• Nenhum resultado encontrado

Feynman integrals for non-smooth and rapidly growing potentials

N/A
N/A
Protected

Academic year: 2021

Share "Feynman integrals for non-smooth and rapidly growing potentials"

Copied!
21
0
0

Texto

(1)

arXiv:math-ph/0408032v1 20 Aug 2004

Rapidly Growing Potentials

Margarida de Faria

CCM, University of Madeira, P-9000-390 Fun hal mfariauma.pt

Maria João Oliveira Univ. Aberta, P-1269-001 Lisbon;

GFMUL, University of Lisbon, P-1649-003 Lisbon; BiBoS, University of Bielefeld, D-33501 Bielefeld

oliveira ii.f .ul.pt Ludwig Streit

BiBoS, University of Bielefeld, D-33501 Bielefeld; CCM, University of Madeira, P-9000-390 Fun hal

streitphysik.uni-bielefeld.de

Abstra t

TheFeynmanintegralfortheS hrödingerpropagatoris onstru ted asageneralizedfun tionofwhitenoise,foralinearspa eofpotentials spannedbymeasures andLapla e transformsof measures,i.e. lo ally singular aswell as rapidly growing at innity. Remarkably, all these propagators admit aperturbation expansion.

(2)

On a mathemati allevel of rigor, the onstru tion of Feynman integrals for quantum me hani al propagators will have to be done for spe i lasses of potentials. In parti ular, the Feynman integrand has been identied as a well-dened generalized fun tion in white noise spa e, e.g. for the following lasses of potentials:

-(signed) nite measures whi h are small at innity [10, 15℄ -Fourier transformsof measures [18℄

-Lapla e transformsof nite measures [13℄.

Potentials in the third spa e are lo ally smooth but may grow rapidly at innity, a prominent example is the Morse potential. On the other hand the rstof these lassesin ludeslo allysingularpotentialssu hastheDira deltafun tion. It isalsoimportantforthe onstru tionofFeynmanintegrals withboundary onditions[2℄. Hen eitwouldbedesirabletoadmitpotentials whi harelinear ombinationsofelementsfromtherstandthirdspa e. The present paper addresses this problem: we show the existen e of Feynman integralssolving the propagator equation for su h potentials.

II. White noise analysis

Inthisse tionwebrieyre allthe on eptsandresultsofwhitenoiseanalysis used throughout this work(see, e.g., [1℄,[4℄, [5℄,[9℄, [11℄,[12℄, [14℄, [16℄ fora detailed explanation).

The starting point of (one-dimensional) white noise analysis is the real Gelfand triple

S(R) ⊂ L

2

(R) ⊂ S

(R),

where

L

2

:= L

2

(R)

is the real Hilbert spa e of all square integrable fun -tions w.r.t. the Lebesgue measure,

S := S(R)

and

S

:= S

(R)

are the real S hwartz spa es of test fun tions and tempered distributions, respe tively. In the sequel we denote the norm on

L

2

by

| · |

, the orresponding inner produ t by

(·, ·)

, and the dual pairing between

S

and

S

by

h·, ·i

. The dual pairing

h·, ·i

and the inner produ t

(·, ·)

are onne ted by

hf, ξi = (f, ξ), f ∈ L

2

, ξ ∈ S.

(3)

Let

B

bethe

σ

-algebrageneratedby the ylindersetson

S

. Through the Minlos theorem one may dene the white noise measure spa e

(S

, B, µ)

by giving the hara teristi fun tion

C(ξ) :=

Z

S

e

ihω,ξi

dµ(ω) = e

1

2

|ξ|

2

,

ξ ∈ S.

Within this formalism a version of the (one-dimensional) Wiener Brownian motion isgiven by

B(t) :=

ω, 11

[0,t)

,

ω ∈ S

,

where

11

A

denotes the indi ator fun tionof a set

A

. Now letus onsider the omplex Hilbert spa e

L

2

(µ) := L

2

(S

, B, µ)

. As this spa e quite often shows to be too small for appli ations, to pro eed further we shall onstru t a Gelfand triple around the spa e

L

2

(µ)

. More pre isely,rstweshall hoose aspa eofwhite noisetestfun tions ontained in

L

2

(µ)

and then we work on its larger dual spa e of distributions. In our asewewillusethespa e

(S)

−1

ofgeneralizedwhitenoisefun tionalsor Kon-dratiev distributions and itswell-known subspa e

(S)

of Hidadistributions (or generalizedBrownianfun tionals) with orrespondingGelfand triples

(S)

1

⊂ L

2

(µ) ⊂ (S)

−1

and

(S) ⊂ L

2

(µ) ⊂ (S)

.

Instead of reprodu ing the expli it onstru tion of

(S)

−1

and

(S)

(see, e.g., [1℄, [5℄), in Theorems 1 and 2 below we will dene both spa es by their

T

-transforms. Given a

Φ ∈ (S)

−1

, thereexist

p, q ∈ N

0

su h thatwe an dene for every

ξ ∈ U

p,q

:= {ξ ∈ S : 2

q

|ξ|

2

p

< 1}

the

T

-transform of

Φ

by

T Φ(ξ) := hhΦ, exp(i h·, ξi)ii .

(1)

Here

hh·, ·ii

denotes thedual pairingbetween

(S)

−1

and

(S)

1

whi hisdened asthebilinearextensionoftheinnerprodu ton

L

2

(µ)

. Inparti ular,forHida distributions

Φ

, denition (1) extends to

ξ ∈ S

. By analyti ontinuation, thedenitionof

T

-transformmaybeextendedtotheunderlying omplexied spa e

S

C

of

S

.

In order to dene the spa es

(S)

−1

and

(S)

through their

T

-transforms we need the following two denitions.

(4)

Denition 1 A fun tion

F : U → C

isholomorphi onan open set

U ⊂ S

C

if

1. for all

θ

0

∈ U

and any

θ ∈ S

C

the mapping

C

∋ λ 7−→ F (λθ + θ

0

)

is holomorphi on some neighborhood of

0 ∈ C

,

2.

F

is lo ally bounded.

Denition 2 A fun tion

F : S → C

is alled a

U

-fun tional whenever 1. for every

ξ

1

, ξ

2

∈ S

the mapping

R

∋ λ 7−→ F (λξ

1

+ ξ

2

)

has an entire extension to

λ ∈ C

,

2. there exist onstants

K

1

, K

2

> 0

su h that

|F (zξ)| ≤ K

1

exp K

2

|z|

2

kξk

2

 ,

∀ z ∈ C, ξ ∈ S

for some ontinuous norm

k·k

on

S

.

We are now ready tostate the aforementioned hara terization results. Theorem 1 ([8℄) Let

0 ∈ U ⊂ S

C

be an open set and

F : U → C

be a holomorphi fun tion on

U

. Then there is a unique

Φ ∈ (S)

−1

su h that

T Φ = F

. Conversely, given a

Φ ∈ (S)

−1

the fun tion

T Φ

is holomorphi on someopen set in

S

C

ontaining 0. The orresponden e between

F

and

Φ

is a bije tion ifone identies holomorphi fun tions whi h oin ide on some open neighborhood of 0 in

S

C

.

Theorem 2 ([7℄,[17℄)The

T

-transformdenesabije tionbetweenthespa e

(S)

and the spa e of

U

-fun tionals.

As a onsequen e of Theorem 1 one may derive the next two statements. Therstone on ernsthe onvergen eofsequen esofgeneralizedwhitenoise fun tionalsandthese ondonetheBo hnerintegrationoffamiliesofthesame type of generalized fun tionals. Similar results exist for Hida distributions (see, e.g., [5℄).

Theorem 3 Let

n

)

n∈N

beasequen ein

(S)

−1

su hthatthereare

p, q ∈ N

0

so that

1. all

T Φ

n

are holomorphi on

U

p,q

:= {θ ∈ S

C

: 2

q

|θ|

2

p

< 1}

,

2. thereexistsa

C > 0

su hthat

|T Φ

n

(θ)| ≤ C

forall

θ ∈ U

p,q

andall

n ∈ N

, 3.

(T Φ

n

(θ))

n∈N

is a Cau hy sequen e in

C

for all

θ ∈ U

p,q

. Then

n

)

n∈N

onverges strongly in

(S)

−1

(5)

Theorem 4 Let

(Λ, F, ν)

be a measure spa e and

λ 7−→ Φ

λ

be a mapping from

Λ

to

(S)

−1

. We assume that there exists a

U

p,q

⊂ S

C

,

p, q ∈ N

0

, su h that

1.

T Φ

λ

isholomorphi on

U

p,q

for every

λ ∈ Λ

,

2. the mapping

λ 7−→ T Φ

λ

(θ)

is measurable for every

θ ∈ U

p,q

, 3. there is a

C ∈ L

1

(Λ, F, ν)

su hthat

|T Φ

λ

(θ)| ≤ C(λ),

∀ θ ∈ U

p,q

, ν − a.a. λ ∈ Λ.

Then there exist

p

, q

∈ N

0

, whi h only depend on

p, q

, su h that

Φ

λ

is Bo hner integrable. In parti ular,

Z

Λ

Φ

λ

dν(λ) ∈ (S)

−1

and

T

R

Λ

Φ

λ

dν(λ)



isholomorphi on

U

p

,q

. One has



Z

Λ

Φ

λ

dν(λ), ϕ





=

Z

Λ

hhΦ

λ

, ϕii dν(λ),

∀ ϕ ∈ (S)

1

.

III. The free Feynman integral

Wefollow[3℄and [6℄in viewing the Feynmanintegralas aweighted average over Brownian paths. We use a slight hange inthe denition of the paths, whi h are here modeled by

x(τ ) = x −

r

~

m

Z

t

τ

ω(s) ds := x −

r

~

m

ω, 11

(τ,t]

,

ω ∈ S

.

That is,insteadof xing the startingpointof the paths,wex the endpoint

x

at time

t

. In the sequel we set

~

= m = 1

. Correspondingly, the Feynman integrandfor the free motionis dened by

I

0

:= I

0

(x, t|y, t

0

) := N exp

 i + 1

2

Z

R

ω

2

(τ ) dτ



δ(x(t

0

) − y),

where, informally,

N

is a normalizing fa tor, more pre isely,

N exp (·)

is a Gauss kernel (see, e.g., [5℄, [15℄). We re all that the Donsker delta fun tion

(6)

δ(x(t

0

) − y)

isused tox the startingpoint ofthe paths attime

t

0

< t

. The

T

-transform ofthe freeFeynman integrand

T I

0

(ξ) =

1

p2πi(t − t

0

)

exp



i

2

Z

R

ξ

2

(τ ) dτ



(2)

× exp

i

2(t − t

0

)

Z

t

t

0

ξ(τ ) dτ + x − y



2

!

is a

U

-fun tional and we use itto dene

I

0

as aHida distribution (see [3℄). Fromthephysi alpointofview, equality(2) learly shows thatthe Feyn-man integral

T I

0

(0)

is the free parti lepropagator

1

p2πi(t − t

0

)

exp



i

2(t − t

0

)

(x − y)

2



.

Besides this parti ular ase, even for nonzero

ξ

the

T

-transform of

I

0

has a physi al interpretation. Integrating formallyby parts we nd

T I

0

(ξ) =

Z

S

I

0

(ω) exp



−i

Z

t

t

0

x(τ ) ˙ξ(τ ) dτ



dµ(ω)

× exp



2

i

Z

[t

0

,t]

c

ξ

2

(τ ) dτ + ixξ(t) − iyξ(t

0

)



.

Theterm

exp



−i

R

t

t

0

x(τ ) ˙ξ(τ ) dτ



wouldthus orrespondtoatime-dependent potential

W (x, t) = ˙ξ(t)x

. In fa t,it is straighforward toverify that

Θ(t − t

0

) · T I

0

(ξ) = K

0

(ξ)

exp



2

i

Z

[t

0

,t]

c

ξ

2

(τ ) dτ + ixξ(t) − iyξ(t

0

)



,

where

Θ

isthe Heavisidefun tion and

K

0

(ξ)

:= K

0

(ξ)

(x, t|y, t

0

) :=

Θ(t − t

0

)

p2πi|t − t

0

|

exp



i

2

Z

t

t

0

ξ

2

(τ ) dτ



× exp

i

2|t − t

0

|

Z

t

t

0

ξ(τ ) dτ + x − y



2

!

× exp (iyξ(t

0

) − ixξ(t))

is the Green fun tion orresponding tothe potential

W

, i.e.,

K

(ξ)

0

obeys the S hrödinger equation



i∂

t

+

1

2

2

x

− ˙ξ(t)x



(7)

Inthe sequel

K

1

denotes thelinear spa eofallpotentials

V

on

R

ofthe form

V (x) =

Z

R

e

αx

dm(α),

x ∈ R,

where

m

isa omplex measureonthe Borelsets on

R

fulllingthe ondition

Z

R

e

C|α|

d |m| (α) < ∞,

∀ C > 0

(4)

( f. [13℄), and

K

2

denotes the spa e of all potentials

V

on

R

whi h are gen-eralized fun tionsof the type

V (x) =

Z

R

δ(x − y) dm(y),

x ∈ R,

where

dm(y) := V (y)dy

isa nitesigned Borelmeasure ofbounded support ( f. [10℄).

Remark 5 A Lebesgue dominated onvergen e argument shows that poten-tials in

K

1

are restri tions tothe realline of entire fun tions [13℄. In parti -ular, they are lo ally bounded and smooth.

Our aim isto denethe Feynmanintegrand

I := I

0

· exp



−i

Z

t

t

0

V (x(τ )) dτ



(5) for a potential

V

of the form

V = V

1

+ V

2

,

V

i

∈ K

i

,

V

1

(x) =

Z

R

e

αx

dm

1

(α),

V

2

(x) =

Z

R

δ(x − y) dm

2

(y),

(6) where

x(τ ) = x −

Z

t

τ

ω(s) ds,

ω ∈ S

,

as before. In order to dothis, rst we must give a meaningto the heuristi expression (5). In Theorem7 itwillbe shown that

I

is indeedawell-dened generalized white noise fun tional. Se ondly, it has to be proven that the expe tation of

I

solves the S hrödinger equationfor the potential

V

.

(8)

This leads to

I =

X

n=0

(−i)

n

n!

n

X

k=0

n

k



k!

Z

k

d

k

τ

Z

t

t

0

d

n−k

s

Z

R

k

Z

R

n−k

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

n−k

Y

l=1

dm

1

l

)

k

Y

j=1

dm

2

(x

j

),

(7) where

k

:= {(τ

1

, ..., τ

k

) : t

0

< τ

1

< ... < τ

k

< t}

. Intheaboveexpressionthe integrals over

k

, R

k

and

[t

0

, t]

n−k

, R

n−k

disappear, respe tively, for

k = 0

and

k = n

. Our aim is to apply Theorems 3 and 4 to show the existen e of the above series and integrals. However, rst we have to establish the pointwise multipli ation of generalizedfun tionals

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

as a well-dened generalized fun tional. Due to the hara terization result Theorem 2 itis enough to dene this produ t through its

T

-transform. Ar-guing informally,for

ξ ∈ S

weare ledto

T

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

(ξ)

=

Z

S

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

) exp (i hω, ξi) dµ(ω)

= exp

x

n−k

X

l=1

α

l

!

· T

I

0

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

(ξ + i

n−k

X

l=1

α

l

11

(s

l

,t]

).

The produ t

I

0

Q

k

j=1

δ(x(τ

j

) − x

j

)

isa slightgeneralizationof the free Feyn-manintegrand

I

0

,withmorethanjustonedeltafun tion,andmaybedened

(9)

by its

T

-transform,

T

I

0

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

(ξ)

= exp



i

2

Z

[t

0

,t]

c

ξ

2

(s)ds + ixξ(t) − iyξ(t

0

)



k+1

Y

j=1

K

0

(ξ)

(x

j

, τ

j

|x

j−1

, τ

j−1

)

= exp



2

i

Z

R

ξ

2

(s)ds



k+1

Y

j=1

(

1

p2πi(τ

j

− τ

j−1

)

× exp

i

2 (τ

j

− τ

j−1

)

Z

τ

j

τ

j−1

ξ(s)ds + x

j

− x

j−1

!

2

.

(8) Here

τ

0

:= t

0

, x

0

:= y, τ

k+1

:= t

, and

x

k+1

:= x

. Clearly the expli it formula (8) is ontinuously extendable to all

ξ ∈ L

2

whi h allows an extension of

T



I

0

Q

k

j=1

δ(x(τ

j

) − x

j

)



to the argument

ξ + i

P

n−k

l=1

α

l

11

(s

l

,t]

. Proposition 6 The produ t

Φ

n,k

:= I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

dened by

T Φ

n,k

(ξ)

= T

I

0

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

ξ + i

n−k

X

l=1

α

l

11

(s

l

,t]

!

exp

x

n−k

X

l=1

α

l

!

= exp

i

2

Z

R

ξ(s) + i

n−k

X

l=1

α

l

11

(s

l

,t]

(s)

!

2

ds

k+1

Y

j=1

1

p2πi(τ

j

− τ

j−1

)

× exp

k+1

X

j=1

i

2 (τ

j

− τ

j−1

)

Z

τ

j

τ

j−1

ξ(s) + i

n−k

X

l=1

α

l

11

(s

l

,t]

(s)

!

ds + x

j

− x

j−1

!

2

× exp

x

n−k

X

l=1

α

l

!

(10)

Proof. It is obvious that the latter expli it formulafullls the rst part of Denition 2, analyti ity. In order to prove that

Φ

n,k

is a Hida distribution by appli ation of Theorem 2, we only have toshow that

T Φ

n,k

alsoobeys a boundas inthe se ondpart of Denition 2. Forevery

θ ∈ S

C

we have

|T Φ

n,k

(θ)|

≤ exp

|x|

n−k

X

l=1

l

|

!

×

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

exp

i

2

Z

R

θ

2

(s)ds +

n−k

X

l=1

α

l

Z

R

θ(s)11

(s

l

,t]

(s)ds

!

×

exp

k+1

X

j=1

i

2 (τ

j

− τ

j−1

)

Z

τ

j

τ

j−1

θ(s)ds

!

2

×

exp

k+1

X

j=1

1

τ

j−1

− τ

j

Z

τ

j

τ

j−1

θ(s)ds

!

n−k

X

l=1

α

l

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds

!!

×

exp

k+1

X

j=1

i (x

j

− x

j−1

)

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s) + i

n−k

X

l=1

α

l

11

(s

l

,t]

(s)

!

ds

!

whi h ismajorized by

|T Φ

n,k

(θ)| ≤

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

exp 2 kθk

2



× exp

|x| + t − t

0

+ kθk

2



n−k

X

l=1

l

|

!

(9)

× exp

4 max

0≤j≤k+1

|x

j

|

n−k

X

l=1

l

|

!

exp



max

0≤j≤k+1

|x

j

|

2





=: C(τ

1

, ..., τ

k

; α

1

, ..., α

n−k

; x

1

, ..., x

k

; θ) =: C

independent of

s

1

, ..., s

n−k

, where

kθk := sup

s∈[t

0

,t]

|θ(s)| +

Z

t

t

0

˙θ(s)

ds + |θ|

(11)

is a ontinuous norm on

S

C

, f. Appendix below. This estimatefor

T Φ

n,k

is of the formrequired inDenition 2,whi h ompletes the proof.



A ording toProposition6, all

Φ

n,k

are Hidadistributions and thus also generalized white noisefun tionals with

T Φ

n,k

entire on

S

C

. Moreover, ea h

T Φ

n,k

(θ)

isameasurablefun tionof

τ

1

, ..., τ

k

; s

1

, ..., s

n−k

; α

1

, ..., α

n−k

; x

1

, ..., x

k

for every

θ ∈ S

C

. Hen e, inorder toapply Theorem 4toprovethe existen e of the integrals in

I

, we only have to nd a suitable integrable bound for

|T Φ

n,k

(θ)|

. Sin e the measure

m

1

fulllsthe integrability ondition (4) and the signedmeasure

m

2

isnite and has support ontained insome bounded interval

[−a, a]

,

a > 0

,one may inferthe integrabilityof

C

forevery

θ ∈ S

C

:

Z

k

d

k

τ

Z

t

t

0

d

n−k

s

Z

R

k

k

Y

j=1

dm

2

(x

j

)

Z

R

n−k

n−k

Y

l=1

d |m

1

| (α

l

)C

≤ exp 2 kθk

2

+ b

2

 (t − t

0

)

n−k

×

Z

k

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

d

k

τ

Z

R

dm

2

(x)

k

×

Z

R

exp

|x| + 4b + t − t

0

+ kθk

2

 |α| d |m

1

| (α)



n−k

,

where

b := max{a, |y|, |x|}

. Thus, a ording to Theorem 4, there exists an open set

U ⊂ S

C

independent of

n

su hthat

I

n,k

:=

Z

k

d

k

τ

Z

t

t

0

d

n−k

s

Z

R

k

Z

R

n−k

Φ

n,k

n−k

Y

l=1

dm

1

l

)

k

Y

j=1

dm

2

(x

j

) ∈ (S)

−1

for ea h

k ≤ n

and every

n ∈ N

, and all

T I

n,k

are holomorphi on

U

. To on ludetheexisten eof

I

weonlyhavetoprovethattheseriesin

n

onverges in

(S)

−1

in the strong sense. This follows from Theorem 3. In fa t, due to (7),for every

θ ∈ U

one has

|T I(θ)| ≤

X

n=0

1

n!

n

X

k=0

n

k



k! |T I

n,k

(θ)|

(12)

where the right-hand side is upper bounded by the fa tor

exp 2 kθk

2

+ b

2



times the Cau hy produ t of the onvergent series

X

n=0

1

n!



(t − t

0

)

Z

R

e(

|x|+4b+t−t

0

+kθk

2

)

|α|

d |m

1

| (α)



n

!

×

X

n=0

Z

R

dm

2

(x)

n

Z

n

n+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

d

n

τ

!

= exp



(t − t

0

)

Z

R

e(

|x|+4b+t−t

0

+kθk

2

)

|α|

d |m

1

| (α)



×

X

n=0

Z

R

dm

2

(x)

n

Z

n

n+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

d

n

τ.

We notethat the latter series onverges be ause

Z

n

n+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

d

n

τ =

 Γ (1/2)



n+1

(t − t

0

)

(n−1)/2

Γ

n+1

2



is rapidly de reasing in

n

.

In this way we have proved the followingresult.

Theorem 7 For every

V

1

∈ K

1

and

V

2

∈ K

2

of the form (6),the

I :=

X

n=0

(−i)

n

n!

n

X

k=0

n

k



k!

Z

k

d

k

τ

Z

t

t

0

d

n−k

s

Z

R

k

Z

R

n−k

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

n−k

Y

l=1

dm

1

l

)

k

Y

j=1

dm

2

(x

j

),

exists as a generalized white noise fun tional. The series onverges strongly in

(S)

−1

and the integrals exist in the sense of Bo hner integrals. Therefore we may express the

T

-transform of

I

by

T I(θ) =

X

n=0

(−i)

n

n!

n

X

k=0

n

k



k!

Z

k

d

k

τ

Z

t

t

0

d

n−k

s

Z

R

k

Z

R

n−k

T

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

(θ)

n−k

Y

l=1

dm

1

l

)

k

Y

j=1

dm

2

(x

j

)

(13)

for every

θ

in a neighborhood

n

θ ∈ S

C

: 2

q

|θ|

2

p

< 1

o

of zero, for some

p, q ∈

N

0

A ording to Theorem 7,

I

is a well-dened generalized white noise fun -tional. In order to on lude that

I

denes a Feynman integrandit remains to showthat the expe tation

T I(0)

of

I

solves the S hrödingerequation for a potential

V = V

1

+ V

2

, V

i

∈ K

i

. As in the free motion ase we onsider, more generally,

K

(θ)

(x, t|y, t

0

) := Θ(t − t

0

)T I(θ) exp

 i

2

Z

[t

0

,t]

c

θ

2

(τ ) dτ + iyθ(t

0

) − ixθ(t)



.

Insertion of

T I(θ)

as given in Theorem 7, with

T

I

0

exp

n−k

X

l=1

α

l

x(s

l

)

!

k

Y

j=1

δ(x(τ

j

) − x

j

)

!

as inProposition 4,yields

K

(θ)

(x, t|y, t

0

) =

X

n=0

K

n

(θ)

(x, t|y, t

0

),

with

K

n

(θ)

(x, t|y, t

0

) :=

(−i)

n

n!

Z

t

t

0

d

n

s

Z

R

n

n

Y

l=1

dm

1

l

)K

0

n

)

(x, t|y, t

0

)

+

n−1

X

k=1

(−i)

n−k

(n − k)!

Z

t

t

0

d

n−k

s

Z

R

n−k

n−k

Y

l=1

dm

1

l

)G

k

n−k

)

(x, t|y, t

0

)

+G

(θ)

n

(x, t|y, t

0

),

(10) wherewehaveset

θ

n−k

:= θ

n−k

(s

1

, ..., s

n−k

, α

1

, ..., α

n−k

) := θ+i

P

n−k

l=1

α

l

11

(s

l

,t]

for

k = 0, ..., n − 1

,

θ

0

:= θ

, and

G

n−k

)

k

(x, t|y, t

0

) := (−i)

k

Z

k

d

k

τ

Z

R

k

k

Y

j=1

dm

2

(x

j

)

k+1

Y

j=1

K

n−k

)

0

(x

j

, τ

j

|x

j−1

, τ

j−1

)

for

k = 1, ..., n, n > 0.

We expe t

K

(θ)

to be the propagator orresponding to the potential

(14)

Theorem 8

K

(θ)

(x, t|y, t

0

)

isaGreenfun tionfortheS hroedingerequation



i∂

t

+

1

2

2

x

− ˙θ(t)x − V (x)



K

(θ)

(x, t|y, t

0

) = iδ(t − t

0

)δ(x − y).

(11)

In parti ular,

K(x, t|y, t

0

) := T I(0)

isa Feynmanintegral solving

i∂

t

K(x, t|y, t

0

) =



1

2

x

2

+ V (x)



K(x, t|y, t

0

),

for

t > t

0

.

(12)

Remark 3

K

orresponds to a unitary evolution whenever

H = −

1

2

x

2

+ V

has a unique self-adjoint extension.

Proof. Let us onsider an interval

[T

0

, T ]

su h that

[t

0

, t] ⊂ [T

0

, T ]

. Esti-matessimilartothosedoneintheproofofProposition6showthat

K

(θ)

n

(·, ·|y, t

0

)

islo allyintegrableon

R

× [T

0

, T ]

with respe t to

dm

2

× dt

and theLebesgue measure. Therefore, we may regard

K

(θ)

n

as a distribution on

D(Ω) :=

D(R × [T

0

, T ])

:

K

(θ)

n

(·, ·|y, t

0

), ϕ =

Z

R

dx

Z

T

T

0

dtK

(θ)

n

(x, t|y, t

0

)ϕ(x, t),

ϕ ∈ D(Ω).

And we may alsodene adistribution

V

2

K

(θ)

n

by setting

V

2

K

n

(θ)

(·, ·|y, t

0

), ϕ =

Z

R

dm

2

(x)

Z

T

T

0

dtK

n

(θ)

(x, t|y, t

0

)ϕ(x, t),

ϕ ∈ D(Ω).

To abbreviate we introdu e the notation

L := i∂

ˆ

t

+

1

2

x

2

− ˙θ(t)x

and

L

ˆ

for the dual operator. A ording to (10), observe that for any test fun tion

ϕ ∈ D(Ω)

one nds

D ˆ

LK

(θ)

n

, ϕ

E

=

(−i)

n

n!

*

Z

·

t

0

d

n

s

Z

R

n

n

Y

l=1

dm

1

l

)K

0

n

)

(·, ·|y, t

0

), ˆ

L

ϕ

+

+

n−1

X

k=1

(−i)

n−k

(n − k)!

*

Z

·

t

0

d

n−k

s

Z

R

n−k

n−k

Y

l=1

dm

1

l

)G

k

n−k

)

(·, ·|y, t

0

), ˆ

L

ϕ

+

(13)

+

D

G

(θ)

n

(·, ·|y, t

0

), ˆ

L

ϕ

E

,

(15)

(−i)

n

n!

*

Z

·

t

0

d

n

s

Z

R

n

n

Y

l=1

dm

1

l

)K

0

n

)

(·, ·|y, t

0

), ˆ

L

ϕ

+

(14)

=

(−i)

n−1

(n − 1)!

*

V

1

Z

·

t

0

d

n−1

s

Z

R

n−1

n−1

Y

l=1

dm

1

l

)K

0

n−1

)

(·, ·|y, t

0

), ϕ

+

f. [13℄,and

D

G

(θ)

n

(·, ·|y, t

0

), ˆ

L

ϕ

E

=

D

V

2

G

(θ)

n−1

(·, ·|y, t

0

), ϕ

E

(15) f.[15℄,[10℄. Thegeneri ase(13)isintermediatebetween (14)and(15)and is dealt with by a ombinationof the orresponding te hniques. This yields

*

Z

·

t

0

d

n−k

s

Z

R

n−k

n−k

Y

l=1

dm

1

l

)G

k

n−k

)

(·, ·|y, t

0

), ˆ

L

ϕ

+

= i(n − k)

*

V

1

Z

·

t

0

d

n−k−1

s

Z

R

n−k−1

n−k−1

Y

l=1

dm

1

l

)G

k

n−k−1

)

(·, ·|y, t

0

), ϕ

+

+

*

V

2

Z

·

t

0

d

n−k

s

Z

R

n−k

n−k

Y

l=1

dm

1

l

)G

k−1

n−k

)

(·, ·|y, t

0

), ϕ

+

,

for any

k = 2, ..., n − 2

,

*

Z

·

t

0

d

n−1

s

Z

R

n−1

n−1

Y

l=1

dm

1

l

)G

1

n−1

)

(·, ·|y, t

0

), ˆ

L

ϕ

+

= i(n − 1)

*

V

1

Z

·

t

0

d

n−2

s

Z

R

n−2

n−2

Y

l=1

dm

1

l

)G

1

n−2

)

(·, ·|y, t

0

), ϕ

+

+

*

V

2

Z

·

t

0

d

n−1

s

Z

R

n−1

n−1

Y

l=1

dm

1

l

)K

0

n−1

)

(·, ·|y, t

0

), ϕ

+

,

and

Z

·

t

0

ds

Z

R

dm

1

1

)G

n−1

1

)

(·, ·|y, t

0

), ˆ

L

ϕ



= i

D

V

1

G

(θ)

n−1

(·, ·|y, t

0

), ϕ

E

+



V

2

Z

·

t

0

ds

Z

R

dm

1

1

)G

n−2

1

)

(·, ·|y, t

0

), ϕ



.

(16)

D ˆ

LK

(θ)

n

, ϕ

E

=

(−i)

n−1

(n − 1)!

*

(V

1

+ V

2

)

Z

·

t

0

d

n−1

s

Z

R

n−1

n−1

Y

l=1

dm

1

l

)K

0

n−1

)

(·, ·|y, t

0

), ϕ

+

+

n−2

X

k=1

(−i)

n−k−1

(n − k − 1)!

*

V

1

Z

·

t

0

d

n−k−1

s

Z

R

n−k−1

n−k−1

Y

l=1

dm

1

l

)G

k

n−k−1

)

(·, ·|y, t

0

), ϕ

+

+

n−1

X

k=2

(−i)

n−k

(n − k)!

*

V

2

Z

·

t

0

d

n−k

s

Z

R

n−k

n−k

Y

l=1

dm

1

l

)G

k−1

n−k

)

(·, ·|y, t

0

), ϕ

+

+

D

(V

1

+ V

2

) G

(θ)

n−1

(·, ·|y, t

0

), ϕ

E

,

whi h isequivalent to

D ˆ

LK

(θ)

n

, ϕ

E

=

D

(V

1

+ V

2

) K

n−1

(θ)

, ϕ

E

,

ϕ ∈ D(Ω),

for any

n ≥ 1

. Using(3) and summingover

n

, we obtain(11).



We on ludebyanobservationwhi hisobviousfromtheabove onstru -tion but somewhat unexpe ted given that the Hamiltonians with potentials in the lass

K

2

will in general not admit a perturbative expansion (see e.g. [13℄for more onthis).

Proposition 9 For any potential

V = g (V

1

+ V

2

)

with

V

i

∈ K

i

, the solution

K

of the propagator equation(12) is analyti in the oupling onstant

g

.

A knowledgments

M.J.O. would liketo express her gratitude to José Luís da Silva for helpful dis ussionsandalsothegeneroushospitalityofCustódiaDrumondandCCM duringaverypleasantstay atFun halduringthe MadeiraMathEn ounters XXIII. This work was supported by FCT POCTI, FEDER.

(17)

For the proof of Proposition6, we needto estimate

|T Φ

n,k

(θ)|

≤ exp

|x|

n−k

X

l=1

l

|

!

×

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

exp

i

2

Z

R

θ

2

(s)ds +

n−k

X

l=1

α

l

Z

R

θ(s)11

(s

l

,t]

(s)ds

!

×

exp

k+1

X

j=1

i

2 (τ

j

− τ

j−1

)

Z

τ

j

τ

j−1

θ(s)ds

!

2

×

exp

k+1

X

j=1

1

τ

j−1

− τ

j

Z

τ

j

τ

j−1

θ(s)ds

!

n−k

X

l=1

α

l

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds

!!

×

exp

k+1

X

j=1

i (x

j

− x

j−1

)

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s) + i

n−k

X

l=1

α

l

11

(s

l

,t]

(s)

!

ds

!

We shall now estimate, onse utively, the exponents o uring in the above expression.

Usingthe Cau hy-S hwarz inequality we may approximate

exp

n−k

X

l=1

α

l

Z

R

θ(s)11

(s

l

,t]

(s)ds

!

≤ exp

n−k

X

l=1

l

|

Z

R

|θ(s)|

2

ds



1/2

t − s

l

!

≤ exp

t − t

0

|θ|

n−k

X

l=1

l

|

!

and, similarly,

k+1

X

j=1

i

2 (τ

j

− τ

j−1

)

Z

τ

j

τ

j−1

θ(s)ds

!

2

1

2

|θ|

2

,

(18)

k+1

X

j=1

1

τ

j−1

− τ

j

Z

τ

j

τ

j−1

θ(s)ds

!

n−k

X

l=1

α

l

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds

!

k+1

X

j=1

1

τ

j

− τ

j−1

Z

τ

j

τ

j−1

|θ(s)|ds

!

j

− τ

j−1

)

n−k

X

l=1

l

|

=

n−k

X

l=1

l

|

Z

t

t

0

|θ(s)|ds ≤

t − t

0

|θ|

n−k

X

l=1

l

|,

wherewehaveagainusedtheCau hy-S hwarz inequalitytoobtainthelatter inequality.

Finally,inorder to estimatethe exponentialof the fun tion

k+1

X

j=1

i (x

j

− x

j−1

)

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s) + i

n−k

X

l=1

α

l

11

(s

l

,t]

(s)

!

ds

=

k+1

X

j=1

i (x

j

− x

j−1

)

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s)ds

+

n−k

X

l=1

α

l

k+1

X

j=1

x

j−1

− x

j

τ

j

− τ

j−1

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds,

rst wepro eed as in[18℄, i.e.,

k+1

X

j=1

x

j

− x

j−1

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s)ds =

x

t − τ

k

Z

t

τ

k

θ(s)ds −

y

τ

1

− t

0

Z

τ

1

t

0

θ(s)ds

+

k

X

j=1

x

j

R

τ

j

τ

j−1

θ(s)ds

τ

j

− τ

j−1

R

τ

j+1

τ

j

θ(s)ds

τ

j+1

− τ

j

!

.

By the mean value theorem

k

X

j=1

x

j

R

τ

j

τ

j−1

θ(s)ds

τ

j

− τ

j−1

R

τ

j+1

τ

j

θ(s)ds

τ

j+1

− τ

j

!

=

k

X

j=1

x

j

(θ(r

j

) − θ(r

j+1

)) ,

(19)

where

r

j

∈ (τ

j−1

, τ

j

)

. Therefore

k+1

X

j=1

i (x

j

− x

j−1

)

τ

j

− τ

j−1

Z

τ

j

τ

j−1

θ(s)ds

≤ (|x| + |y|) sup

[t

0

,t]

|θ| + max

1≤j≤k

|x

j

|

k

X

j=1

Z

r

j+1

r

j

˙θ(s)ds

≤ 2 max

0≤j≤k+1

|x

j

|

sup

[t

0

,t]

|θ| +

Z

t

t

0

˙θ(s)

ds

!

.

Now letus onsider the sum

n−k

X

l=1

α

l

k+1

X

j=1

x

j−1

− x

j

τ

j

− τ

j−1

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds.

Sin e

s

l

∈ [t

0

, t]

, there is a

j

0

∈ {0, 1, ..., k}

su h that

s

l

∈ [τ

j

0

, τ

j

0

+1

]

. This

fa t allows to rewritethe se ond sum in the latter expression as

x

j

0

+1

− x + (x

j

0

+1

− x

j

0

)

s

l

− τ

j

0

+1

τ

j

0

+1

− τ

j

0

leading to

n−k

X

l=1

α

l

k+1

X

j=1

x

j−1

− x

j

τ

j

− τ

j−1

Z

τ

j

τ

j−1

11

(s

l

,t]

(s)ds

≤ 4 max

0≤j≤k+1

|x

j

|

n−k

X

l=1

l

|.

Insertingthese estimates weobtain

|T Φ

n,k

(θ)|

≤ exp

|x|

n−k

X

l=1

l

|

!

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

exp |θ|

2

 exp

2

t − t

0

|θ|

n−k

X

l=1

l

|

!

×exp

2 max

0≤j≤k+1

|x

j

|

sup

[t

0

,t]

|θ| +

Z

t

t

0

˙θ(s)

ds

!!

exp

4 max

0≤j≤k+1

|x

j

|

n−k

X

l=1

l

|

!

.

Now weintrodu ethe norm

kθk := sup

s∈[t

0

,t]

|θ(s)| +

Z

t

t

0

˙θ(s)

ds + |θ|

(20)

exp

|x|

n−k

X

l=1

l

|

!

k+1

Y

j=1

1

p2π(τ

j

− τ

j−1

)

exp kθk

2

 exp

2

t − t

0

kθk

n−k

X

l=1

l

|

!

× exp



2 max

0≤j≤k+1

|x

j

| kθk



exp

4 max

0≤j≤k+1

|x

j

|

n−k

X

l=1

l

|

!

.

Then we use

t − t

0

kθk ≤

1

2

(t − t

0

+ kθk

2

)

and

2 max

0≤j≤k+1

|x

j

| kθk ≤ max

0≤j≤k+1

|x

j

|

2

 + kθk

2

to obtainthe desiredestimate(9).

Referen es

[1℄ Berezansky, Yu. M. and Kondratiev, Yu. G., Spe tral Methods in Innite-Dimensional Analysis. Naukova Dumka, Kiev, 1988. (in Rus-sian). English translation, Kluwer A ademi Publishers, Dordre ht, 1995.

[2℄ Bernido, Chr., Bernido,V. andStreit, L.,Feynman Paths withGeneral Boundary Conditions: TheirConstru tion in Terms of White Noise. In preparation.

[3℄ de Faria, M., Pottho, J. and Streit, L., The Feynman integrand as a Hida distribution. J. Math. Phys., 32,2123-2127(1991).

[4℄ Hida, T., Analysis of Brownian Fun tionals, volume 13 of Carleton Mathemati alLe ture Notes. Carleton, 1975.

[5℄ Hida, T., Kuo, H. H., Pottho, J. and Streit, L., White Noise. An InniteDimensionalCal ulus.KluwerA ademi Publishers,Dordre ht, 1993.

[6℄ Hida,T.andStreit,L.,GeneralizedBrownianfun tionalsandthe F eyn-man integral. Sto h.Pro . Appl.,16,55-69 (1983).

(21)

W., Generalized fun tionals in Gaussian spa es: The hara terization theorem revisited. J. Fun t. Anal.,141, 301-318(1996).

[8℄ Kondratiev,Yu.G.,Leukert,P.andStreit,L.,Wi k al ulusinGaussian analysis. A ta Appl. Math.,44,269-294 (1996).

[9℄ Kondratiev, Yu. G.,Spa es of Test and Generalized Fun tions of an In-nite Numberof Variables.Master's thesis, University of Kiev, 1975. [10℄ Khandekar, D. C. and Streit, L., Constru tingthe Feynman integrand.

Ann. Physik, 1,49-55, (1992).

[11℄ Kubo, I. and Takenaka, S., Cal ulus on Gaussian white noise I. Pro . Japan A ad. Ser. A Math. S i.,56, 376-380(1980).

[12℄ Kubo, I. and Takenaka, S., Cal ulus on Gaussianwhite noise II. Pro . Japan A ad. Ser. A Math. S i.,56, 411-416(1980).

[13℄ Kuna, T., Streit, L. and Westerkamp, W., Feynman integrals for a lass ofexponentiallygrowingpotentials. J. Math.Phys.,39,4476-4491 (1998).

[14℄ Kuo,H.H., WhiteNoiseDistributionTheory.CRCPress,Bo aRaton, New York,London, and Tokyo,1996.

[15℄ Las he k,A.,Leukert,P.,Streit,L.andWesterkamp,W.,Quantum me- hani alpropagators in terms of Hida distributions. Rep. Math. Phys., 33, 221-232(1993).

[16℄ Obata,N., WhiteNoiseCal ulusandFo kSpa e,volume1577of LNM. Springer Verlag, Berlin,Heidelberg, and New York, 1994.

[17℄ Pottho, J. and Streit, L., A hara terization of Hida distributions. J. Fun t.Anal.,101, 212-229 (1991).

[18℄ Westerkamp, W., Re ent Results in Innite Dimensional Analysis and Appli ations to Feynman Integrals. PhD thesis, University of Bielefeld, 1995.

Referências

Documentos relacionados

Programas do livro de recortes Sociedade de Concertos de Lisboa de Viana da Mota existente no Museu da Música. 26 de Novembro de 1921 (Ano V, 1º concerto –37º da

Você poderia dizer que a razão maior do porque pessoas procuram um trabalho vocal é porque eles querem “cantar” – e esse desejo de cantar, vem também porque frequente-

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

b) Organizações do setor voluntário – Aplicação de formulário com questões abertas e fechadas, conforme mostra o Apêndice A, a 28 pessoas sendo: uma

Determine o capital que foi investido a taxa de juro de 18%at/t durante 1a 5m 3d se o montante produzido, pela convenção linear, foi de R$ 6.850,00.. ESTA PROVA PODE SER

 Compreensão da realidade com ímpeto emocional e a motivação para tirar proveito do novo conhecimento para uma melhora.. FUNÇÕES RELACIONADAS A TRASNTORNOS ORGÂNICOS

FEDORA is a network that gathers European philanthropists of opera and ballet, while federating opera houses and festivals, foundations, their friends associations and

A Lei n. 9.296/96, ao regulamentar a parte final do artigo 5º, XII, possibilitou a violação das comunicações telefônicas, nos casos de investigação criminal e durante a