• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número2"

Copied!
9
0
0

Texto

(1)

Bose-Einstein Condensation in a

Constant Magneti Field

H. Perez Rojas 1;2;3

and L.Villegas-Lelovski 2

1

HighEnergy Division,DepartmentofPhysis, UniversityofHelsinki,

Siltavuorenpenger 20C,FIN-00014,UniversityofHelsinki,Finland

2

Departamentode Fsia, Centrode Investigaionyde EstudiosAvanzados delIPN,

Apartado Postal14-740,07000Mexio, D.F.,Mexio

3

Grupo deFsiaTeoriaICIMAF,

CalleENo. 309,Vedado, LaHabana4,Cuba.

Reeived22November,1999

WedisusstheourreneofBose-Einsteinondensationinsystemsofnoninteratingharged

par-tilesinthreeandonedimensionsandinpreseneofanexternalmagnetield. Intheone

dimen-sional, as wellas inthemagnetield ases,althoughnotaritial temperature,aharateristi

temperatureanbefound,orrespondingtothease inwhihthegroundstatedensitybeomesa

marosopi frationofthe totaldensity. Theaseof relativistihargedsalar andvetor

parti-les isstudied. Theresultsgivesupporttotheexisteneofsuperondutivityinextremelystrong

magnetields,andleadtothepreditionofsuperondutive-ferromagnetibehaviorinthevetor

eld ase, whihmight beofinterestinondensedmatteras wellasinosmology. Somefeatures

ofthemagnetizationintheearlyuniverseareonjetured.

I Introdution

Condensationinthegroundstateseemstobeageneral

property whenever the onditions of quantum

degen-erayof theBose-Einsteingas aresatised. Quantum

degenerayis usuallyunderstood to beahievedwhen

theDeBrogliethermalwavelengthisgreaterthatthe

mean interpartile separationN 1=3

. Theremarkable

disovery made by Einstein on the Bose distribution

wasthatondensationmayourstartingatsome

rit-ialtemperatureT

dierentfromzero,whihisusually

referredasBose-Einsteinondensation(BEC).

Conden-sation of harged partiles requires a bakground of

harge ofopposite signto sreenthe mutualrepulsion

amongpartiles. Wewillassumethatsuhbakground

exists.

TheonditionforBECtoourinagasofharged

partilesplaedinamagnetieldisusuallyborrowed

fromtheasewithoutmagnetield as=E

0 (where

E

0

is the ground state energy), whih an be

trans-lated into = p

M 2

eBh for the relativistiase

( 0

= M

2

eBh=M inthenonrelativistilimit).

We must ite rst Shafroth [2℄ who proved that for

a non-relativisti boson gas, Bose-Einstein

ondensa-tion (BEC) does not our in presene of a onstant

magneti eld. It was impliit in his paper that he

onsideredonlytheaseofnotveryintenseelds. The

that aphasetransitionlikethat in thefreegasours

for D 5, and later by Daii et al [4℄, [5℄, who

ex-tendedthe onsiderationsmadeby[3℄ tothe

relativis-tihightemperaturease. Later Toms[6℄provedthat

BECinpresene ofaonstantmagnetield doesnot

ourinanynumberofspatialdimensions,andElmfors

etal[7℄whostatedthatinthe3Dase,althoughatrue

ondensateisnotformed,theLandaugroundstatean

beoupiedby alarge hargedensity. Asimple

rite-rionforBECtoour,wasgivenbyTomsandKirsten

[6℄, whoonludedthat usualBEC anouronlyfor

d3.

Therearetwowaysofharaterizingtheourrene

of BEC,whih are: 1) Theexisteneofaritial

tem-peratureT

>0suh that(T

)=E

0

, (Thisondition

isusually takenasaneessaryandsuÆientondition

for ondensation; see [9℄). Then, for T T

, some

signiantamountofpartilesstartstoondenseinthe

groundstate. 2)Theexisteneofanitefrationofthe

totalpartiledensityinthegroundstateandin states

in its neighborhood at some temperature T > 0. We

referto1)asthestrongandto2)astheweakriterion

forBEC.

A magnetield expliitly breaks thespatial

sym-metry. It isreetedin thewavefuntion ofaharged

partile moving in it, and also in its spetrum. The

(2)

on-metry in momentum spae: the momentum

ompo-nentsperpendiulartotheeldollapseinasetof

dis-reteLandauquantum states,theirenergyeigenvalues

havinginnite degeneray. A gas ofharged partiles

(eitherBosonsorFermions)inpreseneofveryintense

magneti elds populate mainly the Landau ground

state n = 0 and behaves as a one-dimensional gas in

theaxisp

3

parallel totheeld. ForBosons,itleadsto

a statistial distribution for xed temperature T and

magnetield B,whih dependsonlyonp

3 .

Wemustbearin mind at thispointthat the usual

propertiesofseond orderphasetransitions annotbe

validinpreseneofexternalelds(seeLandau-Lifshitz,

[12℄). Theexternaleldintroduesin theHamiltonian

a perturbing operator whih is linear in the external

eld strength, in our ase B, and in the order

opera-tor , in our ase ^

M, the magnetization. As a result,

at any value of B, M beomes dierent from zero at

any temperature. Thus, B redues the symmetry of

the usual moresymmetrial phase, and the dierene

betweenthetwophasesoftheusualtheorydissapears;

the disretetransition pointdissapears; thetransition

is\smoothedout".

Thus,asBECin 3Dhasthepropertiesofaseond

order phasetransition,in studying it in presene of a

magnetield, thestrongriteriumannotbeapplied;

no ritial temperature separating phases of dierent

symmetry exists, and that was onrmed in many of

the resultsof referenes [2℄- [6℄. Butan order

param-eter exists at any temperature, the magnetizationM,

whih for large elds and densities, and temperatures

small enough(see below)beomesproportionalto the

ground state density. Atually, the ground state

den-sity an be onsidered also as another order

param-eter losely related to M and may beome a

maro-sopifrationofthetotaldensity,notatadeniteT

,

but in someintervalof valuesofthetemperature. We

may think in the ase in whih one starts from a gas

of hargedpartiles,withoutmagnetield,belowthe

ritial temperature. If a suÆiently strong magneti

eld is applied, thepartilesin theondensateremain

ondensed,andaritialtemperatureisnotpossibleto

be dened. (It is interestingto mention herethat, as

shownin ref. [8℄, there is noritial temperaturealso

in theaseofagasonnedto aparabolipotential.)

Thispaperisamoredetailed andompleteversion

of some of the resultsof twoprevious ones,[13℄, [14℄,

in whih it was pointed out that Bose-Einstein

on-densation,in thesenseof havingalargepopulationin

thegroundstateinaontinuousrangeoftemperatures

(i.e.,noritialtemperatureexists),mayourin

pres-ene of a magneti eld B, for very dense systemsat

verylowtemperatures. Theexistene ofdisrete

Lan-dau quantum states allows this "weak" BEC. In this

ase,thegroundstatepopulationisexpliitlyinluded

in theBose-Einsteindistribution.

Theourreneof Bose-Einstein ondensationin a

strong magneti eld gives theoretial support to the

phenomenon of re-appearane of superondutivity in

elds strongenough, and even leadsto the predition

of superondutive-ferromagneti behavior in the

ve-toreldase,aphenomenonwhihwouldbeofespeial

interestin ondensedmatterandin osmology.

Thestrutureofthepresentpaperisasfollows. In

setionIIweshalldisusssomefeaturesoftheusual3D

Bose-Einsteinondensation,whih givesabasisto

un-derstandits"weak"ourreneintheone-dimensional

ase(setionIII)andinthemagnetieldase(setion

IV).InsetionVitisexpliitlyshowntheferromagneti

behaviorofthemagnetizationofthevetoreldase. It

isalsodisussedtheonnetionwithsuperondutivity,

theexisteneoflow-eldandstrong-eldondensation

andtheorrespondingsuperondutivebehavior,

sepa-ratedbyagap,andtheferromagneti-superondutive

behaviorappearingin thevetoreld ase. setionVI

isdevotedtosomeosmologialonsiderations,and

se-tionVII dealswiththeonlusions.

II The usual Bose-Einstein

Condensation

Inordertobeself-ontained,wereallsomeresultsand

formulaefrom [13℄, [14℄. onerning the standard 3D

BEC theory of the free Bose gas. We must

empha-size that our onsiderations in the present and next

setionare essentiallyonerned with thease of

sys-temsfar from thethermodynami limit. Weshall use

throughout the paper T in energy units, i.e., as the

produt of theBoltzmann onstant k by the absolute

temperature; thus, T = 1

. The hemial potential

=f(N;T)<0is a dereasingfuntion of

tempera-tureatxeddensityN,andfor=0onegetsan

equa-tion dening T

= f

(N). Fortemperatures T < T

,

as = 0, the expression for the density gives values

N 0

(T) < N, and the dierene N N 0

= N

0 is

in-terpretedasthedensityof partilesintheondensate.

Themeaninterpartile separationisthenl=N 1=3

.

Inouronsiderationswewilluseintegralswhih,as

it is usually done, must be interpreted as

approxima-tionsofsums overdisrete quantum states, whih

im-plynottobeworkingatthethermodynamilimit. For

usual marosopisystems, as the separationbetween

quantum statesisp=h=V 1=3

, theapproximationof

thesumbytheintegralisquitewelljustied.

Now, above the ritial temperature for

ondensa-tion

N =4 1=2

3

Z

1

0 x

2

d

e x

2

+

1 =

3

g

3=2

(z); (1)

where = =T(> 0), x = p=p

T

is the relative

mo-mentum, p

T =

p

2mT the harateristi thermal

mo-mentum,and=h=(2mT) 1=2

thedeBrogliethermal

(3)

Pathria [10℄), asa funtion of the fugaity z =e =T

,.

AtT =T

,wehaveg

n

(1)=(n),andg

3=2

(1)=(3=2),

and thedensityis N

=(3=2)= 3

,orin other words,

N 3

=(3=2)'2:612. Herewemustpointoutthatif

thepartile densityis written as asumoverquantum

states

N = X

i (z

1

e E

i

T

1) 1

; (2)

for stritly z = 1( = 0), the ground state term

di-verges. (In eld theoretial language, it is due to an

infrared divergene of the one-partileGreen funtion

at = 0). This divergene usually serves as an

ar-gument[10℄toindiatetheourreneofBose-Einstein

ondensation,andatuallywemusttake=0

+ .

How-ever,inonsideringtemperaturesbelowT

,itisavery

good approximationto take=0[10℄, [12℄, andthus

thegroundstatedensityisdesribedbytheexpression

N

0

=N[1 ( T

T

)

3=2

℄ (3)

It leads to onlude that for T = T

, N

0

= 0. This

seemstoberatherinonsistentwithourprevious

anal-ysis aboutthe limit of (2) for ! 0,and oneexpet

that (3) isnotexat, butmust ontaintermsof order

smaller than N, aounting for the groundstate

den-sity at T = T

. One an proeed in a dierent way,

by keepingin mind the temperature Green's funtion

formalism[15℄,whihinthenon-relativistiinnite

vol-ume limit leads to N = R

d 3

pG(p). By onsidering a

nite volume, N results as asum overdegenerate

en-ergy states, the degeneray fator being proportional

to p 2

p=h 3

. Thisleads to anite ontributionin the

limitp=0,sinetheinfrareddivergene oftheGreen

funtionatthepole E

0

isaneledbythefatorp 2

,

leadingto a non-zerobut nite density at theground

stateatT =T

, aswillbeseenbelow.

Beforedoingthat,itis interestingto investigatein

detailthepartiledensityinrelativemomentum spae

f

3

(x; ) = x

2

e x

2

+

1 :

Byalulating the rst and seond derivatives of this

funtion, we ndthat for6=0 ithas aminimum at

x=0andamaximumat x=x

wherex

is the

solu-tionofe x

2

+

=1=(1 x 2

).

Inthissensef(x;) hasasimilarbehaviorthanthe

Maxwell-Boltzmann distributionof lassial statistis.

Butas !0, alsox

!0, and themaximum ofthe

density, for stritly = 0, is loated at x = 0. The

onvergenetothelimitx=0isnotuniform. Anite

fration of the total density falls in a viinity of the

Figure1. ThedensityinmomentumspaeoftheBosegas

for T >T has aminimumat p3 =0and a maximumat

some p3 6=0. Astemperature is dereased, the maximum

approahes to the value p3 =0and at T =T itis

rigor-ouslyonit,theminimumdisappears. Theurvesa,b,,d

orrespondrespetivelyto=1,0.1,0.001and0.

If we go bak and substitute the original integral

overmomentumbyasumovershellsofquantumstates

ofmomentum(energystates),weanwriteforthe

rit-ialvalue=0,

N

=

4

h 3

1

X

i=0 p

2

i p

e p

2

i =2MT

1

: (4)

Taking p ' h=V 1=3

, where V is the volume of the

vessel ontainingthe gas, the ontribution of the rst

termp

0

=0ofthegroundstatedensityisN

0 =

4

V 1=3

2

.

Wehavethusafrationof

N

0 =N

=4(3=2)=V 1=3

=4(3=2) 2=3

=N 1=3

(5)

partiles in the groundstate, (where N = NV is the

totalnumberofpartiles)whihisthemostpopulated,

asdesribedby thestatistialdistribution, atT =T

.

AnumerialestimationforonelitreofHegasleadsto

N

0

=N '10 6

. Inquantum statesin asmall

neighbor-hood of the ground state, the momentum density has

slightlylowervalues. Thus, attheritialtemperature

for BEC, there is a set of states lose to the ground

state,havingrelativelargedensities. Althoughthis

re-sultwasobtainedusingexatly=0,whihaording

to (2) implies an innite ground state population, it

representsanimprovementomparedwith N

0

=0for

T =T

.

Eq. (5) indiates an interesting relation: the

largertheseparationbetweenquantumstates,(i.e.,the

smaller the volume) the larger the population of the

ground stateat the ritial temperature. In the

ther-modynami limit the quantum states form a

ontin-uum,and (5)hasnomeaning. However,mostsystems

(4)

astro-We onlude that for valuesof T < T

, the urve

desribing thedensityin momentum spae attens on

the p (or x) axis, and its maximum dereases also.

As onservation of partiles is assumed, we get the

ground state density by adding to f(x) the quantity

2N[1 (T=T

)

3=2

℄(T

T)

3

Æ(x)asanadditional

den-sity. As T ! 0, the density in the ground state

in-reases at the expense of non-zero momentum states.

ThisleadstotheusualBose-Einsteinondensation. We

must remarkthat in that ase,forvaluesof T smaller

but lose to T

, boththe weak andthe strongriteria

aresatised.

III The one-dimensional ase

The ondensation in 1D is interesting in itself, sine

there is an inresinginterestto study ondensationin

systemsoflowerdimensionalitythan3D(wedisussed

the ideal 2D gas ase in [14℄), taking into aount its

possibleexperimental realization(even theproblemof

superuidityinquasi1Dsystemsisurrentlydisussed

in theliterature, see [11℄). Here wewill be interested

onitthinkinginitsonnetionwiththemagnetield

ase. For D = 1,there is reduedsymmetry with

re-gard to the 3D ase, and no ritial temperature is

expeted to our. In this ase, the mean

interpar-tile separation is l = N 1

. The density in

momen-tum spae oinides with the Bose-Einstein

distribu-tion,f

1

(p;T;)=(e p

2

=2MT =T

1) 1

. Thisfuntion

has only one extremum, a maximum, at p = 0. We

havetheexpressionforthedensityofpartilesas

N =2 1

1=2

Z

1

0

dx

e x

2

+

1 =

1

g

1=2

(z): (6)

We have thus that N = g

1=2

(z). The fat that

g

1=2

(z)divergesasz!1indiatesanenhanementof

the quantum degeneray regime. But this fat

atu-ally meansthat is adereasingfuntion of T for N

onstant,and forverysmall oneanwrite,

approxi-mately

N '2 1

1=2

Z

x0

0 dx

x 2

+ '

1=2

1=2

; (7)

where x

0 =p

0

=MT,p

0

being someharateristi

mo-mentum p

0 p

T

. Thus, doesnot vanishat T 6=0,

and for small T it is approximately given by =

=N 2

2

. Thenx

0

impliesp

0

2

2

M 2

T 2

=N 2

h 3

,

anditisfullled ifT=N!0.

Bysubstitutingthelastexpressionforbakin(7),

onehas

N '2 1

1=2

Z

x0

x0 dx

x 2

+ 2

; (8)

where = 1=2

=N. Due to the properties of the

Cauhy distribution,onean nd that onehalf of the

densityisin theinterval[0;℄,

1

2

N =2 1

1=2

Z

0 dx

x 2

+ 2

:

Weanalsond

f

1

(p;T;N)

!0 '

2N

1=2

Æ(p):

Thus,forsmallone-halfofthedensityisonentrated

intheintervalofmomentum[ ;℄. Topreisegures,

we shalldene 0

=p

T

, where p

T =

p

2MT is the

deBrogliemomentum, to givetheproperdimensions,

and ompare it with the ground state quantum ell,

2h=L,where L is theonedimensional volumeof our

system. For2h=L 0

, mostofthesystemisin the

groundstate. Thismeansthat theadimensionalphase

spaedensityismuhgreaterthanthe"volume"ofthe

systemmeasuredinunits,NL=.

For 2h=L ' 0

, N L=, and we an dene

a temperature T

d

= Nh 2

=2 3=2

mL whih, although

notbeingaritialtemperatureforaphasetransition,

establishes the order of magnitude of T in whih the

ground state density is a marosopi fration of the

totaldensity N. Thus, in the present ase we havea

weakondensation.

IV The magneti eld ase

By assuming as in [7℄ a onstant mirosopi

mag-neti eld B along the p

3

axis (the external eld is

H ext

=B 4M(B),where M(B)is the

magnetiza-tion),foreBh=mT,allthedensityanbetakenas

onentratedintheLandaustaten=0,themaximum

ofthedensityin momentum spaeis just at thepoint

x=0even for 0

6=0;thus,weonludethat without

anyritialtemperatureinthataseanitefrationof

thedensityisfoundinthegroundstate.

Theenergyofahargedpartileinamagnetield

inthenon-relativistiaseisp 2

3

=2M+eBh(n+ 1

2 )=M.

Here we name

1

= eBh=2M as the eetive

hemialpotential. Bydening theelementaryellas

v=h=eB weanwrite

N =

1

v Z

1

0

dx

e x

2

+

1

1

(9)

1

v g

1=2 (z)=

1

v 1

X

m=1 e

1m

m 1=2

(10)

Byintroduingtheontinuousvariablex=Tmand

bywritingT P

1

n=1 !

R

1

0

weget

N =

1=2

v 1=2

(5)

andinasimilarwayasbeforeoneangetforthe

rela-tivepopulationin thegroundstate

N 0 N = L 1=2 1 : (12)

Here L is the harateristi dimension of the system

(along the magneti eld). We observe that N

0 =N

inreases with dereasing

1

, i.e., as temperature

de-reases. Thelimit, whih isnottransparentfrom (12)

mustbeunity,asweshallseebelow. Weonludethat

the density in momentum spae in the magneti eld

aseonentratesina(dereasingwithT)narrowpeak

aroundthegroundstatep

3

=0(Fig. 2).

Weturntotherelativistiase. Thethermodynamipotentialforagasofhargedsalarpartilesplaedinthe

magnetieldis,

s = eB 4 2 h 2 1 X n=0 Z 1 1 dp 3 h ln(1 e ( q ) )(1 e ( q +) )+ q i (13) where q = q p 2 3 2 +M 2 4

+2eBh(n+ 1

2

) , the last term in (1) aounts for the vauum energy and is the

hemialpotential. For avetoreldtheone-loopthermodynami potentialis

v = eB 4 2 h 2 Z 1 1 dp 3 h ln(1 e (0q ) )(1 e (0q+) )+ q i + eB 4 2 h 2 1 X n=0 n Z 1 1 dp 3 h ln(1 e ( q ) )(1 e ( q +) )+ q i (14) where n

=3 Æ

0n , 0q = p p 2 3 2 +M 2 4 eBh, q = q p 2 3 2 +M 2 4

+2eBh(n+ 1

2 ) .

d

Figure 2. In the magneti eld ase, for eBh=mT 1,

thesystemisonnedtothen=0Landauquantumstate.

Themaximumofthedensityinthemomentumomponent

along the magneti eld is loated at zero momentum at

anytemperature,andforverylowT,ithasapeakedÆ-like

form. Hereurvesd,e,forrespondto=1,0.1and0.001.

The mean density of partiles minus antipartiles

(average harge divided by e) is given by N

s;v =

s;v =.

Wehaveexpliitly

N s = eB 4 2 h 2 1 X Z 1 1 dp 3 (n + p n p ) : (15) wheren p =[exp( q ) 1℄ 1 .

Wetaketheexpressionfrothevetoreldasefrom

theWeinberg-SalamLagrangianinamediumina

mag-neti eld[16℄. Wehave,

N v = eB 4 2 h 2 Z 1 1 dp 3 (n + 0p n 0p ) + eB 4 2 h 2 1 X 0 n Z 1 1 dp 3 (n + p n p ) (16) where n 0p = [exp( 0q ) 1℄ 1 , 0q = p p 2 3 2 +M 2 4

eBh,and

0n

=3 Æ

0n .

For T ! 0, ! M

2

(we named M

= p M 2 eBh= 3

), the population in Landau quantum

states other than n = 0 vanishes (this was shown in

[1℄)and the density forthe n=0stateis infrared

di-vergent. Weexpetthen mostofthepopulationto be

in the ground state, sine for small temperaturesn

0p

is vanishing smalland n +

0p

is abell-shaped urvewith

its maximum at p

3

= 0. We will proeed as in [16℄

and all p

0 (

p

2M 0

) some harateristi

momen-tum. Wehavethen,byassuming 0

T,forthenet

densityinasmallneighborhoodofp

(6)

N 0s;v = eBT 2 2 h 2 Z p0 0 dp 3 p p 2 3 2 +M 2 4 eBh Z p0 0 dp 3 p p 2 3 2 +M 2 4

eBh+

' eBT 2 2 h 2 2 Z p0 0 (M 2 +)dp 3 p 2 3 2 +M 2 4 2 Z p0 0 (M 2 )dp 3 p 2 3 2 +M 2 4 2 = eBT 4h 2 [ s M 2 + M 2 s M 2 M 2 + ℄ eBT 4h 2 s 2M 0 (17) d whereN s;v =N 0s;v +ÆN s;v andÆN s;v

isthedensityin

the interval[p

0

;1℄. AtuallyÆN

s;v

isnegligibly small

and N 0

s;v 'N

s;v

. Weobservethat theontributionof

antipartilesanbenegleted as!M

. Thus (17)

leadsto 0 = e 2 B 2 T 2 M 8 2 N 2 0s;v h 4 2 : (18)

We observe that 0

is a dereasingfuntion of T and

vanishes for T = 0, where the "ritial" ondition

=M

2

is reahed. As shown below, in that limit

the Bose-Einstein distribution degenerates in a Dira

Æ funtion, whih means to haveallthesystem in the

ground statep

3

=0. Tosee this, weshallrewrite the

momentumdensityofpartilesaroundthegroundstate

p

3

=0,n=0approximatelyas

n 0 (p 3 ) = T p 2 3 2M + e 2 B 2 T 2 M 8 2 h 4 2 N 2 0s;v = 4h 2 N 0s;v eB p 2 3 + 2 (19) where = eBTM 2h 2 N 0s;v = p T vN 0s;v = p 2M 0 where p T = p 2M

T is the thermal momentum,

v = h=eB the elementary volume ell, = h=p

T

beingtheDeBrogliethermalwavelength(observethat

v dereaseswithinreasingB). Wehaveapproximated

the Bose-Einstein distribution by one proportional to

aCauhydistribution,havingitsmaximum 1

for

p

3

=0. Wehavethat !0forT !0,but for small

xedT,alsodereasesasvN

0s;v

inreases. Weremind

that in thezeroeld ase, theondensation ondition

demands N 3 >2:612. approximately, 1 2 N 0s;v = eB 4 2 h 2 Z n 0 (p 3 )dp 3 : (20)

Thus,approximatelyonehalfofthetotaldensityis

on-entrated in the narrow strip of width 2 around the

p

3

= 0 momentum. It results that for densities and

magnetieldslargeenough,ifwehooseanarbitrary

smallneighborhoodofthegroundstate,ofmomentum

width 2p

30

, oneanalways nda temperature T >0

smallenoughsuhthat p

30

and(17)and(20)are

satised.Theondensateappearsanditisdesribedby

thestatistial distribution. Graphsof n

0 (p

3

)forsome

valuesofareshownin Fig. 2. Wehavealso

lim !0 n 0 (p 3 )=4

2 h 2 N s;v eB Æ(p 3 ): (21) Orequivalently, N s;v = lim !0 eB 4 2 h 2 Z 1 1 n 0 (p 3 )dp 3 : (22)

Thus, if T ! 0, all the density N

s;v

falls in the

on-densate, as our in the zero eld ase, but here the

total density is desribed expliitly by the integralin

momentumspae.

Oneannotxany(small)valueforatwhihthe

distribution starts to havea manifest Æ(p

3

) behavior;

and there is no denite value of ritial temperature

forondensation to startto be onstrainedessentially

inthegroundstate. Buttheonnementin then=0

LandaustateoursiftheratioeB=T islargeenoughto

maketheaverage oupationnumbersin exited

Lan-daustatesnegligiblysmallasomparedto theground

state. Theonnementtothep

3

=0momentumstate

alongtheeld,foragivenB,isdeterminedbytheratio

T=N. If itissmall enoughto make 2h=L where

L is the harateristi length of the system along the

(7)

in non-relativistisystemse. g.,formasses10 27

g,

elds of order 10 6

Gauss,T =10 2Æ

Kand L 1m;

for Kaons in a neutron star, assuming T = 10 8Æ

K,

N = 10 39

, B = 10 10

Gauss, L 10 Km, it results

' 10 29

and 2h=L '10 33

. Onehalf of the

total density an be assumed then to be distributed

among10 4

states;i.e.,thegroundstatedensityis10 35

,

whih is a marosopi number ), The harateristi

order of magnitude of the temperature for having a

marosopifrationofthetotaldensityintheground

state,ifListhedimensionofthesystemparalleltothe

eld, isgivenbyL='vN,or

T

d '

4 2

h 3

N

eBM

L

: (23)

Weobservethat forgiven N=T, thequantity

in-reases with B, that is, the inreasing eld tends to

spreadthedistributionalongp

3

, orin otherwords,to

enlarge the density in states loseto the groudstate,

and ifT 'T

d

, ondensation in statesneighborto the

groundstatebeome alsosigniant. ButforT T

d ,

we have almost all the partiles in the ground state

n=0,p

3

=0,andatrueondensateexists.

Wereturn to expression (17). It is easy to obtain

theinfraredontributiontothethermodynami

poten-tialas

= eBT

4h 2

q

M 2

2

(24)

andfrom ,wegettheenergyU =T=T ,and

thespeiheat,whihasT!0tendstotheonstant

value,

V =

2e 2

B 2

M

k

2

4 2

h 4

2

N

0s;v

; (25)

wherek istheBoltzmannonstant.

V Magnetization and

superon-dutivity

For thevetoreldase,themagnetizationinthe

on-densationlimitispositivesineallthesystemisinthe

Landaun=0state,and

M =

B

= e

2

B

8 2

Z

1

1 lim

!0 n

0 (p

3 )dp

3

(26)

= eN

v h

2M

: (27)

and we have that the ondensate of vetor partiles

leads to atrue ferromagnetibehavior. In partiular,

if we write H ext

=0, we get B = M(B) as the

on-startedat hightemperatureT, wherethesystemhave

a diamagneti ontribution oming from the

distribu-tion in Landau states, n = 1;2::, and aparamagneti

eetduetothespinoupling,weobservethatby

low-eringT gradually,thesystemends inatrue

ferromag-netistate. Aphasetransitionwithouthavingaritial

temperature,asthe\diuse"ones[17℄,hastakenplae.

Usualsuperondutivitymaybeunderstoodin

prin-ipleasamanifestationofBECofCooperpairs,whih

are spin zeroelds. In onnetion to it Shafroth [2℄

in his study of the analogy between Bose

ondensa-tionof salarharged partilesand superondutivity,

foundaritialappliedeldB

s =eN

s =2M

+

,(where

N

s = N

s

[1 (T=T

)

3=2

℄, N

s

is thetotal density and

T

the ritial temperature for normal ondensation),

suh that the magnetization is equaland opposite to

the applied eld. In this asewhen the ondensateis

ontained in some body limited by asurfae, and the

systemisplaedinanexternalmagnetield,itreats

by reating a surfae magnetization (Meissner eet)

whih leadsto a magneti eld equal and opposite to

the applied one. The harges inside does notfeel the

external eld and remain in theondensate. For eld

intensities B > B

s

the (zero eld) ondensate is

de-stroyed. Obviously,this istheaseofnotveryintense

elds,inwhihthesystemofhargesatthesurfaeare

distributedonalargesetofLandaustatesproduinga

magnetizationwhihisequalandoppositetothe

exter-naleld,keepingthepartilesinsideinfreeeldstates.

Butasthemagnetieldgrowssomeofthepopulation

inside starts to leavethe ground state, and for larger

eld intensities, the ondensate dissapears. However,

if the magneti eld inreases enough, all the system

falls in the n=0Landau groundstate, and ifthe

re-lation N=T islargeenough,theondensationbeomes

manifestagain. ByalulatingM

s

= =B,asthe

densityis(21),wehave

M

s =

eN

s h

2M

+

(28)

Thus,forgrowingeldsstartingfromzero,wehave

usual ondensation(andsuperondutivity),upto the

Shafroth's ritial eld. Then appears a gap where

ondensationandsuperondutivityarenotobservable,

andforeld andN=T largeenoughondensation(and

superondutivity)reappears.

Thephenomenonofondensationofsalarand

ve-tor harged partiles in strong magneti elds may

have, thus, espeial interest in onnetion with

on-densed matter physis and osmology (the early

uni-verse). Inrelationwiththerst, ithasbeenreported

(seei.e[18℄), thattheritialeld ofsomehighT

su-perondutorsdiverges with dereasingT, whih

sug-gests the appearane of re-entering superondutivity

in extremely strong magneti elds. The vetor

(8)

pre-superondutive phase in extremely strong magneti

elds wemayexpettheappearaneof

ferromagneti-superondutivepropertiesinthoseasesinwhihthere

isasigniantamountofparallelspinpairedfermions.

VI Magnetization in the early

universe

Wewillonsiderthespontaneousmagnetizationof

ve-torpartilesinonnetionwiththeondensationofW

bosons, aphenomenon whih wassuggested by Linde

[19℄ to ourin superdense matter, and by oneof the

present authors and Kalashnikov [21℄, to our near

theeletroweakphasetransition. Theondensationof

W'smustbeunderstoodassomehemialequilibrium

proess,sinetheW'sinteratingwiththequark

bak-groundwoulddeayin n,por

; 0

pairs.

If we onsider at rst the large density ase, by

taking N

W ' N

v

, where N

v

= M

3

W

3

=6 2

h 3

'

10 45

m 3

, the magnetization would be of order B '

10 19

Gauss. Onemay thinkas themehanismof

aris-ing these huge elds as follows: the mirosopields

inside hadrons are of order 10 15

Gauss. Suh elds

lead the W-ondensate to magnetize, reating a eld

10 4

times larger. Thenthe onditionsfor spontaneous

magnetizationindomainsarise. Obviously,Mbeomes

verylarge(oforderB

)foreldsneartheritialvalue

B

' M

2

W

4

=eh ' 10 24

gauss, sine for B B

the

system beomesunstable leadingto imaginaryenergy

eigenvalues. [20℄. Near thesymmetry restoration

tem-peratureasM=M(T)<M(0)theritialeldours

forsmallervaluesofB.

The ase of temperatures near the symmetry

restoration lead to veryinteresting results. As shown

in [21℄,[1℄,ondensationoftransversevetorW bosons

oursforarbitrarysmalldensities,andtakinginto

a-ountthatthestrongloalmagnetieldswould

mag-netizetheondensate,wemaythinkthat(27)beomes

singular,(forM

v (T)=

p

M 2

W

(T) eBh= 3

!0,

lead-ing toinnitelargemagnetizationofthe medium,due

to the vanishing of the (transverse, sine the

longitu-dinal modes aquire a Debye mass gT) vetor

bo-son mass. Onemay think that this would lead to

in-stabilities also, but we must remember that the zero

mass oftheW

s

for T >T

is onlyanapproximate

re-sultrstbeauseatuallythemassisexpetedtobeof

order g 2

T [22℄, seond,beausetheself-magnetization

B = M(B) that would arise, leads to a mehanism

preventing the divergene to our. In any ase, the

existeneofaondensateinpresene ofstronghadron

(orquark)eldsmayleadtothearisingofa

ferromag-netibehaviorleadingtoextremelylargeelds,oforder

B B

,attemperaturesT T

. Theexisteneofsuh

largeeldsoforderB

,asutuatingeldsonasale

M 1

W

,wasrstsuggestedbyVahaspati[23℄. Thesame

ofsomesortofequipartitionofmagnetiandradiation

energies that may our in a magnetially turbulent

environment in the bubble formation arising from an

eletroweakrstorderphasetransition.

VII Conlusions

We onlude that Bose-Einstein ondensation of

hargedpartiles in astrongmagnetield is possible

and leads to several new and interesting phenomena,

astheourreneofphasetransitionin preseneofan

externalmagnetield,withoutaritialtemperature.

Forloweldintensitywehaveusualondensation,and

for very strong elds, ondensation is manifest again.

The ondensate in the strong magneti eld suggests

theexisteneofsuperondutivityin extremelystrong

magneti elds and the existene of a

ferromagneti-superondutivephase. Thishasinterestinondensed

matterphysis. Inastrophysisandosmologywehave

also interestingonsequenes. It givessupport to the

onjetured existene of superuid and

superondu-tivephasesin neutronstars [25℄. It suggestsalsothat

at the eletroweak phase transition, extremely strong

magnetields mayarise asaonsequeneof

onden-sationandself-magnetizationeetsofthemedium.

The authors would like to thank J. G. Hirsh for

very important and detailed disussions and

sugges-tions. They thank also R. Baquero and G. Gonzalez

for fruitful omments. One of the authors (H.P.R.)

thanks H. Rubinstein and G. Andrei Mezinesu for

important disussions and M. Chaihian for

hospital-ity in the High EnergyDivision of the Department of

Physis,andaknowledgesthenanialsupportofthe

AademyofFinlandunder theProjetNo. 163394.

Referenes

[1℄ M. Chaihian, R. Gonzalez Felipe, H. Perez Rojas,

Phys.Lett.B342,245(1995).

[2℄ M.R.Shafroth,Phys.Rev.100,463(1955).

[3℄ R.M.May,J.Math.Phys.6,1462(1965).

[4℄ J.Daii,N.E.Frankel,andV.Kowalenko,Phys.Rev.

Lett.71,1779(1993).

[5℄ J. Daii, N. E. Frankel, R. M. Gailis and V.

Kowalenko,Phys.Rep.237,63(1994).

[6℄ D. J.Toms, Phys. Rev. Lett. 69, 1152 (1992); Phys.

Rev.D47,2483(1993);Phys.Lett.B343,259(1995).

[7℄ P.Elmfors,P.Liljenberg,DavidPersson,Bo-Sture

Sk-agerstam,Phys.Lett.B348,462(1995).

[8℄ K.Kirstenand D. J. Toms, Phys.Rev. A 54 4188

(1996).

[9℄ K. Kirsten and D. J. Toms, Phys. Lett. B 368, 119

(1996).

(9)

[11℄ Yu.Kagan,N.V.Prokof'evandD.V.Svistunov,

ond-mat/9908378

[12℄ L. D. Landau and E. M. Lifshitz, Statistial Physis,

3rd.Ed.,Part1,PergamonPress(1986),NewYork.

[13℄ H.PerezRojas,Phys.Lett.B379,148(1996).

[14℄ H.PerezRojas,Phys.Lett.A234,13(1997).

[15℄ E.S.Fradkin,Pro.of theP.N.LebedevPhysialInst.

No.29,Cons.Bureau(1967).

[16℄ H.PerezRojas,AtaPhys.Pol. B17,861(1986).

[17℄ G. A. Smolenski and V. A. Isupov, Sov. Journal of

Tehn.Phys.24, 1375(1954);R.L.MoreiraandR.P.

S.M.Lobo,Jour.Phys.So.Japan61,1992 (1992).

[18℄ M.S.Osovski,R.J.SoulenJr.,S.A.Wolf,J.M.Broto,

H.Rakoto,J.C.Oussel,G.Coe,S.Askenazi,P.Pari,

I.Bozovi,J.N.EksteinandG.F.Virshup,Phys.Rev.

Lett.71,2315(1993);YoihiAndo,G.S.Boebingerand

A.Passner, Phys.Rev.Lett75,4662(1995);M.Rasolt

andZ.Tesanovi,Rev.Mod.Phys.64,709(1992).

[19℄ A.D.Linde,Phys.Lett.B86,39(1979).

[20℄ N.K.Nielsen and P.Olesen, Nul.Phys.B144, 376

(1978);J.Ambjorn,N.K.NielsenandP.Olesen, Nul.

Phys.B310,625(1988).

[21℄ O. K. Kalashnikov, H. Perez Rojas, Kratkie Soob.

po Fizike, Lebedev Inst. Reports,Allerton Press2,2

(1986);H.PerezRojas,O.K.Kalashnikov,Nul.Phys.

B293,241(1987).

[22℄ A.D.Linde,Rep.Prog.Phys.42,389(1979).

[23℄ T.Vahaspati, Phys.Lett.B265,258(1991).

[24℄ G.Baym,G.Bodekerand D.MLerran,Phys.Rev.

D53,662(1996).

[25℄ V. Thorsson, M. Prakash and J.M. Latimer, Nul.

Imagem

Figure 1. The density in momentum spae of the Bose gas
Figure 2. In the magneti eld ase, for eB h=mT  1,

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Riddley - Notes on the botany of Fernando Noronha.. Desmidiaeeae &#34;in&#34; Symbolae

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

NEW MULTILAYER HYBRID MATERIAL FOR ORAL AND MAXILLOFACIAL RECONSTRUCTION - RODRIGO OSÓRIO DE VALDOLEIROS PEREIRA DA

Alguns dos importadores são: Barreiros e Barreiros, empresa portuguesa com sede no Porto, que iniciou a actividade em 1944, importando artigos de decoração