• Nenhum resultado encontrado

The Computation of the Efforts into the Plan System of the Elastic Bars which Suspends a Rigid with Constraints

N/A
N/A
Protected

Academic year: 2017

Share "The Computation of the Efforts into the Plan System of the Elastic Bars which Suspends a Rigid with Constraints "

Copied!
8
0
0

Texto

(1)

Jan Cristian Grigore, Nicolae Pandrea

One considers that the rigid with constraints acted by the external for ces suported by the elatic bars embedded at the base. Under the in fluence of the external forces appear the connection forces and the displacements in the kinematic pairs. One deduces the mathematical model for the computation of the reactions and the displacements and one makes a numerical applications.

: rigid, constraints, elastic, joint bars

In the paper

[a], using the plückerian co ordinates and the relative displace ments method [8], it elaborated the computation model of the efforts from elastic bars spatially arranged, bars that suspended a rigid with constraints without clear ances.

In this paper it will customize the general model for the plane elastic bars system and it will be made an application for such a system.

! " #

One considers that the rigid body relative to the axis system O0XYZ(fig. 1), suspended by the elastic bars

A

i

B

i embedded in thepoints

A ,

i

B

i and one consi ders that the rigid has constraints without clearances.

An example of such constraint is made (fig. 1), when the point

D

of the rigid remains located on the fixed rigid surface equation

g

(

X

,

Y

,

Y

)

=

0

ANALELE UNIVERSITĂłII

“EFTIMIE MURGU” RE IłA

(2)

$ Using the general notations [1]

[ ]

K

i the stiffness matrix of the bar

A

i

B

i relative to the reference system

OXYZ

[ ]

K

the general stiffness matrix of the elastic bars system

[ ]

[ ]

=

=

n

i i

k

k

1

, (1)

[ ]

S

the possible displacements matrix from constraints

[ ]

ξ

the column matrix of the scalar parameters of the displacements from con straints

[ ]

U

the restrictions matrix from constraints

[ ]

η

the column matrix of the scalar parameters of the restrictions from con straints

[ ]

F

the column matrix of the components of the external forces torsor which act the rigid

one obtains [1] the matrix equation of the elastic equilibrium

{ }

F

+

[ ]

U

{ }

η

=

[ ][ ]

K

S

{ }

ξ

(2) and taking into account the conditions

[ ] [ ] [ ] [ ] [ ] [ ]

U

T

S

=

0

;

S

T

U

=

0

(3) from (2) one deduces the matrices of the scalar parameters

{ }

ξ

=

[

[ ] [ ] [ ]

S

T

K

S

]

−1

[ ]

S

T

{ }

F

(4)

[ ] [ ] [ ]

[

U

T

K

−1

U

]

−1

[ ] [ ]

U

T

k

−1

{ }

F

=

η

(5)

(3)

{ }

F

i

=

[ ] [ ][ ][ ]

T

i −1

k

i

S

ξ

,

i

=

1

,

2

,...

n

(6)

% &

% '

In the case of the plan bars system (fig. 2)

$ !

using the notations

i i i

i

y

A

z

A

,

the inertial central principal axes of the normal section in

A

i by the bar

A

i

B

i

i i

x

A

, the axis of the centres of gravity of the normal sections, sections considered identical

i

l

, the lenght of the bar

A

i

B

i

i

A

~

, the area of the normal section

i

I

, the inertial moment of the normal section relative to the axis

A

i

z

i

i

E

, the Young modulus

i i

k

k

1

,

2 , the stiffness defined by the relations

3 2

1

;

i i i i i

i i i

l

I

E

k

l

A

E

k

=

=

(7)

[ ]

k

i , the local stiffness matrix of the bar

A

i

B

i

[ ]

=

2 2 2

2 2 1

4

6

0

6

12

0

0

0

i i i i

i i i i i

l

k

l

k

l

k

k

k

k

(8)

i

(4)

(

X

i

,

Y

i

)

, the co ordinates of the point

A

i

[ ]

T

i

[ ]

T

i

~

,

, the position matrices

[ ]

[ ]

α

α

α

α

=

α

+

α

α

α

α

α

α

α

=

1

0

0

cos

sin

sin

cos

~

,

1

sin

cos

cos

sin

0

cos

sin

0

sin

cos

i i i

i i i

i

i i i i i i i i

i i

i i

i

X

Y

T

Y

X

Y

X

T

(9)

[ ]

K

i , the stiffness matrix of the bar

A

i

B

i in the

OXY

system

[ ] [ ][ ]

[ ]

~

−1

=

i i i

i

T

k

T

K

(10)

where

[ ]

[ ] [ ]

[ ]

T i i T i

i

T

T

T

T

~

−1

=

;

−1

=

~

(11)

one obtains the stiffness matrix of the elastic bars system

[ ]

[ ]

=

=

n

i i

K

K

1

(12)

% !

For the restrictions matrix computation one takes into account the relation

[ ] [ ][ ]

U

=

T

u

(13)

where:

[ ]

u

, is the restrictions matrix in the loacal reference system

[ ]

U

, is the restrictions matrix in the general reference system

OXY

[ ]

T

, the position forces matrix of the local system relative to general refe rence system.

If the local reference system has the axes parallel to the axes

OX ,

OY

and the origin has the co ordinates

(

X ,

Y

)

, the position matrix is

[ ]

=

1

0

1

0

0

0

1

X

Y

(5)

For the bearing constraint of the rigid on the fixed rigid equation curve

(

X

,

Y

)

=

0

g

in point

D

(

X

D

,

Y

D

)

, denoting with

g ,

X

g

y the partial derivatives calculated in the point

D

, there are obtained the expressions

{ }

;

{ }

;

0

* *

* * *

*

=

=

X D Y D

Y X Y

X

g

Y

g

X

g

g

U

g

g

u

(15)

where

2 2 * 2 2 *

;

X X

Y Y

Y X

X X

g

g

g

g

g

g

g

g

+

=

+

=

(16)

and for the fixed point constraint (joint) in

D

(

X

D

,

Y

D

)

, there are obtained the expressions

[ ]

[ ]

=

=

D

D

X

Y

U

u

0

1

0

1

;

0

0

1

0

0

1

(17)

% % '

For the matrix (small) displacements computation one takes into account the relation

[ ]

S

=

[ ]

T

~

[ ]

s

(18) where:

[ ]

s

, is the displacements matrix in the local reference system

[ ]

S

, is the displacements matrix in the general reference system

OXY

[ ]

T

~

, is the position matrix for displacements of the local system relative to the system

OXY

If the local reference system has its axes parallel to

OX ,

OY

, the origin has the co ordinates

(

X ,

Y

)

the position matrix is

[ ]

=

1

0

0

1

0

0

1

~

X

Y

(6)

For the bearing constraint of the rigid on the fixed rigid curve equation

(

X

,

Y

)

=

0

g

in point

D

(

X

D

,

Y

D

)

,there are obtained the expressions

{ }

{ }

;

1

0

;

1

0

0

0

* * *

*

=

=

X D

D Y X

Y

X

g

Y

g

S

g

g

s

(20)

and for the fixed point constraint (joint) in

D

(

X

D

,

Y

D

)

there are obtained the ex pressions

{ }

{ }

=

=

1

;

1

0

0

D D

X

Y

S

s

(21)

( )

One considers a rigid straight bar

A

1

A

2 from fig. 3, of lenght

2

b

propped in

1

A

on the rigid equation straight line

X

cos

β

Y

sin

β

+

b

sin

β

=

0

The rigid bar

A

1

A

2 embedded bars in

B

i

,

i

=

1

,

2

at the base and in

2

,

1

,

i

=

A

i at the rigid bar.

If the force

F

acts upon the rigid bar on the axis direction

OY

let us de terminate the displacements

ξ

1

,

ξ

2 the reaction

N

from the point

A

1 and the efforts from bars.

$ % $ (

Choosing the reference system from fig.3 it results the equalities

β

=

β

=

=

α

=

α

=

=

=

=

=

=

sin

;

cos

;

0

;

;

* *

2 1 3 2 22 21 1

12 11

Y

X

g

g

l

EI

k

k

k

l

EA

k

k

k

(7)

[ ]

( )

( )

=

1

0

0

0

1

0

1

0

1

4

6

0

6

12

0

0

0

1

0

1

0

1

0

0

0

1

2 2 2 2 1

b

kl

l

k

l

k

k

k

b

k

i i i (23)

[ ] [ ] [ ]

+

=

+

=

2 1 2 2 2 2 1 2 1

4

6

0

6

12

0

0

0

2

b

k

kl

l

k

l

k

k

k

K

K

K

(24)

{ }

[ ]

β

β

=

β

β

β

=

1

0

0

cos

sin

;

cos

sin

cos

b

S

y

U

(25)

(

β

+

β

β

β

)

+

β

+

β

=

cos

sin

3

cos

6

sin

4

cos

12

sin

2 2 2 2 2 1 2 2 2 2 2 2 2 1

bl

b

l

k

k

l

k

b

k

D

(26)

(

)

β

+

β

+

β

=

ξ

ξ

cos

6

sin

2

4

2

cos

2 1 2 1 2 2 2 1

l

k

b

k

b

k

l

k

D

F

(27)

(

)

[

+

β

β

]

=

η

=

4

2

sin

6

2

cos

1 2 2

1

k

l

k

b

k

lb

D

Fk

N

(28)

{ }

(

)

(

)

{ }

(

)

(

)

ξ

+

+

β

ξ

ξ

+

β

ξ

ξ

β

ξ

=

ξ

+

+

β

ξ

ξ

+

β

ξ

β

ξ

+

β

ξ

=

2 2 1 2 2 1 2 2 2 1 2 2 1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 1 1

4

cos

6

6

cos

12

sin

;

4

cos

6

6

cos

12

cos

sin

b

k

l

k

l

k

l

k

k

b

k

F

b

k

l

k

l

k

l

k

k

k

F

(29) 2 1 2 2 2 0

4

6

b

k

l

k

lb

k

tg

+

=

β

(30)

If

0

<

β

<

β

0 the reaction

N

is negative, if

β

=

β

0 the reaction

N

is null and if

β

>

β

0the reaction

N

is positive.

In a numerical application if one considers that the elastic bars with

m

8

.

0

;

m

N

10

2

11

2

=

=

l

E

, have a circular section

d

=

16

mm

, that

β

=

10

,

N

5000

=

F

and the rigid bar is

b

=

0

.

4

m

, there are obtained the results:

rad

09

.

7

rad,

27

.

3

N,

28802

,

rad

10

5

.

0

4 1 2

0

=

=

ξ

=

ξ

=

(8)

{ }

{ }

=

=

rad

83

.

2

0

N

26

.

2

10

5

;

rad

836

.

2

0

N

4

.

3

10

5

3 2 3

1

F

F

This work was supported by CNCSIS – UEFISCSU, project number PN II RU 683/2010

[1] Grigore, J. C., Pandrea, N., Calculul liniar elastic al barelor care sus pendă un solid rigid cu constrângeri fără jocuri (în curs de publicare), The 3rd International Conference on International Conference″Computational Mechanics and Virtual Engineering″COMEC 2010, 29 – 30 OCTOBER 2009, Brasov, Romania

[2] Grigore, J. C., Pandrea, N., Calculul liniar elastic al barelor care sus pendă un solid rigid cu constrângeri cu jocuri (în curs de publicare), The 3rd International Conference on International Conference″Computational Mechanics and Virtual Engineering″COMEC 2010, 29 – 30 OCTOBER 2009, Brasov, Romania

[3] Buzdugan Gh.,RezistenŃa materialelor, Editura Tehnică BucureGti, 1980 [4] Courbon , J.,Calculul des structures, Dunora, Paris, 1972

[5] Dimentberg, F.,Teoriza vintov i ee prilozheniya, Nauka, Moskva, 1978 [6] Grigore, J. C., Dinamica mecanismelor cu jocuri, Editura UniversităŃii

din PiteGti, 2010

[7] Pandrea, N.,Metoda deplasărilor relative în calculul sistemelor elastice. Buletinul Institutului de ÎnvăŃământ Superior, PiteGti, 1978

[8] Pandrea, N., Elemente de mecanica solidelor în coordonate plück eriene, Editura Academiei Române, BucureGti 2000

[9] Pandrea, M., Calculul liniar elastic în coordinate plückeriene, Editura UniversităŃii, PiteGti, 2006

[10] Voinea, R., Pandrea, N., ContribuŃii la o teorie matematică generală a cuplelor cinematice, IFTOMM Inz. Symp.,Vol B, Bucharest 1973

Addresses:

• Lecturer PhD.Eng. Grigore Jan Cristian, University of PiteGti, Depart ment of Applied Mechanics, str. Târgul din Vale, nr. 1, 110040, PiteGti

jan_grigore@yahoo.com

mailto:s_doru@yahoo.com

Referências

Documentos relacionados

Por outro lado, na rinite alérgica perene, os anti-histamínicos orais são preferíveis aos ALT (uma possível justificação é o facto de se tratar de tratamentos

A maioria dos consumidores desta substância concentra-se nas imediações deste país – metade da produção é consumida no Paquistão, no Irão, na Rússia e em antigos países da

Os termos “Transgredir” e “Problematizar” são aqui postos no sentido de criar novas situações de ensino e de aprendizagem na e para formação de estudantes e

Essa última medida vai contra: o desejo dos blocos populares responsáveis pelo renascimento do carnaval de Belo Horizonte em 2009 (MACHADO, 2015); “[...] os tipos preconceituosos

Esta abordagem permitiu que se caminhasse de uma visão instrumental da educação para uma visão mais essencialista e global (Azevedo, 1996b), em que a educação assume um papel

No campo, os efeitos da seca e da privatiza- ção dos recursos recaíram principalmente sobre agricultores familiares, que mobilizaram as comunidades rurais organizadas e as agências

Para isso, a partir dos sentidos produzidos sobre a leitura na perspectiva das crianças leitoras, considera-se tais práticas como território de produção de