• Nenhum resultado encontrado

Análise comparativa de três técnicas de preparo de leito implantar na estabilidade primária de implantes dentários instalados em osso de pobre qualidade   : estudo EX-VIVO

N/A
N/A
Protected

Academic year: 2021

Share "Análise comparativa de três técnicas de preparo de leito implantar na estabilidade primária de implantes dentários instalados em osso de pobre qualidade   : estudo EX-VIVO"

Copied!
53
0
0

Texto

(1)

FACULDADE DE ODONTOLOGIA DE PIRACICABA

ANDRÉS HUMBERTO CÁCERES BARRENO

ANÁLISE COMPARATIVA DE TRÊS TÉCNICAS DE PREPARO DE LEITO IMPLANTAR NA

ESTABILIDADE PRIMÁRIA DE IMPLANTES DENTÁRIOS INSTALADOS EM OSSO DE

POBRE QUALIDADE: ESTUDO EX-VIVO

Piracicaba 2018

(2)

ANÁLISE COMPARATIVA DE TRÊS TÉCNICAS DE PREPARO DE LEITO IMPLANTAR NA

ESTABILIDADE PRIMÁRIA DE IMPLANTES DENTÁRIOS INSTALADOS EM OSSO DE

POBRE QUALIDADE: ESTUDO EX-VIVO

Tese apresentada à Faculdade de Odontologia de Piracicaba da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Clínica Odontológica, na Área de concentração em Cirurgia e Traumatologia Buco-Maxilo-Faciais.

Thesis presented to the Piracicaba Dental School of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Dental Clinic, in Oral and Maxillofacial surgery area.

Orientadora: Profa. Dra. Luciana Asprino

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO ANDRÉS HUMBERTO CÁCERES BARRENO E ORIENTADA PELA PROFA. DRA. LUCIANA ASPRINO.

Piracicaba 2018

(3)
(4)
(5)

Dedico este trabalho para minha linda família, minha esposa Cinthia e meu filho Rafael, pelo apoio e inspiração para conseguir meus objetivos

(6)

pessoas do seu diretor o Prof. Dr Guilherme Elias Pessanha Henriques e do diretor associado Prof. Dr. Francisco Haiter Neto.

À Coordenadoria Geral dos cursos de Pós-graduação da Faculdade de Odontologia de Piracicaba - UNICAMP na pessoa da Profa. Dra. Cinthia Pereira MachadoTabchoury. E à Coordenadoria do Programa de Pós-Graduação em Clínica Odontológica na pessoa da Profa. Dra. Karina Gonzales Silvério Ruiz.

Às Fundação CAPES e CNPQ por ter me concedido uma bolsa de estudos e por ter me fornecido suporte econômico para o desenvolvimento desta pesquisa.

À minha orientadora a Profa. Dra. Luciana Asprino, pela orientação, apoio e dedicação tanto no desenvolvimento de pesquisa, quanto à montagem de aulas e trabalhos científicos. Ao longo destes quatro anos de convivência aprendi muito com a senhora e só tenho palavras de agradecimento.

Ao Prof. Dr. Márcio de Moraes pelos ensinamentos, orientação e sempre boa predisposição para me fazer crescer tanto como pessoa quanto como profissional. Ao Prof. Dr. Alexander Sverzut pelos ensinamentos e dicas para melhorar como professor e pesquisador, sempre inovando com ajuda tecnológica.

Ao Prof. Dr. José Ricardo de Albergaria-Barbosa pelo conselhos para ver a vida e o ensino desde outro ponto de vista e pela constante alegria que o senhor irradia para todo o pessoal do programa.

Ao Prof. Dr. Claudio Ferreira Nóia pelos ensinamentos, boa disposição e confiança que o transmite aos alunos para eles crescerem juntos

Às funcionárias da área de Cirurgia: Edilaine Felipe, Angélica Quinhones, Débora Barbeiro, Nathália Tobaldini e Patrícia Camargo pela ajuda prestada ao serviço.

Aos meus colegas do programa Henrique Petean, Felipe Guerra, Anderson Jara, Gabriel Guillen, Renata Sagnori, Vitor Fonseca, Erick Alpaca, Luide Marinho, Christopher Cadete, Carolina Ventura, Rodrigo Chenu, Antonio Lanata, Gustavo Souza, Heitor Fontes, Éder Sigua, Zarina dos Santos, Pauline Magalhaes, Breno Nogueira, Renato Ribeiro, Fabiano Menegat, Clarice Alcântara, Douglas Goulart, Joel Motta, Leandro Pozzer. Raquel Medeiros e Andrezza Lauria pela convivência, troca de conhecimento e boa predisposição para me ajudar tanto nas atividades da Faculdade quanto fora dela.

(7)

À Faculdade de Odontologia da Universidade de San Martin de Porres por ter me formado como cirurgião-dentista e ter me acolhido como professor por dois anos na disciplina de Cirurgia Buco-Maxilo-Facial I.

Ao Prof. Dr. Jaime Rodrigues Chessa pelos conselhos por ter me iniciado no mundo da Cirurgia Buco-Maxilo-Facial, pelos ensinamento

À Profa. Dra. Erika Alberca Ramos e ao Prof. Dr. Rafael Morales Vadillo por terem me iniciado no mundo da docência e serem parte da minha equipe de trabalho Faculdade de Odontologia da Universidade de San Martin de Porres.

A minha eterna companheira, amiga e esposa Cinthia Verónica Bardalez López de Cáceres por seu carinho e apoio durante esta fase acadêmica, agora sendo Pais temos mais um motivo para continuar com os nossos sonhos e continuar crescendo como família, tem sido anos muitos bonitos de convivência e agora com o Rafinha é só mais alegria na casa.

Aos meus pais César Rafael Cáceres Campos e Carmen Rosa Yolanda Barreno Gayoso pelo constante apoio ao longo da minha vida toda, sem vocês do meu lado não teria como ter conseguido o que até agora consegui.

Aos meus irmãos Fernando, Angela e Mariana por termos mantido bem próximos mesmo na distancia.

A minha tia Pochi, minha segunda mãe, estarei eternamente agradecido com à senhora por tudo que você fez por mim e pela Cinthia.

Também gostaria de agradecer a minha família e amigos por serem o suporte e o apoio para estudar fora do meu país.

(8)

Resumo

A instalação de implantes dentários (ID) na região posterior de maxila representa um desafio para o cirurgião devido à sua baixa densidade óssea. Ao longo do tempo têm sido propostas diversas técnicas de preparo de leito implantar que visam melhorar a estabilidade primária (EP), no entanto, não há consenso quanto às vantagens do uso de cada uma delas. Além disso, não existe modelo de estudo laboratorial estabelecido para comparar técnicas de preparo de leito implantar. A Microtomografia computadorizada (Micro-CT) surge como uma ferramenta imaginológica que permite analisar de forma mais detalhada corpos de prova, por meio da análise das densidades ósseas e micro-arquitetura óssea. Os objetivos deste estudo foram: Comparar o efeito sobre a EP de ID instalados em osso de pobre qualidade (Costela de porco) utilizando três tipos de técnicas de preparo de leito implantar divididos em três grupos com N=10. Grupo 1: protocolo de ostectomia de acordo com recomendações do fabricante; Grupo 2: Técnica de sub-fresagem e Grupo 3: técnica de ostectomia escalonada. Os parâmetros da Micro-CT e resultados dos métodos de aferição de EP incluíram o teste de normalidade de Shapiro-Wilk, ANOVA I Fator e teste de Tukey sendo o nível de significância de 5%. Quanto à comparação das técnicas, não foi encontrada diferença estatisticamente significante para o Torque Final de Inserção (TFI). Na Análise de Frequência de Ressonância (AFR), o Grupo 1 apresentou valores mais altos do que o Grupo 3, sendo estatisticamente significante (p = 0,038). As técnicas de preparo testadas, em osso de pobre qualidade, não influenciaram os valores de TFI, mas sim os valores de AFR. Conclui-se, dentro das limitações deste trabalho, que em osso de pobre qualidade o uso da ostectomia de acordo com recomendações do fabricante, para preparo do leito implantar, pode aumentar a estabilidade primária dos implantes dentais.

(9)

Abstract

The installation of dental implants (DI) in the posterior maxilla is a challenge for the surgeon due to its poor bone quality. Over the years, several surgical techniques have been proposed aiming to enhance primary stability (PS), which is considered a requirement for initiating the osseointegration process. However, there is no consensus in the literature about the advantages of using one of them. In addition, there is not established a laboratory model for comparing dental implant beds. The X ray Microtomography (Micro-CT) emerges as an imaginologic tool that allows a more detailed analysis of test specimens through the analysis of bone densities and bone micro-architecture. The objectives of this study were: to compare the effect on primary stability of dental implants installed in poor quality bone (swine rib) using three types of surgical techniques for dental implant beds divided into three groups with N = 10. Group 1: Ostectomy protocol according to manufacturer; Group 2: Underpreparation; and Group 3: Stepped ostectomy technique. The Micro-CT parameters and the PS assessment methods results were analyzed using Shapiro-wilk test, ANOVA I Factor, Tukey's test with a 5% level of significance. Regarding the comparison of the techniques, no statistically significant difference was found for the Final Insertion Torque (FIT). In regards to the Resonance Frequency Analysis (RFA), Group 1 presented higher values than Group 3, being statistically significant (p = 0.038). The surgical techniques of do not influence the FIT values, but influences in the RFA. It is concluded, within the limitations of this work, that in bone of poor quality the use of the ostectomy according to the recommendations of the manufacturer, to prepare the implant site, can increase the primary stability of the dental implants.

(10)

LISTA DE ABREVIATURAS

ID - Implante Dentário

EP - Estabilidade Primária

Micro CT - Microtomografia Computadorizada

TFI - Torque Final de Inserção

AFR - Análise de Frequência de Ressonância

(11)

SUMÁRIO

1 INTRODUÇÃO 12

2 ARTIGO 17

EFFECT OF THREE DIFFERENT SURGICAL TECHNIQUES ON THE PRIMARY STABILITY OF DENTAL IMPLANTS PLACED IN POOR BONE QUALITY. EX VIVO STUDY

3 CONCLUSÃO 37

REFERÊNCIAS 38

APÊNDICES 46

Apêndice 1 – Preparo dos corpos de prova 46

Apêndice 2 – Imagens obtidas após análise com Micro CT 47

Apêndice 3 – Parâmetros Histomorfométricos utilizados 48

ANEXOS 49

Anexo 1 - Relatório de Originalidade 49

Anexo 2 - Declaração de submissão do artigo 52

(12)

1. INTRODUÇÃO

A reabilitação com ID é considerada como um tratamento previsível e com altas taxas de sucesso. No entanto, ainda existem alguns desafios para o cirurgião. Entre estes, há a instalação de implantes na região posterior de maxila. Essa região apresenta características anatômicas e estruturais que a diferenciam de outras regiões dos ossos maxilares. Dentre essas características temos a presença do seio maxilar, cujo grau de pneumatização limita a instalação dos implantes e a quantidade de osso remanescente, que limita às dimensões do implante a ser instalado e a qualidade óssea pobre devido à natureza medular que esta região apresenta.

Um dos principais objetivos na instalação de ID é a obtenção de uma adequada EP (Brånemark et al., 1984; Moon et al., 2010; Sakka et al., 2012;Degidi et al., 2012; Javed et al., 2013; Kang et al., 2016), que é considerado como um pré-requisito para iniciar o processo biológico de osseointegração (Ivanoff et al., 1996; O’Sullivan et al., 2004; Turkyilmaz et al., 2008; Çehreli et al., 2009). Entre os fatores que influenciam na EP temos a qualidade e quantidade ósseas, geometria do implante e o tipo de técnica cirúrgica utilizada no preparo do leito implantar (O’Sullivan et al., 2004; Turkyilmaz et al., 2008; Freitas Jr et al., 2012;Degidi et al., 2015; Slete et al., 2018).

O padrão de qualidade óssea, medular e cortical, desempenham papéis importantes na previsão de resposta de resistência diante algum estímulo, essa resposta é influenciada pela idade, gênero e condições metabólicas, sendo essas respostas distintas em cada padrão de densidade (Burghardt et al., 2011). Tradicionalmente, a variação de densidade óssea tem sido dividida de acordo com a classificação proposta por Lekholm e Zarb (1985) como tipo I, II, III e IV. Esta classificação foi estabelecida de acordo com as analises dessa em radiografias panorâmicas. O osso tipo I apresenta proporcionalmente maior quantidade de osso cortical, o tipo II é uma combinação de osso cortical com cavidades medulares, o tipo III é predominantemente composto de osso trabecular e cortical fins, o tipo IV é descrito como um tipo de osso que apresenta uma cortical mais fina e abundante osso medular (Li et al., 2017).

(13)

A região posterior de maxila apresenta padrões de densidade tipo III e IV que se caracterizam por apresentar uma fina camada de osso cortical e grande quantidade de osso medular (Lopes et al., 2015). Inclusive, Bahat (1998) propôs a subdivisão do osso tipo IV em ¨a¨, ¨b¨ e ¨c¨ ,considerando a presença/ausência de corticais na crista alveolar ou no assoalho do seio, além de acrescentar a classificação tipo V cuja característica principal é a ausência de osso cortical sendo exclusivamente osso medular (Bahat, 2000). Uma das formas propostas na literatura para melhorar a EP na região posterior de maxila é a instalação de ID procurando ancoragem bicortical, que favorece significativamente na obtenção de uma adequada EP (Brånemark et al., 1984;Bahat, 1992; Jensen et al., 1994; Han et al., 2016). Han et al. (2016) demostraram as vantagens da ancoragem bicortical na aquisição de uma melhor EP em blocos de poliuretano de diversas larguras . No entanto, estas condições anatômicas nem sempre estão presentes na clínica (Bahat, 2000) o que cria uma situação mais complexa e desafiadora para o clínico.

Outra forma proposta na literatura para instalar ID na região posterior da maxila é a instalação de implantes de maneira angulada no túber (Bahat, 1992). Dessa forma se evita a realização de algum procedimento de enxertia no seio maxilar e a morbidade é reduzida. Embora essa técnica contribua com a diminuição do cantilever das próteses implanto suportadas fixas e permita a instalação de um implante de maior comprimento sem a necessidade de associar algum tipo de enxertia óssea, ela apresenta algumas limitações. Caso a abertura bucal seja restrita, poderá ser complicada a instalação do ID, os contatos oclusais e dificuldades na moldagem poderiam ser outros possíveis inconvenientes, sendo seu uso limitado e controverso.

Em relação às técnicas de preparo de leito implantar, uma técnica ideal de preparo deveria fornecer uma adequada EP e ao mesmo tempo prevenir excessiva geração de calor e compressão no osso (Sharawy et al., 2002). A fresagem convencional é um processo que envolve tanto corte quanto remoção do tecido ósseo, criando uma conformação cilíndrica do leito implantar, cujo diâmetro aumenta de forma progressiva, de acordo as dimensões do ID a ser instalado.(Huwais e Meyer, 2017; Mihali et al., 2017; Slete et al., 2018). Este tipo de técnica geralmente utiliza pelo menos três fresas,

(14)

dependendo do tamanho do diâmetro desejado, sendo o aumento do diâmetro das brocas de forma gradual, para evitar remoção excessiva do tecido ósseo e geração excessiva de calor (Marheineke et al., 2018).

O sub-preparo ou sub-fresagem é outra técnica cirúrgica descrita na literatura para melhorar o TFI em regiões de baixa densidade (Degidi et al., 2015). O processo de fresagem cria uma ostectomia mais estreita do que o preparo convencional recomendado pelo fabricante para o tipo de ID desejado. Durante a inserção do ID no leito sub-preparado, forças compressivas e de tração são geradas no osso circundante permitindo melhorar o TFI (Toia et al., 2017). Na literatura existem resultados controversos em relação às vantagens desta técnica na obtenção da EP. Alghamdi et al. (2011) compararam a técnica de preparo convencional de acordo com as orientações do fabricante e o sub-preparo, sendo os valores de TFI e AFR como referencia de EP. Não houve diferenças estatisticamente significantes entre os dois grupos quanto ao valor de TFI e ISQ (Alghamdi et al., 2011). Porém, Campos et al. (2012) mostraram que há diferença significativa quando utilizado o sub-preparo devido à maior compressão e fricção gerada na instalação do ID no leito de diâmetro reduzido (Campos et al., 2012).

A técnica escalonada é outra técnica que também se baseia no principio físico de compressão, só que essa compressão somente é gerada no terço apical do leito implantar favorecendo dessa forma a EP, além de gerar menor compressão nas trabéculas ósseas (Boustany et al., 2015). Há uma modificação na profundidade da perfuração, sendo esta diminuída de acordo a sequencia de brocas preconizado para cada ID. Inclusive Bahat recomendou utilizar esta técnica usando implantes cônicos pois garante a manutenção de osso marginal no decorrer dos anos (Bahat, 2009).

A utilização de compactadores ósseos também tem sido proposta como um recurso para melhorar a estabilidade primária (Nocini et al., 2000). Estes instrumentos foram inicialmente desenvolvidos por Summers (1994) para realização de elevação atraumática do seio maxilar, mas também tem sido modificados para serem utilizados na expansão óssea, em situações clínicas limítrofes, evitando dessa forma algum tipo

(15)

de fenestração óssea ou na perda de EP. Tsolaki et al. (2016) mostraram as vantagens de uso de compactador no preparo de leitos implantares, especialmente na EP

Diversos métodos de aferição de EP têm sido propostos (Meredith et al., 1996; Molly, 2006; Akça et al., 2010; Degidi et al., 2013; Açil et al., 2016) entre os mais usados na clínica temos ao valor do TFI e à AFR. Ainda existem controversas se estes dois métodos de aferição têm alguma correlação forte ou não, mas de qualquer forma são os métodos menos invasivos que existem na atualidade.

De acordo com Möhlhenrich et al. (2015) não existe um modelo de estudo específico para avaliar técnicas de preparo de leito implantar. Tradicionalmente os estudos histológicos têm sido considerados como o padrão ouro na Implantodontia, porém é um tipo de estudo invasivo (Burghardt et al., 2011; Hsu et al., 2013; Li et al., 2014). A Micro- CT surgiu como uma ferramenta alternativa de exame imaginológicos, de avaliação volumétrica de alta resolução (Swain e Xue, 2009), por isso é muito útil na análise quantitativa de osso esponjoso (Muller et al., 1998). Além disso, as imagens apresentam maior resolução espacial, produzindo voxels em um intervalo de ordem micrométrico, que quando comparado com os voxels obtidos pela TC é consideravelmente menor (Swain e Xue, 2009), gerando maior definição da imagem.

Entre as vantagens da Micro-CT temos escaneamento não invasivo para obter estrutura interna em condições naturais; alta resolução com a capacidade de detectar mudanças em escala micrométrica; relativa economia de tempo em comparação com a análise histológica tradicional; reconstrução tridimensional da microestrutura morfológica e medidas quantitativas de distância linear, angulação e densidade da área analisada (Hsu et al., 2013; Li et al., 2014). Entre tanto, atualmente este tipo de análise só é realizada em estudos EX-VIVO.

A Micro-CT utiliza vários parâmetros semelhantes que também são utilizados na histomorfometria (Parfitt et al., 1987), entre eles temos o volume ósseo (BV) de uma região de interesse padronizada (ROI) e o volume total do tecido (TV) do mesmo ROI. A proporção destas duas medidas (BV / TV) determina a quantidade de matriz óssea mineralizada(de Faria Vasconcelos et al., 2017). Outros parâmetros que são utilizados

(16)

são a espessura (Tb.Th), número (Tb.N) e separação (Tb.Sp) das trabéculas (Burghardt et al., 2011; Parsa et al., 2015).

O Tb.N quantifica a quantidade de trabéculas existentes em determinada distância, a Tb.Th mede a espessura do trabecular que está relacionada à formação óssea, a Tb.Sp mede espaços entre trabéculas. A conectividade de densidade representa o grau de arcabouço que uma determinada área apresenta e o Índice de modelo estrutural fornece informações quanto ao padrão de microarquitetura (Kim and Henkin, 2015).

Este trabalho foi delineado com o objetivo de comparar técnicas de preparo de leito implantar utilizando substratos que simulem, da melhor forma, um osso de baixa qualidade. Espera-se elucidar a controversa que existe quanto às vantagens de uma técnica de preparo do leito implantar sobre outra na obtenção de EP, e contribuir com a tomada de decisões transoperatórias na instalação de ID em osso de baixa densidade.

(17)

2. ARTIGO

EFFECT OF THREE DIFFERENT SURGICAL TECHNIQUES ON THE PRIMARY STABILITY OF DENTAL IMPLANTS PLACED IN POOR BONE QUALITY. EX VIVO STUDY

a Andrés Cáceres-Barreno DDS, MSc, PhD student

b Hugo Gaeta DDS, MSc, PhD student

b Francisco Haiter-Neto DDS, MSc, PhD, Full Professor

a Luciana Asprino DDS, MSc, PhD, Associate Professor

Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil.

a

Division of Oral and Maxillofacial Surgery b Division of Oral Radiology

Address: Av. Limeira 901-Areião CEP 13414-903 – Piracicaba – São Paulo (Brazil). Author responsible:

Andrés Humberto Cáceres-Barreno.

Address: Av. Limeira 901-Areião CEP 13414-903 – Piracicaba – São Paulo (Brazil). E-mail: andrescaceresbarreno@gmail.com

Phone: (55) 19 21065274

(18)

Abstract

Objectives: Compare the effect on primary stability of dental implants installed in poor quality bone (pig ribs) using three types of surgical techniques for dental implant beds.

Material and methods: After X-ray Microtomography analysis, thirty bone blocks with poor bone quality were chosen and divided into three groups with N = 10. Group 1: Ostectomy protocol according to manufacturer; Group 2: Underpreparation; and Group 3: Stepped ostectomy technique. The final insertion torque and resonace were registered. Statistical analyzes included ANOVA one-way, Tukey's test with a 5% level of significance.

Results: Regarding the comparison of the techniques, no statistically significant difference was found for the final insertion torque. In regards to the resonance frequency analysis, Group 1 presented higher values than Group 3, being statistically significant (p

= 0.038).

Conclusions: The surgical techniques did not influence the final insertion torque values, however, influence in the values of resonance frequency analysis. The use of ostectomy protocol according to manufacturer seems to be more advantageous than the others in poor bone quality.

(19)

Introduction

The posterior region of the maxilla has been pointed of discussion over the time in Implantology, due to its anatomical and structural features that differentiates from other gnathic regions. Regarding anatomical characteristics, the pneumatization degree of the maxillary sinus limits, in some cases, the installation of dental implants (DI) and the amount of remaining bone and poor bone quality are factors to be considered in the DI planning.

One of the main objectives in DI insertion is to obtain an adequate primary stability (PS) which is considered as a prerequisite for initiating the biological process of Osseointegration (Degidi, Daprile, & Piattelli, 2012; Javed, Ahmed, Crespi, & Romanos, 2013; Kang et al., 2016; Moon, Um, Lee, Chang, & Lee, 2010; Sakka, Baroudi, & Nassani, 2012). Among the factors that influence PS, we have bone quality and quantity, implant geometry and the type of surgical technique used to prepare DI bed (Degidi, Daprile, & Piattelli, 2015; Freitas Jr, Bonfante, Giro, Janal, & Coelho, 2012; O’Sullivan, Sennerby, Jagger, & Meredith, 2004; Slete, Olin, & Prasad, 2018; Turkyilmaz, Aksoy, & McGlumphy, 2008). The method used for measuring implant stability is expected to be accurate and reliable(Bilhan et al., 2010)

An optimal surgical technique of osteotomy preparation should ideally provide adequate initial implant stability and, at the same time, prevent excessive heating or compressive trauma(Sharawy, Misch, Weller, & Tehemar, 2002) . Conventional drilling is a process that involves both cutting and removal of bone tissue, creating a cylindrical conformation of the implant bed whose diameter increases progressively according to the dimensions of the DI to be installed (Huwais & Meyer, 2017; Mihali et al., 2017; Slete et al., 2018). This type of technique generally uses at least three drills, depending on the diameter of the desired DI (Marheineke et al., 2018). This kind of gradual drilling sequence avoids both excessive removal of bone tissue and heat generation.

The underpreparation is another commonly surgical technique which have been proposed in the literature to enhance PS in regions of poor bone quality (Degidi et al.,

(20)

2015). The drilling process creates a narrower osteotomy than the conventional preparation recommended by the manufacturer(Toia et al., 2017). The implant is installed in an undersized hole, compressive and tensile forces are induced on the surrounding bone, especially in the marginal bone, allowing the improvement of PS.

The stepped osteotomy is another technique which follows the same physical principle of compression but is only generated in the apical third of the implant bed. In this way, both compression forces and heat generation are lesser induced over the osteotomy, favoring PS (Boustany, Reed, Cunningham, Richards, & Kanawati, 2015). There is a modification in the drilling depth, which is decreased according to the drilling sequence recommended by the manufacturer. Inclusively, Bahat recommends the use of this type of technique in compromised regions in because it avoids excessive marginal bone loss (Bahat, 2009).

In the literature it is not well established the advantages of one technique when compared with the others provides in PS (Alghamdi, Anand, & Anil, 2011; Campos et al., 2012).

Traditionally, to quantify the PS, the final insertion torque value (FITV) and Resonance frequency analysis (RFA) have been considered as the most common clinical parameters used and the most trusted worldwide. The first one is related to the mechanical engagement of the DI in the surrounding bone (Shadid, Sadaqah, & Othman, 2014), measuring the rotational friction and cutting resistance of the bone during implant insertion (Toia et al., 2017) and the second one is measured by an electronic device an a transducer inserted inside the implant. The transducer is excited over a range of sound frequencies, with subsequent measurement of vibratory oscillation of the implant (Çehreli et al., 2009). This technique uses the Implant Stability Quotient (ISQ) scale as a reference value of PS. However in the literature it does not exist a gold standard method for assessing PS and there is a lot of studies which reveal the no correlation between FITV and RFA(Ahn, Leesungbok, Lee, Heo, & Kang, 2012; Akça et al., 2010; Degidi, Daprile, & Piattelli, 2010; Degidi et al., 2012; Degidi, Daprile, Piattelli, & Iezzi, 2013; Park et al., 2012)

(21)

Alghamdi et al. compared the conventional drilling technique according to the manufacturer's and sub-preparation's orientations, the values of TFI and AFR being EP reference (Alghamdi et al., 2011). There were no statistically significant differences between the two groups regarding the value of TFI and ISQ (Alghamdi et al., 2011). However, Campos et al. showed that there is significant difference when using the sub- preparation(Campos et al., 2012).

Micro-CT has come up with an alternative imaging tool that utilizes a microfocal spot point and high-resolution detectors that allow projections in various viewing directions of an object to produce reconstructed images in three dimensions(Swain & Xue, 2009). Micro-CT uses several similar parameters that are also used in histomorphometry (Parfitt et al., 1987), as a result, it is considered as a non-invasive method to analyze bone tissue and has been reported as a very useful tool in the quantitative analysis of poor bone quality (Muller et al., 1998). In addition, the images present better spatial resolution, producing voxels in a µm range which is considerably smaller when compared to voxels obtained by computed tomography CT (Swain & Xue, 2009).

The aim of this study was to compare the effect on PS of DI installed in poor bone quality

analyzed by Micro-CT using three types of DI drilling protocols.

Material and methods Bone model

Fifteen fresh porcine bone ribs were dissected and cutted transversally in fragments of 3 cm each one. To analyze bone microarchitecture by Micro-CT of a determined region, circular plastic dispositives were fixated under central medullary region of the bone blocks, allowing choosing a specific region of interest (ROI) by image analyses (Figure 1). All bone samples were submitted to Micro CT analysis. The data were acquired with a Sky-Scan 1174v2 microCT unit (Bruker®, Kontich, Belgium) at 50 kV, electric current 800 μA, pixel size: 31.03 μm, rotation step 0.5, 2 frames, 180˚-degree scanning and scanning time 34 min). Image reconstruction was achieved with the NRecon software

(22)

(version 1.6.6.0; Bruker®) after application of ring artifact correction and beam hardening correction tools (set at 4% and 30%, respectively). Only bone blocks with more less homogeneity bone microarchitecture parameters were chosen. Calculation of bone microarchitecture parameters was performed with the CT Analyzer software (Bruker®).

The micro CT parameters (Table 1) included: Bone volume (mm3), total volume (mm3), bone volume/ total volume proportion (%), bone surface (mm2), bone surface density (1/mm2), trabecular thickness (mm), trabecular number (n), trabecular separation (mm), total porosity percentage (%) and connectivity density (1/mm3) of the same ROI. The Micro CT data were submitted to the Shapiro –Wilk tests assess the normality of the data.

Implant drilling protocol

In total, 30 DI (ø 3,75 x 9 mm Titamax Cone morse EX, Neodent®) were installed. Before drilling, bone blocks were firmly attached to a bench vise under the hand-piece they were divided in three groups (N=10) according to drilling protocol Group 1: Manufacturer drilling protocol; Group 2: Underpreparation and Group 3: Stepped osteotomy. Surgical twist drills included: Lance, 2.0; 2/3; 2.8 and 3.0 (Neodent®, Curitiba, Brazil). The sample size was determined based on a previous pilot study.

In the first group all drills were used; in the second group, lance, 2.0 and 2/3 were used and finally, in the third group DI beds were prepared with an alternate drill sequence, this began with a lance drill to a depth of 11 mm, which was followed by a 2.0 to 7 mm and finally a 2.8 to a depth of 4.0 mm.

Drilling was performed using a surgical hand-piece speed reducer 20: 1 speed 5-2000

rpm (L micro Series Bien Air®) connected to a surgical motor (iChiroPro®). Furthermore,

in order to keep the perpendicular direction during drilling, the surgical hand-piece was

connected to an Instron 4411 mechanical testing machine (Instron Corp., Norwood, MA),

(23)

DI installation and Primary Stability assessments

All the implants were installed by one operator, they were submerged 2 mm under bone surface. The FITV were registered by the software of the surgical motor (iChiropro IOS App – Bien Air®). After that, a transducer (Smart Peg® type 16, code 100388) was

screwed inside the implant in order to assess primary stability using the RFA. The RFA

was performed using the Osstell® device according to ISQ scale .

Statistical Analysis

All data were analyzed using SPSS version 22.0 software (IBM Corp, Armonk, NY) with significance level of 5%. One-way ANOVA, with Tukey post-hoc test, was used to compare the FITV and ISQ values.

Results

Regarding FIT values,the group 3 (Stepped osteotomy) obtained the highest values and the group 2 (Under-preparation) had the lowest values. No statistically significant difference was found for FITV (p>0.05). Considering ISQ values, group 1 had higher value than group 3, with significant statistical difference (p=0.038) (Table 2).

Discussion

Although its inherent limitations, In Vitro studies try to simulate some clinical situations, for this reason, one of the main points to be considered in the methodology is the choice of testing substrate. For testing orthopedic and DI, it is necessary to use a model which is reproducible and in which implant dimensions are comparable to those used in humans.(Pearce, Richards, Milz, Schneider, & Pearce, 2007). This study simulates the installation process of DI in poor bone quality and the assessment methods tested are

(24)

commonly applied during surgical process. Thus, we avoid using another invasive mechanical test, such as torque removal, pull-out and push-out tests because they are not applied to a clinical situation. These types of tests evaluate the strength of the interaction between the bone and the implant, probably polyurethane foam block could be the ideal test body for analyzing these kinds of aggressive tests or an In Vivo animal model study could also be useful.

Regarding animal bone model choices, pig ribs were selected due to similarities in bone mineral density and bone mineral concentration to human bone (Aerssens, 1997; Wancket, 2015). The morphology and macrostructure of spongy bone of the porcine bone ribs were very suitable to simulate poor bone quality region. The cortices of the bone ribs have different sizes of thickness, which is difficult to have in a clinical situation especially in posterior region of maxilla, for this reason it was avoided to involve them in this study and only medullar bone were used as a substrate. The cortical bone helps in keeping the bone block firmly attached to the bench vise during drilling as well as during PS assessment.

The dimensions of the DI were chosen based on the most frequent diameter used by clinicians. The use of wide diameter implants in cancellous bone seems to be a valuable aid in obtaining better PS (Bilhan et al., 2010). Furthermore, we used DI 9 mm length because this kind of implant is mostly used without sinus lift procedure and, 3.75 mm diameter that are the most preferable choice for clinicians.

Several modifications of surgical technique have been described to increase the primary stability of implant in bone of low density.(Bilhan et al., 2010). The insertion of DI commonly involves previous drilling and tapping procedures for the conformation of the implant bed.(Abboud et al., 2015). In our opinion taking a decision of what type of technique is the most appropriate, is more advocated for two clinical situations: Immediate loading and insertion of DI in the posterior region of the maxilla. Logically, the clinical perception during drilling is another point to be considered. Therefore, these techniques have been proposed for enhancing PS, gradual expansion of the osteotomy, underpreparation of DI bed, steeped osteotomy and more recently the use of piezoelectric are the main examples. In addition, some DI manufacturers have been

(25)

developed DI drilling protocol using less quantity of drills considering some macrogeometry characteristics such as point angle; chisel angle and lip length (Abboud et al., 2015). The DI design is another variable to be considered, taper DI and double progressive thread design allowed reaching higher FIT values, it is based on the compaction capacity that this design offers, so it is advantageous to use them in the posterior region of maxilla. Probably, if this kind of DI had been used in this study, other results of FITV and ISQ values would have been obtained.

The FIT values of the groups of this study were under 10 N, which can be considered as a negative PS parameter, however the ISQ values were not too unfavorable. According to this methodology, this information evidenced that FIT and ISQ values cannot been correlated, probably using another type of substrate with better bone microarquitecture, the results would be different. Furthermore, a biological response should be considered and evaluated to determine if there is a better response with highest values of FIT or ISQ.

Underpreparation technique is based on compressive forces, however, uniform underpreparation along the perforation can generates excessive compressive forces predisposing to bone stress and trabeculae deformation. On the other hand, stepped osteotomy reduces this risk of excessive compression because the coronal region is wider than the apical region, creating a taper conformation that favors rapid dental implant installation.

PS was evaluated in order to discover whether these surgical techniques influence in FIT and ISQ values too. In this study there was only statistical difference between groups 1 and 3 in ISQ values, probably in group 1 (manufacturer drilling protocol) there was not any compressive force applied on the surrounding bone and it can be favorable in obtaining better ISQ value and not a FITV.

According to Möhlhenrich et al. it does not exist a standard study model for the investigation of the preparation of dental implant beds (Möhlhenrich et al., 2015). The drilling process was performed using the mechanical test machine Instron® to avoid the interference of operator variable in the study and to keep the perpendicular drilling

(26)

direction, velocity and avoid overloading in all the specimens. The speed of machine descending was determined in a pilot study, which was very similar to a clinical situation. Only the insertion process of DI and PS assessment methods were performed by one calibrated operator.

Preoperative assessment of bone quality/quantity allows the clinician to plan alternative surgical techniques (Boustany et al., 2015), was decided to use micro CT not only for being a non-invasive tool, but also to obtain a homogeneity of the sample according to some bone microarchitecture parameters. Actually micro-CT is considered the gold standard method for assessing bone morphology and microarchitecture (de Faria Vasconcelos et al., 2017; Lee, Kim, & Yun, 2017; Parsa, Ibrahim, Hassan, van der Stelt, & Wismeijer, 2015; Swain & Xue, 2009). Micro-CT provides better information of a specific region of interest, therefore in another useful tool for others specialties.

It is concluded that: In regards to FIT values it does not make difference when using one of the tested techniques in a poor bone quality region. Concerning to ISQ values, Manufacturer drilling protocol seems to be advantageous when compared to the underpreparation and stepped osteotomy technique in poor bone quality regions.

Financial support

(27)

References

Abboud, M., Delgado-Ruiz, R. A., Kucine, A., Rugova, S., Balanta, J., & Calvo-Guirado, J. L. (2015). Multistepped Drill Design for Single-Stage Implant Site Preparation: Experimental Study in Type 2 Bone. Clinical Implant Dentistry and Related Research, 17, e472–e485. doi: 10.1111/cid.12273

Aerssens, J. (1997). Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. Journal of Endocrinology, 155(3), 411–421. doi: 10.1677/joe.0.1550411

Ahn, S.-J., Leesungbok, R., Lee, S.-W., Heo, Y.-K., & Kang, K. L. (2012). Differences in implant stability associated with various methods of preparation of the implant bed: An in vitro study. The Journal of Prosthetic Dentistry, 107(6), 366–372. doi:10.1016/S0022-3913(12)60092-4

Akça, K., Kökat, A. M., Cömert, A., Akkocaoğlu, M., Tekdemir, I., & Cehreli, M. C. (2010). Torque-fitting and resonance frequency analyses of implants in conventional sockets versus controlled bone defects in vitro. International Journal of Oral and Maxillofacial Surgery, 39(2), 169–73. doi:10.1016/j.ijom.2009.11.019

Alghamdi, H., Anand, P. S., & Anil, S. (2011). Undersized implant site preparation to enhance primary implant stability in poor bone density: A prospective clinical study. Journal of Oral and Maxillofacial Surgery, 69(12), e506–e512. doi:10.1016/j.joms.2011.08.007

Bahat, O. (2009). Technique for placement of oxidized titanium implants in compromised maxillary bone: prospective study of 290 implants in 126 consecutive patients followed for a minimum of 3 years after loading. Journal of Oral & Maxillofacial Implants, 24(2), 325–334

Bilhan, H., Geckili, O., Mumcu, E., Bozdag, E., Sünbüloğlu, E., & Kutay, O. (2010). Influence of surgical technique, implant shape and diameter on the primary stability

(28)

in cancellous bone. Journal of Oral Rehabilitation, 37(12), 900–907.doi: 10.1111/j.1365-2842.2010.02117.x

Boustany, C., Reed, H., Cunningham, G., Richards, M., & Kanawati, A. (2015). Effect of a Modified Stepped Osteotomy on the Primary Stability of Dental Implants in Low- Density Bone: A Cadaver Study. The International Journal of Oral & Maxillofacial Implants, 30(1), 48–55. doi:10.11607/jomi.3720

Campos, F. E., Gomes, J. B., Marin, C., Teixeira, H. S., Suzuki, M., Witek, L., … Coelho, P. G. (2012). Effect of drilling dimension on implant placement torque and early osseointegration stages: An experimental study in dogs. Journal of Oral and Maxillofacial Surgery, 70(1), e43–e50. doi:10.1016/j.joms.2011.08.006

Çehreli, M. C., Kökat, A. M., Comert, A., Akkocaoğlu, M., Tekdemir, I., & Akça, K. (2009). Implant stability and bone density: assessment of correlation in fresh cadavers using conventional and osteotome implant sockets. Clinical Oral Implants Research, 20(10), 1163–1169. doi:10.1111/j.1600-0501.2009.01758.x

de Faria Vasconcelos, K., dos Santos Corpas, L., da Silveira, B. M., Laperre, K., Padovan, L. E., Jacobs, R., … Bóscolo, F. N. (2017). MicroCT assessment of bone microarchitecture in implant sites reconstructed with autogenous and xenogenous grafts: a pilot study. Clinical Oral Implants Research, 28(3), 308–313. doi:10.1111/clr.12799

Degidi, M., Daprile, G., & Piattelli, A. (2010). Determination of primary stability: a comparison of the surgeon’s perception and objective measurements. The International Journal of Oral & Maxillofacial Implants, 25(3), 558–61.

Degidi, M., Daprile, G., & Piattelli, A. (2012). Primary Stability Determination by Means of Insertion Torque and RFA in a Sample of 4,135 Implants. Clinical Implant Dentistry and Related Research, 14(4), 501–507. doi:10.1111/j.1708- 8208.2010.00302.x

Degidi, M., Daprile, G., & Piattelli, A. (2015). Influence of Underpreparation on Primary Stability of Implants Inserted in Poor Quality Bone Sites: An In Vitro Study. Journal

(29)

of Oral and Maxillofacial Surgery, 73(6), 1084–1088. doi:10.1016/j.joms.2015.01.029

Degidi, M., Daprile, G., Piattelli, A., & Iezzi, G. (2013). Development of a new implant primary stability parameter: insertion torque revisited. Clinical Implant Dentistry and Related Research, 15(5), 637–44. doi:10.1111/j.1708-8208.2011.00392.x

Freitas Jr, A. C., Bonfante, E. A., Giro, G., Janal, M. N., & Coelho, P. G. (2012). The effect of implant design on insertion torque and immediate micromotion. Clinical Oral Implants Research, 23(1), 113–118. doi:10.1111/j.1600-0501.2010.02142.x

Huwais, S., & Meyer, E. G. (2017). A Novel Osseous Densification Approach in Implant Osteotomy Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and Bone-to-Implant Contact. The International Journal of Oral & Maxillofacial Implants, 32(1), 27–36. doi:10.11607/jomi.4817

Javed, F., Ahmed, H. B., Crespi, R., & Romanos, G. E. (2013). Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interventional Medicine and Applied Science, 5(4), 162–167.

doi:10.1556/IMAS.5.2013.4.3

Kang, S.-R., Bok, S.-C., Choi, S.-C., Lee, S.-S., Heo, M.-S., Huh, K.-H., … Yi, W.-J. (2016). The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. Journal of Periodontal & Implant Science, 46(2), 116. doi:10.5051/jpis.2016.46.2.116

Lee, J.-H., Kim, H.-J., & Yun, J.-H. (2017). Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study. Journal of Periodontal & Implant Science, 47(1), 20. doi:10.5051/jpis.2017.47.1.20

Marheineke, N., Scherer, U., Rücker, M., von See, C., Rahlf, B., Gellrich, N., & Stoetzer, M. (2018). Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures. Clinical Oral Investigations, 22(5), 2057–2067. doi:10.1007/s00784-017-2312-y

(30)

Mihali, S. G., Canjau, S., Cernescu, A., Bortun, C. M., Wang, H.-L., & Bratu, E. (2017). Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque. Implant Dentistry, 1. doi:10.1097/ID.0000000000000707

Möhlhenrich, S. C., Heussen, N., Elvers, D., Steiner, T., Hölzle, F., & Modabber, A. (2015). Compensating for poor primary implant stability in different bone densities by varying implant geometry: a laboratory study. International Journal of Oral and Maxillofacial Surgery, 44(12), 1514–1520. doi:10.1016/j.ijom.2015.08.985

Moon, S.-H., Um, H.-S., Lee, J.-K., Chang, B.-S., & Lee, M.-K. (2010). The effect of implant shape and bone preparation on primary stability. Journal of Periodontal & Implant Science, 40(5), 239. doi:0.5051/jpis.2010.40.5.239

Muller, R., Van Campenhout, H., Van Damme, B., Van der Perre, G., Dequeker, J., Hildebrand, T., & Ruegsegger, P. (1998). Morphometric Analysis of Human Bone Biopsies: A Quantitative Structural Comparison of Histological Sections and Micro- Computed Tomography. Bone, 23(1), 59–66. doi:10.1016/S8756-3282(98)00068-4

O’Sullivan, D., Sennerby, L., Jagger, D., & Meredith, N. (2004). A comparison of two methods of enhancing implant primary stability. Clinical Implant Dentistry and Related Research, 6(1), 48–57.

Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., … Recker, R. R. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 2(6), 595–610. doi:10.1002/jbmr.5650020617

Park, K.-J., Kwon, J.-Y., Kim, S.-K., Heo, S.-J., Koak, J.-Y., Lee, J.-H., … Kim, M.-J. (2012). The relationship between implant stability quotient values and implant insertion variables: a clinical study. Journal of Oral Rehabilitation, 39(2), 151–9. doi:10.1111/j.1365-2842.2011.02255.x

(31)

quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical Oral Implants Research, 26(1), e1–e7. doi:10.1111/clr.12315

Pearce, A., Richards, R., Milz, S., Schneider, E., & Pearce, S. (2007). Animal models for implant biomaterial research in bone: A review. European Cells and Materials, 13(0), 1–10. doi:10.22203/eCM.v013a01

Sakka, S., Baroudi, K., & Nassani, M. Z. (2012). Factors associated with early and late failure of dental implants. Journal of Investigative and Clinical Dentistry, 3(4), 258– 261. doi:10.1111/j.2041-1626.2012.00162.x

Shadid, R. M., Sadaqah, N. R., & Othman, S. A. (2014). Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review. International Journal of Dentistry, 2014, 1–17. doi:10.1155/2014/204838

Sharawy, M., Misch, C. E., Weller, N., & Tehemar, S. (2002). Heat generation during implant drilling: The significance of motor speed. Journal of Oral and Maxillofacial Surgery, 60(10), 1160–1169. doi:10.1053/joms.2002.34992

Slete, F. B., Olin, P., & Prasad, H. (2018). Histomorphometric Comparison of 3 Osteotomy Techniques. Implant Dentistry, 1. doi:10.1097/ID.0000000000000767

Swain, M. V, & Xue, J. (2009). State of the Art of Micro‐CT Applications in Dental Research. International Journal of Oral Science, 1(4), 177–188. doi:10.4248/IJOS09031

Toia, M., Stocchero, M., Cecchinato, F., Corrà, E., Jimbo, R., & Cecchinato, D. (2017). Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception. The International Journal of Oral & Maxillofacial Implants, 32(6), 1288–1295. doi:10.11607/jomi.5881

Turkyilmaz, I., Aksoy, U., & McGlumphy, E. A. (2008). Two Alternative Surgical Techniques for Enhancing Primary Implant Stability in the Posterior Maxilla: A Clinical Study Including Bone Density, Insertion Torque, and Resonance Frequency

(32)

Analysis Data. Clinical Implant Dentistry and Related Research, 10(4), 231- 237.doi:10.1111/j.1708-8208.2008.00084.x

Wancket, L. M. (2015). Animal Models for Evaluation of Bone Implants and Devices. Veterinary Pathology, 52(5), 842–850. doi:10.1177/0300985815593124

(33)

Figure 1

Preparation of bone blocks: (a) Bone block with a plastic dispositive glued to the medular surface. (b) Transversal reconstruction of the ROI demarked in red. C) Longitudinal reconstruction showed the ROI.

(34)

Figure 2

(35)

Table 1. Mean values of Bone Micro-arquitecture parameters BV/TV BS/TV Tb.Th Tb.Sp Tb.N [Po(tot)] Conn.Dn Mean 7,81 1,89 0,13 0,93 1,86 92,18 3,67 SD 3,6 0,7 0,02 0,2 0,5 3,6 2,1 Max 14,96 3,5 0,19 1,71 2,72 97,3 9,72 Min 2,69 0,79 0,1 0,61 1,21 85,03 1,48

(36)

Table 2. Mean and standard deviation of FIT and ISQ values according to drilling protocol.

FIT

ISQ

Group 1

6,06 ± 2,99 a

65,1 ± 7,17 a

Group 2

4,8 ± 0,99 a

57,2 ± 7,33 ab

Group 3

7,15 ± 3,9 a

55,61 ± 9,68 b

Means having different letter in the column have statistically significance differences for p<0,05

(37)

3 CONCLUSÃO

Conclui-se, dentro das limitações deste trabalho, que em osso de pobre qualidade o uso da ostectomia de acordo com recomendações do fabricante, para preparo do leito implantar, pode aumentar a estabilidade primária dos implantes dentais.

(38)

REFERÊNCIAS

Abboud M, Delgado-Ruiz RA, Kucine A, Rugova S, Balanta J, Calvo-Guirado JL. Multistepped Drill Design for Single-Stage Implant Site Preparation: Experimental Study in Type 2 Bone. Clin Implant Dent Relat Res. 2015;17:472–85.

Açil Y, Sievers J, Gülses A, Ayna M, Wiltfang J, Terheyden H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. Odontology. 2016:1–7.

Aerssens J. Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. J Endocrinol. 1997;155:411–21.

Ahn S-J, Leesungbok R, Lee S-W, Heo Y-K, Kang KL. Differences in implant stability associated with various methods of preparation of the implant bed: An in vitro study. J Prosthet Dent. 2012;107:366–72.

Akça K, Kökat AM, Cömert A, Akkocaoğlu M, Tekdemir I, Cehreli MC. Torque-fitting and

resonance frequency analyses of implants in conventional sockets versus controlled bone defects in vitro. Int J Oral Maxillofac Surg. 2010;39:169–73.

Alghamdi H, Anand PS, Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: A prospective clinical study. J Oral Maxillofac Surg. 2011;69:e506–12.

Bahat O. Technique for placement of oxidized titanium implants in compromised maxillary bone: prospective study of 290 implants in 126 consecutive patients followed for a minimum of 3 years after loading. J Oral Maxillofac Implant. 2009;24:325–34.

(39)

Bahat O. Brånemark system implants in the posterior maxilla: clinical study of 660 implants followed for 5 to 12 years. Int J Oral Maxillofac Implants. 2000;15:646–53.

Bahat O. Osseointegrated implants in the maxillary tuberosity: report on 45 consecutive patients. Int J Oral Maxillofac Implants. 1992;7:459–67.

Bilhan H, Geckili O, Mumcu E, Bozdag E, Sünbüloğlu E, Kutay O. Influence of surgical

technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil. 2010;37:900–7.

Boustany C, Reed H, Cunningham G, Richards M, Kanawati A. Effect of a Modified Stepped Osteotomy on the Primary Stability of Dental Implants in Low-Density Bone: A Cadaver Study. Int J Oral Maxillofac Implants. 2015;30:48–55.

Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lindström J, Rockler B. An experimental and clinical study of osseointegrated implants penetrating the nasal cavity and maxillary sinus. J Oral Maxillofac Surg .1984;42:497–505.

Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469:2179–93.

Campos FE, Gomes JB, Marin C, Teixeira HS, Suzuki M, Witek L, et al. Effect of drilling dimension on implant placement torque and early osseointegration stages: An experimental study in dogs. J Oral Maxillofac Surg. 2012;70:e43–50.

Çehreli MC, Kökat AM, Comert A, Akkocaoğlu M, Tekdemir I, Akça K. Implant stability and bone density: assessment of correlation in fresh cadavers using conventional and osteotome implant sockets. Clin Oral Implants Res. 2009;20:1163–9.

(40)

Degidi M, Daprile G, Piattelli A. Influence of Underpreparation on Primary Stability of Implants Inserted in Poor Quality Bone Sites: An In Vitro Study. J Oral Maxillofac Surg .2015;73:1084–8.

Degidi M, Daprile G, Piattelli A. Primary Stability Determination by Means of Insertion Torque and RFA in a Sample of 4,135 Implants. Clin Implant Dent Relat Res. 2012a;14:501–7.

Degidi M, Daprile G, Piattelli A. Primary Stability Determination by Means of Insertion Torque and RFA in a Sample of 4,135 Implants. Clin Implant Dent Relat Res. 2012b;14:501–7.

Degidi M, Daprile G, Piattelli A. Determination of primary stability: a comparison of the surgeon’s perception and objective measurements. Int J Oral Maxillofac Implants. 2010;25:558–61.

Degidi M, Daprile G, Piattelli A, Iezzi G. Development of a new implant primary stability parameter: insertion torque revisited. Clin Implant Dent Relat Res. 2013;15:637–44.

de Faria Vasconcelos K, dos Santos Corpas L, da Silveira BM, Laperre K, Padovan LE, Jacobs R, et al. MicroCT assessment of bone microarchitecture in implant sites reconstructed with autogenous and xenogenous grafts: a pilot study. Clin Oral Implants Res. 2017;28:308–13.

Freitas Jr AC, Bonfante EA, Giro G, Janal MN, Coelho PG. The effect of implant design on insertion torque and immediate micromotion. Clin Oral Implants Res. 2012;23:113–8.

(41)

Han H-C, Lim H-C, Hong J-Y, Ahn S-J, Han J-Y, Shin S-I, et al. Primary implant stability in a bone model simulating clinical situations for the posterior maxilla: an in vitro study. J Periodontal Implant Sci. 2016;46:254.

Hsu J-T, Huang H-L, Tsai M-T, Wu AY-J, Tu M-G, Fuh L-J. Effects of the 3D bone-to- implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg. 2013;42:276–80.

Huwais S, Meyer EG. A Novel Osseous Densification Approach in Implant Osteotomy Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and Bone-to-Implant Contact. Int J Oral Maxillofac Implants. 2017;32:27–36.

Ivanoff C-J, Sennerby L, Lekholm U. Influence of mono- and bicortical anchorage on the integration of titanium implants. Int J Oral Maxillofac Surg .1996;25:229–35.

Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci. 2013;5:162–7.

Jensen J, Sindet-Pedersen S, Oliver AJ. Varying treatment strategies for reconstruction of maxillary atrophy with implants: results in 98 patients. J Oral Maxillofac Surg. 1994;52:210-6

Kang S-R, Bok S-C, Choi S-C, Lee S-S, Heo M-S, Huh K-H, et al. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography. J Periodontal Implant Sci. 2016;46:116.

(42)

Kim YJ, Henkin J. Micro-Computed Tomography Assessment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture. Clin Implant Dent Relat Res. 2015;17:307–13.

Lee J-H, Kim H-J, Yun J-H. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study. J Periodontal Implant Sci. 2017;47:20.

Li J, Yin X, Huang L, Mouraret S, Brunski JB, Cordova L, et al. Relationships among Bone Quality, Implant Osseointegration, and Wnt Signaling. J Dent Res. 2017;96:822– 31.

Li JY, Pow EHN, Zheng LW, Ma L, Kwong DLW, Cheung LK. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning. Clin Oral Implants Res. 2014;25:506–10.

Lopes LF dT. P, da Silva VF, Santiago JF, Panzarini SR, Pellizzer EP. Placement of dental implants in the maxillary tuberosity: a systematic review. Int J Oral Maxillofac Surg. 2015;44:229–38.

Marheineke N, Scherer U, Rücker M, von See C, Rahlf B, Gellrich N, et al. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures. Clin Oral Investig. 2018;22:2057–67.

Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7:261–

(43)

Mihali SG, Canjau S, Cernescu A, Bortun CM, Wang H-L, Bratu E. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque. Implant Dent 2017:1.

Möhlhenrich SC, Heussen N, Elvers D, Steiner T, Hölzle F, Modabber A. Compensating for poor primary implant stability in different bone densities by varying implant geometry: a laboratory study. Int J Oral Maxillofac Surg. 2015;44:1514–20.

Molly L. Bone density and primary stability in implant therapy. Clin Oral Implants Res. 2006;17:124–35.

Moon S-H, Um H-S, Lee J-K, Chang B-S, Lee M-K. The effect of implant shape and bone preparation on primary stability. J Periodontal Implant Sci. 2010;40:239.

Muller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, Hildebrand T, et al. Morphometric Analysis of Human Bone Biopsies: A Quantitative Structural Comparison of Histological Sections and Micro-Computed Tomography. Bone. 1998;23:59–66.

Nocini P, Albanese M, Fior A, De santis D. Implant placement in the maxillary tuberosity: the Summers' technique performed with modified osteotomes. Clin Oral Impl Res 2000: 11: 273–278.

O’Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res. 2004;6:48–57.

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the

(44)

ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2:595–

610.

Park K-J, Kwon J-Y, Kim S-K, Heo S-J, Koak J-Y, Lee J-H, et al. The relationship between implant stability quotient values and implant insertion variables: a clinical study. J Oral Rehabil. 2012;39:151–9.

Parsa A, Ibrahim N, Hassan B, van der Stelt P, Wismeijer D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26:e1–7.

Pearce A, Richards R, Milz S, Schneider E, Pearce S. Animal models for implant biomaterial research in bone: A review. Eur Cells Mater. 2007;13:1–10.

Sakka S, Baroudi K, Nassani MZ. Factors associated with early and late failure of dental implants. J Investig Clin Dent. 2012;3:258–61.

Shadid RM, Sadaqah NR, Othman SA. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review. Int J Dent . 2014;2014:1–17.

Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: The significance of motor speed. J Oral Maxillofac Surg. 2002;60:1160–9.

Slete FB, Olin P, Prasad H. Histomorphometric Comparison of 3 Osteotomy Techniques. Implant Dent. 2018; 27(3):1-5.

(45)

Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium of Continuing Education in Dentistry 2: 152-160.

Swain M V, Xue J. State of the Art of Micro‐CT Applications in Dental Research. Int J Oral Sci. 2009;1:177–88.

Toia M, Stocchero M, Cecchinato F, Corrà E, Jimbo R, Cecchinato D. Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception. Int J Oral Maxillofac Implants. 2017;32:1288–95.

Tsolaki IN, Tonsekar PP, Najafi B, Drew HJ, Sullivan AJ, Petrov SD. Comparison of Osteotome and Conventional Drilling Techniques for Primary Implant Stability: An In Vitro Study. J Oral Implantol. 2016;42:321–5.

Turkyilmaz I, Aksoy U, McGlumphy EA. Two Alternative Surgical Techniques for Enhancing Primary Implant Stability in the Posterior Maxilla: A Clinical Study Including Bone Density, Insertion Torque, and Resonance Frequency Analysis Data. Clin Implant Dent Relat Res. 2008;10:080411085817500–???

Wancket LM. Animal Models for Evaluation of Bone Implants and Devices. Vet Pathol. 2015;52:842–50.

(46)

Apêndice

Apêndice 1

Preparo do corpo de prova: a) Costela suína fresca sem tecido mole; b) Corpo de prova seccionado; c)Vista axial do corpo de prova; d)Dispositivo de plástico colado em região medular.

(47)

Apêndice 2

Análise de Micro-CT: a) Imagem obtida pela camara do Sky-Scan 1174v2 (Bruker, Kontich, Belgium; b)Reconstrução volumétrica; c) Vista axial; d) Thresholding; e) Binarização da imagem; f) Reconstrução 3D

(48)

Apêndice 3

Parâmetros da Micro-CT utilizando o Software CT Analyzer software (Bruker)

Parâmetros básicos Tissue Volume

Bone Volume

Percent Bone volume Tissue surface Bone surface Intersection surface

Bonse surface / volume ratio Bone surface density

Trabecular pattern factor Centroid

Parâmetros adicionais Structure model index Trabecular thickness Trabecular numbre Trabecular separation Degree of anisotropy Fractal dimension Number of objects Number of closed pores Porosity

(49)

1

1

Anexos

Anexo 1

ANÁLISE COMPARATIVA DE TRÊS TÉCNICAS DE PREPARO DE

LEITO IMPLANTAR NA ESTABILIDADE PRIMÁRIA DE

IMPLANTES DENTÁRIOS INSTALADOS EM OSSO DE POBRE

QUALIDADE: ESTUDO EX-VIVO

8

%

ÍNDICE DE SEMELHANÇA

RELATÓRIO DE ORIGINALIDADE

10

%

FONT ES DA INT ERNET

10

%

PUBLICAÇÕES

9

%

DOCUMENT OS DOS ALUNOS FONTES PRIMÁRIAS

nardus.mpn.gov.rs

1

Font e da Internet

1

%

www.medicinaoral.com

2

Font e da Internet

%

www.birpublications.org

3

Font e da Internet

%

(50)

1

Document o do Aluno

5

de Faria Vasconcelos, Karla, Lívia dos

1

%

Santos Corpas, Bernardo Mattos da Silveira,

Kjell Laperre, Luis Eduardo Padovan, Reinhilde

Jacobs, Paulo Henrique Luiz de Freitas, Ivo

Lambrichts, and Frab Norberto Bóscolo.

"MicroCT assessment of bone

microarchitecture in implant sites reconstructed

with autogenous and xenogenous grafts: a pilot

study", Clinical Oral Implants Research, 2016.

Publicação

6

Marco Degidi, Giuseppe Daprile, Adriano

1

%

Piattelli. "Influence of Stepped Osteotomy on

Primary Stability of Implants Inserted in Low-

Density Bone Sites: An In Vitro Study", The

International Journal of Oral & Maxillofacial

Implants, 2017

Publicação

Submitted to Radboud Universiteit Nijmegen

7

Document o do Aluno

%

8

OLISCOVICZ, Nathalia Ferraz, Ronaldo José

1

%

(51)

1

REIS. "Surface treatment of implants: primary

stability", RGO - Revista Gaúcha de

Odontologia, 2014.

Publicação

Submitted to Yonsei University

9

Document o do Aluno

%

10

Yi-Chun Ko, Heng-Li Huang, Yen-Wen Shen,

1

%

Jyun-Yi Cai, Lih-Jyh Fuh, Jui-Ting Hsu.

"Variations in crestal cortical bone thickness at

dental implant sites in different regions of the

jawbone", Clinical Implant Dentistry and

Related Research, 2017

Publicação

Excluir citações Desligado

(52)

Anexo 2

Submission Confirmation

Thank you for your submission

Submitted to

Clinical Oral Implants Research

Manuscript ID

COIR-Jul-18-OR-7007

Title

EFFECT OF THREE TYPES OF SURGICAL

TECHIQUES ON PRIMARY STABILITY. EX

VIVO STUDY

Authors Cáceres, Andres Gaeta, Hugo Haiter-Neto, Francisco Asprino, Luciana

Date Submitted 06-Jul-2018

© Clarivate Analytics | © ScholarOne, Inc., 2018. All Rights Reserved.

ScholarOne Manuscripts and ScholarOne are registered trademarks of ScholarOne, Inc. ScholarOne Manuscripts

(53)

Referências

Documentos relacionados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Outre cette singularité, en elle- même tout un domaine à approfondir, il est important de considérer la façon dont le corps participait dans la représentation de la parole et de

A direção que tomamos caracterizou-se pela mudança percebida nas necessidades e nos problemas da prática social a partir das relações na universidade (professores

This paper analyzes the powerful role of px, yq as linker of spatial knowledge, and describes a practice, Geo Linked Data, that transforms the juxtaposition into a formal link

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

Os controlos à importação de géneros alimentícios de origem não animal abrangem vários aspetos da legislação em matéria de géneros alimentícios, nomeadamente

However, even in the discrete case when using different time measurements the dynamic behavior of a model can be changed.. Here one may consider as an example the Cucker–Smale