethylbenzothiazoline-6-sulfonic acid) (ABTS+) were deter- mined by a spectrophotometric method (Justus et al., 2018), withmodifications.In the DPPHassay,different concentrations ofEOPinmethanol(10–100␮g/ml)wereaddedto2ml 0.1mM solution of DPPH that was previously prepared and incubated inthedarkfor30min.Absorbancewasrecordedat517nmbya UVspectrophotometer.IntheABTSassay,1980mldilutedABTS+ solutionwasaddedto20␮lEOPpreviouslydilutedinethanoland absorbanceat734nmwasmeasured6minafterinitialmixing.BHT wasusedaspositivecontrol.Assayswerecarriedoutintriplicate.

Inhibitionpercentage was calculated as (I%)=(A0−A/A0)×100, whereA0istheabsorbanceofthecontrolandAistheabsorbance ofthesamples.IC50valuewascalculatedastheconcentrationof samplerequiredtoscavenge50%offreeradicalsbygraphingthe I%versusvolatileoilconcentration.

Minimum inhibitory concentration (MIC in ␮g/ml) of EOP was calculated by the broth microdilution method on 96-well microplates.ThefollowingATCCstandardstrainwasused:Heli- cobacterpylori(ATCC43526).Anevaluationoftheactivityofthe volatileoilwithreferencedrugswasmadebycomparingbacte- rialgrowthoneach plateofH.pylori.EOP wasdissolvedin 5%

dimethylsulfoxidetoreachfinalconcentrationsrangingbetween 0.195and400␮g/ml.Theinoculumwasadjustedat625nmina spectrophotometertoproducecellconcentrationequalto5×105 CFU/ml.PlateswereincubatedinaCO2 incubatorat37C for3 daysundermicroaerobicconditions.Tetracyclineatconcentrations rangingfrom0.115to59.0␮g/mlwasemployedasthestandard drug,incubatedunderthesameconditionspreviouslymentioned.

Table1

ChemicalcompositionofvolatileoilfrombrownpropoliscollectedintheAtlantic Forestbiome,insoutheasternBrazil.

Compounds RIexp RIlit %RA

Benzaldehyde 962 961 0.4

␤-Pinene 980 981 0.1

Limonene 1035 1036 0.2

Acetophenone 1077 1078 15.2

trans-Linalooloxide 1087 1088 0.4

2-Methoxy-phenol 1089 1090 0.1

Linalool 1097 1098 2.0

Ho-trienol 1109 1110 0.1

Benzylnitrile 1142 1143 0.6

␣-Terpineol 1182 1183 1.4

Thymol 1287 1288 0.2

Carvacrol 1299 1299 0.5

Bicycloelemene 1315 1316 0.2

Eugenol 1347 1348 0.2

␣-Copaene 1365 1367 4.5

␤-Elemene 1380 1381 0.9

␣-Yalangene 1383 1383 0.2

␣-Gurjinene 1400 1401 2.1

␤-Caryophyllene 1416 1418 5.9

Aromadendrene 1435 1436 4.5

␣-Humullene 1450 1451 2.7

allo-Aromadedrene 1454 1455 2.6

␥-Muurolene 1476 1477 1.5

␤-Selinene 1483 1484 1.1

Ledene 1490 1490 3.4

␦-Cadinene 1511 1513 5.2

␣-Cadinene 1523 1524 2.4

Cadina-1.4-diene 1531 1533 2.9

Nerolidol 1565 1566 13.3

Spathulenol 1582 1582 11.6

Viridiflorol 1592 1593 1.0

Caryophylleneoxide 1611 1613 1.0

␣-Muurolol 1642 1643 2.9

␣-Cadinol 1656 1656 2.2

Total 93.5

RIexp:Retentionindexrelativeton-alkanes(C8–C20)ontheRtx-5MScolumn;RIlit: Retentionindex.%RA:relativearea.

Afterincubation,30␮l0.01%aqueousresazurinsolutionwasadded toeachwellinordertoevaluatedmicrobialgrowth.

MycobacteriaMycobacteriumtuberculosisH37Rv(ATCC27294) and M. avium(ATCC25291)were obtainedfrom theAmerican TypeCollection (ATCC)andmaintainedat−80C.Antimycobac- terialactivityofEOPwasevaluatedbytheMICbrothmicrodilution methodconductedon96-wellmicroplates.Themethodologyused for evaluating antimycobacterial activity of EOP was the one describedbyMeloetal.(2017).

Inthisstudy,threedifferenthumantumorcelllineswereused:

breastadenocarcinoma(MCF-7),cervicaladenocarcinoma(HeLa) and glioblastoma (M059J) (Table 3).A normal humancell line (fibroblasts,GM07492A)wasincludedtoevaluatewhetherEOPhas selectiveactivity.Themethodologyusedforevaluatingcytotoxic activityofEOPwastheonedescribedbySilvaetal.(2019).

Resultsanddiscussion

BrownpropoliscollectedinsoutheasternBrazil,yieldedhigh contentofvolatileoil(0.8%)byhydrodistillation.Toidentifythe constituentsofEOP,GC-FIDandGC-MSanalyseswereperformed and Table 1 shows the 34 constituents with relative amounts above0.1%,whichcorrespondsto93.5%ofidentifiedconstituents.

Acetophenone(15.2%),nerolidol(13.3%),␤-caryophyllene(5.9%), spathulenol(11.6%)and␦-cadinene(5.2%)werethemajorcompo- nentsofEOP.Onlynerolidolandspathulenolwerefoundinhigh amountsinEOPinMatoGrossodoSulstate,Brazil;acetophenone wasnotidentified(Fernandesetal.,2015).Ontheotherhand,only three majorconstituentswereidentified inEOPfoundin Piauí,

(3)

V.H.Limaetal./RevistaBrasileiradeFarmacognosia29(2019)807–810 809

Table2

Invitroantioxidantandantibacterialactivitiesofvolatileoilfrombrownpropolis (IC50andMIC).

IC50(␮g/ml) Bacteria MIC(␮g/ml)

DPPH 25.0±10.20 H.pylori(ATCC43526)a 3.25 ABTS 30.1±8.11 M.avium(ATCC25291)b 62.5 BHT 19.3±0.09 M.tuberculosis(ATCC27294)b 50

Resultsareexpressedasmean±SD,n=3.IC50:concentrationofdrugin␮g/mlthat caused50%ofDPPHandABTS+inhibition.BHT:Positivecontrol.

aPositivecontrolused:tetracycline(MIC=1.0␮g/ml).

bPositivecontrolused:isoniazid(MIC=1.47␮g/ml).

Table3

Cytotoxicactivity(IC50values)ofvolatileoilfrombrownpropolisagainstdifferent humancelllines.

Cellline

Treatment(␮g/ml)

Volatileoilfrombrownpropolis DXR

IC50 IC50

GM07492A 81.32±2.48 0.50±0.20

MCF-7 85.00±2.67 62.10±2.00

HeLa 129.40±4.90 5.30±1.30

M059J 84.12±5.39 16.20±2.50

Doxorubicin(DXR)wasusedaspositivecontrol.GM07492A,humanlungfibroblasts;

MCF-7,humanbreastadenocarcinoma;HeLa,humancervicaladenocarcinoma;

M059J,humanglioblastoma.Valuesaremean±SD,n=3.

innortheasternBrazil:␤-caryophyllene,caryophylleneoxideand viridiflorol(Sousaetal.,2006).

Concentrationsofvolatilecompoundswerefoundtobequite differentfromtheonesfoundintheliterature.Itmaybeexplained bythehighvariabilityfoundinplantspeciesthatgrowinregions closetobeehives,sincebeescollectplantexudates.Propoliscom- positiondependsonseasonality,illumination,altitude,collector type,foodavailabilityandtheactivitydevelopedduringpropolis exploration.Thesefactorsinfluencethechemicalcompositionof oilextractedallovertheworlddirectly;asaresult,thesediffer- encesarebelievedtocontributesignificantlytochemicalproperties andbeneficialeffectsofalltypesofpropolis(Toretietal.,2013).

Specifically,propolisexploredfromthehivemaycontainamix- tureofresinsfromvariousplantsourcesandbeeswax.Ifindividual sourcesofresinareneededforchemicalanalysis,itmaybeneces- sarytocollecttheresinfromplanttissueorfromthehindlegsof returningresinforagers(Bankovaetal.,2016).

Regardingantioxidantactivity,resultsshowthat EOPexhib- ited significant DPPH free radicalactivity, with IC50 values of 25.0␮g/ml.Whentestedbytheazino-bis(ethylbenzothiazoline- 6-sulfonicacid)(ABTS+)method,thevalueofIC50=30.1␮g/mlwas alittlehigher.ThepositivecontrolwasBHT(butylatedhydroxy- toluene),whoseIC50=19.3␮g/ml(Table2).

Antioxidant activity of EOP determined by the DPPH (2,2- diphenyl-1-picrylhydrazyl) and azino-bis (ethylbenzothiazoline- 6-sulfonicacid)(ABTS+)methodswereconsideredsignificantby comparison with the positive control BHT (butylated hydroxy- toluene),whoseIC50was19.3␮g/ml.BHTwaschosentobethe positivecontrolbecauseitinhibitsbothfreeradicalformationand lipidperoxidationeffectively(Bajpaietal.,2017).Thegoodantiox- idantactivity exhibited byEOP maybe explained by itsmajor constituents,mainlythesesquiterpenespathulenol(Nascimento etal.,2018).

AntibacterialactivityofEOPwasevaluatedagainstH.pylori,M.

tuberculosisandM.aviumstrains;itsMICvaluesweremeasuredby thebrothmicrodilutionmethod.EOPprovedhighlyactiveagainst H. pylori, M. tuberculosis and M. avium with MIC=3.25␮g/ml, 50␮g/ml and 62.5␮g/ml, respectively (Table 2). Positive con- trolsweretetracycline(MIC=1.0␮g/ml)foranti-Helicobacterpylori activity and isoniazid (MIC=1.47␮g/ml) for antimycobacterial

one.Thisresultisrelevant,sincepreviousresultsreinforcedthat volatileoilswhoseMIC=250␮g/mlwereconsideredmoderately activeagainst H.pylori(Kirmizibekmezetal., 2017).EOPhad a greater against Helicobacter pylori activity than the volatile oil from Apium nodiflorumleaves, whose MIC=12.5␮g/ml enabled it to be defined as having appreciable value (Menghini et al., 2010).EOP hasalso shown promising antimycobacterial activ- ity against Mycobacterium tuberculosis (MIC=50␮g/ml) and M.

avium(MIC=62.5␮g/ml).AccordingtoHoletzetal.(2002),nat- uralproductswithMICvaluesbelow100␮g/ml,between100and 500␮g/ml,from500to1000␮g/mlandabove1000␮g/mlexhibit good,moderate,weakandabsenceofantibacterialactivity,respec- tively.

ThepromisingantibacterialactivityexhibitedbyEOPmaybe explainedbysynergicorevenantagonisticeffectsamongitsdif- ferent compounds. Most constituents of volatile oils belong to thefamily terpenoids;mostofthem have apolarcharacterand mayeasilypermeatethephospholipidbilayerofbiologicalmem- branes. Theseconstituentsusuallyexhibit antimicrobialactivity because they are capable of breaking through the lipid struc- ture,causedamagetotheintegrityofthemembrane,unbalance intracellularpHand, consequently,leadtocelldeath(Rautand Karuppayil,2014).

EOPcytotoxicitywasassessedagainsttheGM07492Anormal cellline, whose IC50 was81.32␮g/ml andagainst MCF-7,HeLa andM059Jtumorcelllineswhose IC50 were85.00,129.40and 84.12␮g/ml,respectively(Table3).Thepositivecontrolwasdox- orubicinandIC50valuesarealsoshowninTable3.

CytotoxicactivityofEOPwasobservedagainstnormalhuman andtumorcelllinesemployedbythisstudy,but withoutselec- tivity.Specifically,themainmechanismsthatmediatecytotoxic effectsofvolatileoilsincludetheinductionofcelldeathbyacti- vation of apoptosis and/or necrosis processes, cell cycle arrest andlossoffunctionofvolatileorganelles(Raut andKaruppayil, 2014). It is important to highlight that the cytotoxicity assay also showed that EOP exhibits antibacterial activity against H.

pylori, M. tuberculosis and M. avium at concentrations lower (MIC=3.25␮g/ml;MIC=50␮g/ml;MIC=62.5␮g/ml,respectively) thanthosewhichshowedcytotoxicityinnormalhumanfibroblasts cells(IC50=81.32␮g/ml).Possibly,synergisticinteractionsamong volatileoilscomponentswhicharebeneficialtotheirdifferentbio- logicalproperties(RautandKaruppayil,2014).

Conclusions

It is clear that studies of volatileoils from propolis are far frombeingexhaustive.Furtherresearchisneededtorevealtheir chemistry and to support their medicinal properties scientifi- cally. Differences in the chemical composition of volatile oils extractedfrompropolisareobservedastheresultoftheirbotanic andgeographicorigin.Acetophenone,nerolidol,␤-caryophyllene, spathulenoland ␦-cadinenewerethemajorconstituentsidenti- fiedinEOP.EvaluationoftheantibacterialactivityofEOPshowed thatitissignificantagainstthebacteriaH.pylori,M.tuberculosis andM.avium.Thepreliminaryresultoftheantioxidantpotential showedbyEOPcouldbepromisingforthedevelopmentofnews cosmeticswithantioxidantpotential.Inassaysofcytotoxicactivity, EOPprovedtobecytotoxicagainstallcelllinesunderstudy,butit showednoselectivitytotumorcelllines.Thehydrodistillationpro- cessunderstudywascapableofextractingbioactivesubstances frombrownpropolisandoriginatethevolatileoilwhichisrespon- sibleforbiologicalpropertiesfoundbythisstudy.Inshort,further invivoexperimentsareneededtoconfirmtheabsenceofpotential mutagenicrisksposedbyEOPfromtheBrazilianAtlanticForest biomeanditsmechanismofaction.

(4)

810 V.H.Limaetal./RevistaBrasileiradeFarmacognosia29(2019)807–810

Authors’contributions

VHML,KCRA,CCFA,MLR,JMS,ABRandISScontributedtothe design and implementationof theexperiment. AEMC, DCT and CHGMproofreadthemanuscript.MLDMcontributedtothestatis- ticalanalysesandalsoproofreadthemanuscript.MLDMandAEMC contributedtothechromatographicanalysis.CHGMandDCT,as professors,workedon overallplanning and experiment design.

Allauthorscontributed tobiological studies,laboratory experi- mentsanddataanalyses.Theyproofreadthefinalmanuscriptand approvedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

References

Ali,M.T.,Blicharska,N.,Shilpi,J.A.,Seidel,V.,2018.Investigationoftheanti-TBpoten- tialofselectedpropolisconstituentsusingamoleculardockingapproach.Nature 8,12238.

Bajpai,V.K., Baek, K.H., Kang, S.C., 2017. Antioxidant and free radical scav- engingactivities of taxoquinone, aditerpenoid isolatedfrom Metasequoia glyptostroboides.S.Afr.J.Bot.111,93–98.

Bankova,V.,Bertelli,D.,Borba,R.,Conti,B.J.,Cunha,I.B.S.,Danert,C.,Eberlin,M.N., Falcão,S.I.,Isla,M.I.,Moreno,M.I.N.,Papotti,G.,Popova,M.,Santiago,K.B.,Salas, A.,Sawaya,A.C.H.F.,Schwab,N.V.,Sforcin,J.M.,Finstrom,M.S.,Spivak,M.,Tru- sheva,B.,Vilas-Boas,M.,Wilson,M.,Zampini,C.,2016.Standardmethodsfor Apismelliferapropolisresearch.J.Apic.Res.2,1–49.

Boyanova,L.,Gergova,G.,Nikolov,R.,Derejian,S.,Lazarova,E.,Katsarov,N.,Mitov, I.,Krastev,Z.,2005.ActivityofBulgarianpropolisagainst94Helicobacterpylori strainsinvitrobyagar-welldiffusion,agardilutionanddiscdiffusionmethods.

J.Med.Microbiol.54,481–483.

Borges,K.S.,Brassesco,M.S.,Scrideli,C.A.,Soares,A.E.E.,Tone,L.G.,2011.Antiprolif- erativeeffectsofTubi-beeprópolisinglioblastomacelllines.Genet.Mol.Biol.

34,310–314.

Calegari,M.A.,Prasniewski,A.C.,daSilva,C.,Sado,R.Y.,Maia,F.M.C.,Tonial,L.M.S., Oldoni,T.L.C.,2017.PropolisfromSouthwestofParanaproducedbyselected bees:influenceofseasonalityandfoodsupplementationonantioxidantactivity andphenolicprofile.Ann.Braz.Acad.Sci.89,45–55.

Fernandes,F.H.,Guterres,Z.R.,Violante,I.M.P.,Lopes,T.F.S.,Garcez,W.S.,Garcez,F.R., 2015.Evaluationofmutagenicandantimicrobialpropertiesofbrownpropolis essentialoilfromtheBrazilianCerradobiome.Toxicol.Rep.2,1482–1488.

Holetz,F.B.,Pessini,L.G.,Sanches,R.N.,Cortez,D.A.G.,Nakamura,V.C.,DaySon, B.P.,2002.ScreeningofsomeplantsusedintheBrazilianfolkmedicineforthe treatmentofinfectiousdiseases.Mem.I.Oswaldo.Cruz97,1027–1031.

Justus,B.,Almeida,V.P.,Gonc¸alves,M.M.,Assunc¸ão,D.P.S.F.,Borsato,D.M.,Arana, A.F.M.,Maia,B.H.L.N.S.,Paula,J.F.P.,Budel,J.M.,Farago,P.V.,2018.Chemical compositionandbiologicalactivitiesoftheessentialoilandanatomicalmark- ersofLavanduladentataL.CultivatedinBrazil.Braz.Arch.Biol.Technol.61, e18180111.

Kirmizibekmez,H.,Karaca,N.,Demirci,B.,Demirci,F.,2017.Characterizationof SideritistrojanaBornm.Essentialoilanditsantimicrobialactivity.Marm.Pharm.

J.21,860–865.

Lemes,R.S.,Alves,C.C.F.,Estevam,E.B.B.,Santiago,M.B.,Martins,C.H.G.,Santos,T.C.L., Crotti,A.E.M.,Miranda,M.L.M.,2018.Chemicalcompositionandantibacterial activityofessentialoilsfromCitrusaurantifolialeavesandfruitpeelagainst pathogenicbacteria.An.Acad.Bras.Ciênc.90,1285–1292.

Melo,D.C.,Miranda,M.L.D.,Júnior,W.G.F.,Andrade,P.M.,Alcoba,A.E.T.,Silva,T.S., Cazal,C.M.,Martins,C.H.G.,2017.Anticariogenicandantimycobacterialactiv- itiesoftheessentialoilofSiparunaguianensisAublet(Siparunaceae).Orbital:

electron.J.Chem.9,55–60.

Menghini,L.,Leporini,L.,Tirillini,B.,Epifano,F.,Genovese,S.,2010.Chemicalcom- positionandinhibitoryactivityagainstHelicobacterpylorioftheessentialoilof Apiumnodiflorum(Apiaceae).J.Med.Food13,228–230.

Nascimento,K.F.,Moreira,F.M.F.,Santos,J.A.,Kassuya,C.A.L.,Croda,J.H.R.,Cardoso, C.A.L.,Vieira,M.C.,Ruiz,A.L.T.G.,Foglio,M.A.,Carvalho,J.E.,Formagio,A.S.N., 2018.Antioxidant,anti-inflammatory,antiproliferativeandantimycobacterial activitiesof theessentialoilof PsidiumguineenseSw.Andspathulenol. J.

Ethnopharmacol.210,351–358.

Pratsinis,H.,Kletsas,D.,Melliou,E.,Chinou,I.,2010.Antiproliferativeactivityof Greekpropolis.Nat.Prod.Res.13,286–290.

Raut,J.S.,Karuppayil,S.M.,2014.Astatusreviewonthemedicinalpropertiesof essentialoils.Ind.CropsProd.62,250–264.

Silva,E.A.J.,Estevam,E.B.B.,Silva,T.S.,Nicolella,H.D.,Furtado,R.A.,Alves,C.C.F., Souchie,E.L.,Martins,C.H.G.,Tavares,D.C.,Barbosa,L.C.A.,Miranda,M.L.D.,2019.

Antibacterialandantiproliferativeactivitiesofthefreshleafessentialoilof PsidiumguajavaL.(Myrtaceae).Braz.J.Biol.79,697–702.

Sousa,S.A.A.,Citó,A.M.G.L.,Lopes,J.A.D.,2006.Constituintesdoóleoessencialda própolisproduzidanacidadedePioIXpiauí.Rev.Bras.Pl.Med.8,1–3.

Toreti,V.C.,Sato,H.H.,Pastore,G.M.,Park,Y.K.,2013.Recentprogressofpropo- lisforitsbiologicalandchemicalcompositionsanditsbotanicalorigin.Evid.

Complement.Alternat.Med.,http://dx.doi.org/10.1155/2013/697390.

Wagh,V.D.,2013.Propolis:awonderbeesproductanditspharmacologicalpoten- tials.Adv.Pharm.Sci.,http://dx.doi.org/10.1155/2013/308249.

Referências

Documentos relacionados

To contribute to the development of antibacterial products from propolis produced by native Brazilian bees, twenty-nine samples of propolis collected from hives in the

First record of the chemical composition of essential oil of Piper bellidifolium , Piper durilignum , Piper acutilimbum and Piper consanguineum from in the Brazilian

In this study, we investigated the chemical composition, and antioxidant and antibacterial properties of ethanolic extracts of propolis (EEP) from Melipona quadrifasciata

Na porção sul da área (Figura 15A) foi identificada outra região com altas concentrações dos três radioelementos, caracterizada por metagranitóides da suíte

As variáveis produtivas como, índice de área foliar, altura e massa de forragem foram correlacionadas com os valores de interceptação luminosa através do teste de

To further understand the adsorbents tested, in vitro experiments using different compounds, or feed and food stocks contaminated with mycotoxins could be performed, in

Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus.. Safetiness

As classes populares juizforanas, como reflexo do poder das elites locais, colocam-se com relação à novidade republicana de uma forma passiva, não oferecendo debate ou