• Nenhum resultado encontrado

Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus lupulus) and relations of transpiration with hops yield and alpha-acids

N/A
N/A
Protected

Academic year: 2021

Share "Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus lupulus) and relations of transpiration with hops yield and alpha-acids"

Copied!
14
0
0

Texto

(1)

Contents lists available atScienceDirect

Industrial

Crops

and

Products

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Assessing

and

modelling

water

use

and

the

partition

of

evapotranspiration

of

irrigated

hop

(Humulus

Lupulus),

and

relations

of

transpiration

with

hops

yield

and

alpha-acids

M.

Fandi ˜

no

a

,

J.L.

Olmedo

b

,

E.M.

Martínez

a

,

J.

Valladares

c

,

P.

Paredes

d

,

B.J.

Rey

a

,

M.

Mota

d

,

J.J.

Cancela

a,∗

,

L.S.

Pereira

d

aGI-1716,DepartmentofAgroforestryEngineering,UniversityofSantiagodeCompostela,CampusUniversitario,27002Lugo,Spain

bHijosdeRiveraInversionesCorporativas,ACoru˜na,Spain

cCentrodeInvestigaciónsAgrariasdeMabegondo(INGACAL-CIAM),XuntadeGalicia,Spain

dLEAF—Landscape,Environment,AgricultureandFood,InstituteofAgronomy,UniversityofLisbon,Lisbon,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3March2015

Receivedinrevisedform7July2015

Accepted20August2015

Keywords:

SIMDualKcmodel

Hoptranspiration

Dryweightcone

Alpha-acidscontent

Irrigationscheduling

a

b

s

t

r

a

c

t

Thisstudywasconductedduringthreeseasons(2012–2014)inanexperimentalhopyardatMabegondo, Galicia,NWSpain.Theresearchaimedatcalibratingandvalidatingthesoilwaterbalancemodel SIMD-ualKcforHumuluslupulusL.cv.‘Nugget’.Themodelcomputesthesoilwaterbalanceusingthedual Kc approach,thuspartitioning cropevapotranspiration (ETc)intocrop transpiration,ground cover

transpirationandsoilevaporation.CalibrationandvalidationwereperformedusingTDRsoilwater contentmeasurements,whichproducedsmallrootmeansquareerrors(RMSE)rangingfrom0.012to 0.015cm3cm−3.Theinitial,mid-seasonandend-seasonbasalcropcoefficients(Kcb)thatallow

com-putinghoptranspirationwererespectively0.16,0.97and0.83.ThesingleKcforthesamecropgrowth

stages,whichreferstotranspirationandsoilevaporationtogether,wererespectively0.69,1.02and0.85. SIMDualKcprovidedtoestimatewaterusebythehopyardandthecomponentsofthesoilwater bal-ance,particularlyhoptranspiration(THop),groundcoveredtranspiration(Tcover)andsoilevaporation(Es).

THoprepresented92%ofactualevapotranspiration(ETcact)duringthemid-season,andEsaveraged69%of

ETcactduringtheinitialstage.ItwasobservedthatTcoverwasstronglyinfluencedbysoilandgroundcover

management.TheimpactsofwateruseandTHoponhopyieldquantityandqualitywereassessed.A

lin-earregressionbetweenhopconeyieldandTHophasbeenfound,withahighcoefficientofdetermination

r2=0.92,whilethelinearregressionsofT

Hopwithalphaandbeta-acidshadregressioncoefficientsnot

significantlydifferentfromzero.Theseresultsdenoteappropriateirrigationmanagementwithabsence ofstressesthatcouldaffectyieldsortheconcentrationofbitteracids.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Hop(HumuluslupulusL.)isanherbaceousperennialplantwhich femaleflower,alsonamedhopconeorhops,isusedindifferent industries.Currentlythebeerbrewingindustryaccountsfor98% oftheworlduseofhops(ZanoliandZavatti,2008).Hopis culti-vatedforitssecondarymetabolites,mainlybitteracids:alphaand beta-acids(Verzele,1986).Alpha-acidsaredirectprecursorsofthe mainbitteringprinciplesofbeer,contributingaswelltothe over-allmicrobialstability(asnaturalpreservatives),andanenhanced foamstability(Moir,2000;Steenackersetal.,2015).Theyarehighly

∗ Correspondingauthor.

E-mailaddress:javierjose.cancela@usc.es(J.J.Cancela).

cultivar-dependentalthoughhopscontain,onaverage,9–10wt%of alpha-acids;however,recentlydevelopedhopcultivarsmay con-tainupto19wt%(YakimaChief,2013).Thebeta-acidsarelessacidic andhaveamorepronouncedbacteriostaticactionthanthe alpha-acids.Duetotheirinsolubilityin thebeer matrix (Briggs etal., 2000),thebeta-acidswereusuallyconsideredtobelargely irrel-evantforthebrewingindustry,besidesthattheymayoxidizeinto compoundsthatcangivebeeroff-flavors.However,theycontribute tobeer’saroma,andhighbeta-acidhopvarietiesareoftenusedat theendofthebrewingprocessforaroma,alsobecausebetaextract canbeusedasafeedfortheproductionofbitteringcomponents, eitherbythetransformationofthebeta-acidsintothesynthetic iso-alpha-acidsorbytheiroxidationintothehulupones(Steenackers etal., 2015).Alpha and beta-acidscouldbecomplementaryfor

http://dx.doi.org/10.1016/j.indcrop.2015.08.042

(2)

bittertasteandpreservativevalue(SchönbergerandKostelecky, 2011)inbrewingindustry.

Hopconeshavealsobeenusedformedicinalpurposesbecause beta-acidsareapotentialcancerchemopreventiveorare antibac-terialagents(ZanoliandZavatti,2008)duetoitsrelativelyhigh content of polyphenolic substances, with beneficial effects on healthandmetabolism(Cehˇ etal.,2007).Recently,Abrametal. (2015)reportedthathopsnotonlyplayamainroleinthe brew-ingindustrybut leavesand stemscouldbeused asasourceof antioxidantcompoundsforthefoodindustry.

Severalauthorshaveshowntherelevanceofprecipitationand temperature for an adequate growth of hop and for yield and quality,e.g.,Sreˇcecet al.(2004, 2008) inCroatia; Koˇren(2007) andMoznyetal.(2009)inCzechRepublic;Engelhard(2004)in Germany;Bavecetal.(2003)andPavlovicetal.(2012,2013)in Slovenia;Benítezetal.(1998)inSpain;andWampleandFarrar (1983)inUnitedStates.Moznyetal.(2009)reportedonclimate changeeffectsconcludingthathopmaybeaparticularly vulnera-blecrop.Inaddition,variousstudiestackledtheeffectsofirrigation onproduction atthefarmscale(e.g.,Wampleand Farrar1983; Svoboda et al., 2008; Delahunty et al., 2011; Nakawuka 2013) oratplantscale(Keukeleireetal.,2007;Hniliˇckováetal.,2009; Gloseretal.,2013).Thesestudiesreportedthatirrigationincreases yieldanddonotnegativelyaffectthealpha-acidcontentalthough impactsofwaterandtemperaturestressrelatewiththe phenolog-icalstageswhenoccurring.ThisiswelldescribedbyPotop(2014) whoreportedalowyieldwhendrought/drynessconditions pre-vailedinMaythroughAugustandhigheryieldsundernormalwet conditionsandbyKuˇceraandKrofta(2009)thatreportedthatthe strongestinfluenceonthealpha-acidcontentwasexertedbyair temperaturesinJulyandthatrainfallhadsignificanteffectsduring theperiodfromMaytoJuly.However,fewstudieshavefocused anindepthdeterminationofhopwaterrequirements(Báreketal., 2009;Kroftaetal.,2013)andtherearenostudiesprovidingforan in-depthanalysisofevapotranspirationorthewaterbalance.Urban etal.(2012)appliedthesapflowtechniqueandBREBwiththehop cv.‘Agnus’inCzechRepublic,andKroftaetal.(2013)measured thesapflowwiththehopcv.‘Premiant’.Bothstudiesestimated hoptranspirationbutdidnotquantifysoilevaporation,theactual evapotranspiration,orthecomponentsofthesoilwaterbalance.

Cropevapotranspiration(ETc)iscommonlyestimatedusingthe

cropcoefficientapproach,i.e.,ETc=Kc ETo,whereKc isthecrop

coefficientandEToisthereferenceevapotranspiration(Allenetal.,

1998).AdoptingthedualKc approach(Kc=Kcb+Ke),whereKcbis

thebasalcropcoefficientrelativetocroptranspirationandKeis

thesoilevaporationcoefficient,itispossibletopartitionETcinto

hoptranspiration(THop=KcbETo)andsoilevaporation(Es=KeETo)

asdescribedbyAllenetal.(1998,2005)andRosaetal.(2012a,b). Initial,mid-seasonandend-seasonsingleandbasalKcforhopare

tabledbyAllenetal.(1998,2007),whichallowtodrawtheKc(and

Kcb)curvesrelativetothefullcropseason.ThedualKc approach

requiresadailysoilwaterbalancefordeterminationoftheactual evapotranspirationandadailywaterbalanceoftheuppersoillayer fromwheresoilevaporationoriginatesfordeterminationofKe.This

requirementgiveshigherprecisiontocomputationsusingthedual KcapproachrelativetousingthesingleKcbutthecomputational

proceduresarequitedemandingandamodellikeSIMDualKc(Rosa etal.,2012a,b)isthenneeded.

Severalmethodsand techniquesmaybeappliedtomeasure andestimatecropevapotranspiration,e.g.,lysimeters,heatpulse, heatbalance,Bowenratioenergybalance(BREB),surfacerenewal energybalance,eddycovarianceandthesoilwaterbalance(Allen etal.,2011).Theselectionofthemethodstobeusedrelatewith theobjectivesofthestudyandthecomplexityoftheecosystem tobe observed.Relative to theintended hop croppedareathe objectivesofthestudyweretodeterminehoptranspirationand

soilevaporationinanirrigatedplantationwithactivegroundcover intheinter-rowandwherecapillaryrisefromashallowwatertable couldcontributetoevapotranspiration.Therewasnointentionof analysingthevarioushydrologicprocessesinvolvedbuttoestimate wateruseandconsumptionaimingatsupportingimproved irriga-tionmanagementwithconsiderationofwater-yieldinteractions. Thusitwasselectedasimplebutaccurateapproachthatallowed thecalibrationanduseofthereferredwaterbalancemodel SIM-DualKc.Otherwiseasoilwaterfluxmodelwouldberequiredthat wouldbeabletocomputetheup-anddownwardfluxesthrough therootzonebottom,whichcouldalsoconsideramultidomainET referringtothecrop,thesoilandtheunderstoryvegetation,and thatwouldbeabletoaccuratelyseparatecroptranspirationand soilevaporation.Thisapproach,inadditiontomeasurementsofET (Allenetal.,2011),wouldrequireobservationofsoilwater poten-tialinadditiontosoilwatercontenttodescribethedynamicsof waterintherootzone(e.g.,Cameiraetal.,2005;Liuetal.,2006;Ma etal.,2013),ortheuseoftracerstodetectthewateroriginatedfrom thewatertable(Grünbergeretal.,2011),ortheuseofwatertable lysimeters(LuoandSophocleous,2010).Theapproachwouldneed theuseofminiand/ormicro-lysimeterstoestimatethe evapotran-spirationfromtheunderstoryvegetationandtheevaporationfrom thesoilwithandwithoutmulching(Yunusaetal.,2004;Centinari etal.,2012),theuseofsapflowdevicestoestimatethetranspiration fluxesfromasampleofhopplantsand/ortheuseofsomeisotopic approachestoidentifytheoriginofwatervapour(Williamsetal., 2004;Rothfussetal.,2010;Sutantoetal.,2012).Thatcomplex, costlyandlabourdemandingapproachcannotbejustifiedfora studyaimedatsimplyassessingwaterusedynamicsofahop plan-tationaimedatimprovedirrigation.Thealternativewastoadopta simplerfieldresearchapproachthatwouldallowtocalibrateand furtherusetheSIMDualKcmodelthathasprovedabletosimulate thedynamicsofthesoilwatercontentofaplantationtakinginto considerationtheimpactsofashallowwatertable(e.g.,Rosaetal., 2012b;Wuetal.,2015),topartitionETintocroptranspirationand soilevaporationusingthedualKcapproach(e.g.,Pac¸oetal.,2012,

2014;Zhaoetal.,2013;Zhangetal.,2013;Weietal.,2015),and toconsidertheeffects of understoryvegetation(Fandi ˜noetal., 2012;Cancelaetal.,2015).Moreover,theapplicationofthemodel respondstorequisitesofcalibrationandvalidation,includingthe determinationofrelatederrorsandothergoodness-of-fit indica-tors(Pereiraetal.,2015)andresultsareassessedcomparatively tootherstudiesaimingatbetterbasingrelatedanalysis.

Considering the good results obtained with the SIMDualKc modelinformerapplicationsanditsabilitytosimulatewateruseby acropunderconditionsofvariablewatertabledepthandvariable inter-rowsoilcover,SIMDualKcwasselectedtofilltheknowledge gaponwaterusebyhopplantations,onhopevapotranspiration anditspartitionintoTHopandEs.Thus,themainobjectivesofthe

presentstudyare:(i)tocalibrateandvalidatethesoilwater bal-ancemodelSIMDualKcforthehopcv‘Nugget’inGalicia;(ii)to determinehoptranspirationandsoilevaporationduringthecrop seasonsof2012–2014;(iii)tocomputethewaterbalance compo-nentsofhopfields,includinggroundwatercontributionandactive groundcovertranspiration;and(iv)toassesstheimpactsofcrop transpirationonhopyieldquantityandquality,mainlythealpha acids.

2. Materialsandmethods

2.1. Sitedescriptionandmeteorologicaldata

Thestudywasconductedduringthreeseasons(2012–2014)in anexperimentalhopyardatthe‘CentrodeInvestigaciónsAgrarias deMabegondo’(CIAM),locatedinMabegondo,Galicia,NWSpain (43◦143.7N,8◦1512.9Wand60melevationa.s.l.).Thefield

(3)

isabout1haandisnearlyflat.Thecropwasestablishedin2007 andwasplantedwithspacing3.0m×2.0m;theplantdensitywas 1667plantsha−1andthetrelliswere6.0mhigh.Plantationhasthe East–Westorientation(Olmedo,2011).Thestudyfieldwasdivided intotwo plotscorrespondingtodifferentdripirrigationsectors. Plot1referstothelowerpartofthefield,closetoasmallriver,and Plot2isintheupperpartofthefield.

Soils are silt loam with an average of 33.7% sand, 46.7% silt and 19.6% clay; the organic matter content averages 6.7%. The total available soil water (TAW) down to 0.8m depth was 168 and 160mm in Plot 1 and Plot 2, respectively, which was calculated from the difference between the field capacity (FC=0.38cm3cm−3)and the permanent wilting point

(WP=0.18cm3cm−3forPlot1and0.17cm3cm−3forPlot2).Soil

watercontentatsaturation(Sat)was0.42cm3cm−3,forbothplots.

TheclimateisofAtlantictype.TheKöppen–Geigerclassification isCsb,i.e.,awarmtemperateclimatewithdryandwarmsummer (Kotteketal.,2006).Agrometeorologicaldatawereobtainedfrom theCIAMstation,locatedafewhundredmetersawayofthefield. Dailydataconsistedofmaximumandminimumtemperature(Tmax

andTmin,◦C),windspeedat2mheight(u2,ms−1)andrainfallfor

theperiod2012–2014(Fig.1).DuringtheperiodMarch–September of2012themonthlyaverageTmaxandTminrangedbetween13.9

and25.2◦Cand3.6and13.2◦C,respectively.In2013thosemonthly temperatureswereslightlyhigher,withTmaxranging14.5–27.2◦C

and Tmin ranging 5.9–13.7◦C, while in 2014 the monthly Tmax

andTmin variedrespectively 17.3–26.1◦C and 5.2–13.4◦C. Thus,

monthlytemperatureswerequitesimilarinthethreecrop sea-sonsand nohotwaveswereobserved.ETo wascomputedwith

theFAOPenman–Monteithequationusinglimitedweatherdata, i.e.,estimatingtheactualvapourpressurefromthedailyminimum temperatureandsolarradiationfromdailymaximumand mini-mumtemperature(Allenetal.,1998).Thismethodwastestedfor similarclimatesbyCancelaetal.(2015)inGalicia.

DailyprecipitationandEToforMarchtoSeptemberduringthe

threeyearsofstudyarepresentedinFig.1,whichshowsthat pre-cipitationin2012wasconcentratedinAprilandMaywhileJuly toSeptemberwasadryperiod.Differently,rainfallin2013was concentratedinMarch–AprilbutJulytoSeptemberwerealsodry months.In 2014precipitationwasmoreevenlydistributed.ETo

showstobehigherinthesummermonthswhere itmayattain 6mmd−1.However,itsdailyvariabilityishighfollowingthe nat-uralvariability of radiation, temperature, and wind speed. ETo

wasquitesimilarduringthethreecropseasons,higherin2014 (603mm)andlowerin2013(543mm).

2.2. Modellingapproach—theSIMDualKcmodel

SIMDualKc(Rosaetal.,2012a)isa soilwaterbalancemodel aimedatassessingcropwateruseandrequirementsandtosupport irrigationscheduling andmanagementatfield scale.Themodel adoptsthedualKcapproach(Allenetal.,1998,2005)for

partition-ningcropevapotranspirationintosoilevaporation(Es)andcrop

transpiration(Tc)

ETc= (Kcb+Ke) ETo (1)

whereETciscropevapotranspiration[mmd−1],Kcbisthebasalcrop

coefficient[],Keisthesoilevaporationcoefficient[]andEToisthe

grassreferencecropevapotranspiration[mmd−1],thusresulting Tc=KcbEToandEs=KeETo.ThedualKcapproachisoftenuseddue

toitsgoodpracticalperformanceasanalyzedbyKooletal.(2014). Applicationsrefernotonlytosoilwaterbalancemodelsbutalso tomechanisticmodels(Forkutsaetal.,2009;Ramosetal.,2012; Gonzálezetal.,2015).Theapproachhasbeenverifiedfrom obser-vationsofTcand/orEsbyPac¸oetal.(2012,2014),Cammallerietal.

(2013),Dingetal.(2013),Zhaoetal.(2013)andWeietal.(2015).

ToconsidertheinfluenceofcropdensityandheightonKcbthe

modelusestheeffectivefractionofgroundcoveredorshadedbythe vegetation(fceff)andthecropheigh(h)consideringacropdensity

coefficient(Kd)(Allenetal.,2007;AllenandPereira,2009):

Kd=min(1,MLfcefff

1 1+h

ceff) (2)

wheretheMLparameter[]isamultiplieroffceffrepresentingthe

maximumratioofETperfractionofgroundshaded.fceff differs

fromthefractionofsoilsurfacecoveredbyvegetation(fc)duetothe

combinedeffectofthecanopyshape,plantheightandsolarangle abovethehorizonontheshadedarea(AllenandPereira,2009;Rosa etal.,2012a).Inincompletecovercrops,suchasorchards,vineyards andhopplantations,anactivegroundcovermayoccurthat com-peteswiththecropfortheavailablesoilwaterand contributes tothetotal evapotranspiration.Thus, thefollowingapproach is adoptedinSIMDualKc(AllenandPereira,2009;Rosaetal.,2012a) forestimatingKcb: Kcb=Kcbcover+Kd



max



Kcbfull−Kcbcover, Kcbfull−Kcbcover 2



(3) whereKcbcoveristheKcboftheactivegroundcoverintheabsence

oftreefoliage,Kdisthecropdensityfactor(Eq.(2)),andKcbfull

isthebasalKcbforthecropunderfullcover(orLAI>3)conditions

andcorrectedforclimate,withallcoefficientsnon-dimensional.To takeintoaccounttheeffectsofshadingoftheactivegroundcoverby thetallerplantsthesecondtermofthemaxfunctionreducesthe estimatedKcbbyhalfthedifferencebetweenKcbfullandKcbcover.

Thisapproachisalreadytestedforvineyards(Fandi ˜noetal.,2012; Cancelaetal.,2015),peachorchards(Pac¸oetal.,2012)andolives (Pac¸oetal.,2014).TheKcbcoverreflectsthedensityandvigorof

thesurfacecover;itchangeswithsoilmanagementpractices,e.g., tillageoperationsandapplicationof herbicides.Themodel esti-matesKcbcoverusingfieldobserveddata,suchasthefractionofthe

activegroundcover,itsdensityanditsheight.Detailedinformation onthegroundcovermanagementonhopfieldsalongtheseasons isprovidedinAppendix1.

InSIMDualKc(Rosaetal.,2012a)Esiscomputedperforming

adailywaterbalanceoftheuppersoillayerfromwheremostof waterevaporates. Theevaporationlayer,ofthickness Ze (m),is

characterizedbythetotalevaporable water(TEW, mm),that is themaximum depthofwaterthat canbeevaporatedfromthat layerwhenithasbeencompletelywetted,andthereadily evap-orablewater(REW,mm),whichisthedepthofwaterthatcanbe evaporatedwithoutwaterrestrictions(Allenetal.,1998,2005). TEWandREWareestimatedfromthesoiltexturalandhydraulic characteristics,respectively.Esislimitedbytheamountofenergy

availableatthesoilsurfacecombinedwiththeenergyconsumedby transpiration(Allenetal.,1998,2007)anditsvaluecannotexceed thedifferenceKcmax−Kcb,withKcmax=max(Kcb+Ke).Asthe

top-soildriesandlesswaterisavailableforevaporationareductionof Esoccursinproportiontotheamountofwaterremaininginthe

surfacesoillayer;thus,Kebecomes

Ke=Kr(Kcmax−Kcb) withKe≤fewKcmax (4)

whereKristheevaporationreductioncoefficient(≤1.0),Kcmaxis

themaximumvalueofKc followingarainoranirrigationevent,

andfewisthefractionofthesoilthatisbothexposedand

wet-ted.SIMDualKccomputesKrusingthe2-stagedryingcycle(Ritchie,

1972;Allenetal.,1998),wherethefirststageisanenergylimited stage,andthesecondisa waterlimitedstagewithevaporation decreasingasevaporablewaterisdepletedintheevaporationsoil layerbeyondREW,thus

(4)

Fig.1.Totaldailyprecipitation( )andreferenceevapotranspiration( )intheexperimentalarea:(a)2012,(b)2013and(c)2014.

Kr=

TEW−De,i−1

TEW−REW forDe,i−1>REW (5b)

SIMDualKcadjustsKetothefractionofgroundcoverbyboththe

cropandactivevegetationtoestimatethefractionofsoilfrom whichmostevaporationoccursandthatisbothexposedto radi-ationandwettedbyrainandirrigation.Whenthegroundcover isnotactiveduetoherbicidesapplication(seeAppendix1),the vegetationresiduesonthesoilactasamulch,hencereducingsoil evaporation,whichisconsideredbythemodelasdescribedbyRosa

etal.(2012a).ImpactsofmulchonEsweretestedbyMartinsetal.

(2013)usingSIMDualKc.Themodelperformsadailysoilwater bal-ancetothedepthoftherootzoneexpressedintermsofdepletion attheendofthedayi(Di,mm)asfollows:

Di=Di−1(P−RO)i−Ii−CRi+ETcact,i+DPi (6)

hereDi-1isthedepletionattheprecedingday,Pisprecipitation,

Iisirrigation,CRiscapillaryrisefromashallowwatertable,DP isdeeppercolationoutoftherootzoneandROisrunoff,withall termsexpressedinmm.

(5)

TheactualcropET(ETcact,mm)iscomputedasafunctionofthe

availablesoilwaterintherootzoneusingawaterstresscoefficient (Ks,0−1).Ksisexpressedasalinearfunctionofthecumulative

depletionintheeffectiverootzone(Dr)followingAllenetal.(1998,

2005): Ks=

TAW−Dr

TAW−RAW=

TAW−Dr

(1−p)TAWforDr>RAW (7a)

Ks=1forDr≤RAW (7b)

whereTAWandRAWare,respectively,thetotalandreadily avail-ablesoilwater(mm)relativetotherootzonedepth,Zr,andpisthe

soilwaterdepletionfractionfornostress(dimensionless),which correspondstothedepletionthresholdbeyonditthecropiswater stressed.Thepvaluevarieswiththecrop,varietyand environmen-talconditions,mainlytheevaporativedemandoftheatmosphere (Allenetal.,1998).RAWisthereforedefinedas

RAW=pTAW (8)

Considering what explained above, themodel computes actual evapotranspirationas:

ETcact=THopact+Tcover+Es (9)

where THopact=Ks KcbHop ETo is actual hop crop transpiration,

Tcover=KcbcoverEToisthetranspirationfromanactivegroundcover,

andEs=KeEToissoilevaporation.

Thedailycapillary riseand deeppercolation fluxesare esti-matedwiththeparametricequationsdevelopedbyLiuetal.(2006). TheactualCRfluxes (mmd−1)areestimated usingdataonthe actualwatertabledepth(Dw,m),actualsoilwaterstorage(Wa,

mm),potentialcropevapotranspiration(ETc,mmd−1)and

max-imumcapillaryrise(CRmax,mmd−1).TheactualdailyCRfluxis

computedproportionallytoCRmaxdependinguponETc,Dw and

Wa.CRreducesrelativetoCRmaxwhentherootzonestorageWa

ishigh,orthedepthDwofthewatertableincreases,and/orETc

decreases.Theparametersrelativetowaterstorage(a1,b1,a2,b2),

totherelationshipsbetweenDwandETc(a3,b3),andtotheCRmax

calculation(a4,b4)needtobecalibratedtakingintoconsideration

theactualsoilandwatertablecharacteristics(Rosaetal.,2012b; Wuetal.,2015).Liuetal.(2006)proposedsetsofparametervalues forsilty,siltloamandsandyloamsoilsthatmaybeusedasdefault values.TheDPflux(mmd−1)iscomputedusingatimedecay func-tionrelatingthesoilwaterstoragenearsaturationwiththetime aftertheoccurrenceofaheavyrainorirrigation(Liuetal.,2006). Thecorrespondingparameters(aD,bD)alsoneedtobecalibrated.

Thesurfacerunoffgeneratedwhenrainfallexceedsinfiltration issimulatedinSIMDualKcusingthecurvenumber(CN)method (USDA-SCS,1972).TheparameterCNrelatestosoil,vegetation,and actualsoilwaterstorageandmaybeestimatedusingtabledvalues (Allenetal.,2007).Thismethodiscommonlyusedinsoilwater balancemodeling(e.g.,Raesetal.,2006;Luoetal.,2008).

TheinputdatarequirementsoftheSIMDualKcmodelinclude: i.Dailyclimaticdata:referenceevapotranspiration(ETo,mm),

precipitation(P,mm),maximumandminimumtemperature (TmaxandTmin,◦C),minimumrelativehumidity(RHmin,%),and

windspeedat2mheight(u2,ms−1).

ii. Soildataforamulti-layeredsoil:numberoflayersandlayer depths,d(m),therespectivesoilwatercontentatfieldcapacity andthewiltingpoint(FCandWP,cm3cm−3)orthetotal

avail-ablewaterintherootzone(TAW,mm);thecharacteristicsof thesoilevaporationlayer(Ze,REWandTEW);andthesoilwater

contentatplantinginboththerootzoneandtheevaporation layerexpressedasa%ofTAWandTEW,respectively.

iii.Cropdata:datesoftheinitial,cropdevelopment,mid-season, andlateseasoncropstages;thebasalcropcoefficientsforthe

initial,mid-seasonandendseason(Kcbini,Kcbmid,andKcbend);

thesoil water depletionfractionsfor nostressat thesame stages(рini,pmidandpend);rootdepths(Zr,m),plantheight

(h,m), and thefractionof groundcover by thecrop(fc, %)

throughoutthecropseason.

iv.Irrigationschedulingdata:datesanddepthsofobserved irriga-tioneventsorthesoilwaterthresholdsandpreferredirrigation depthsandfrequencywhenthemodelisusedtogenerate irri-gationschedulesforthefieldpractice.

v.Irrigationparametersinfluencingsoilevaporation:thefraction ofsoilwettedbyirrigation(fw),andthefractionofsoilwetted

andexposedtoradiation(few).Inthecurrentstudy,few=1−fc

and,becausethesoilwaspartiallywettedbydripirrigation,fw

was0.05.

vi.Parametersrequiredbytheparametricequationsusedto com-putecapillaryriseanddeeppercolationasreferredabove. vii.Basedatatoestimateimpactsofactivegroundcover,effectsof

soilmulchesandtoassesssurfacerunoffwiththeCNmethod. 2.3. Calibrationandvalidationproceduresandaccuracy

indicators

Inthepresentstudy,modelcalibrationwasassumedasthe pro-cessof“adjustinginfluentialmodelparametersandinputswithin their reasonable ranges so that the model resultsare realistic and/orconsistentwithavailableobserveddata”;modelvalidation wasconsideredastheprocessofevaluatingtheaccuracyofthe modelestimationsusingthecalibratedparameterswith indepen-dentobserveddatasets(Moriasietal.,2007;Wangetal.,2012; Pereiraetal.,2015).

The calibration of the model was performed by adjusting thecropparameters(basal cropcoefficients,Kcb,and depletion

fractions for no stress, p), the soil evaporationparameters (Ze,

TEW,REW), and theparameters relative tothe DP,CR and RO throughminimizingtheresidualdeviationsbetweensimulatedand observedsoilwatercontent.Atrialanderrorprocedurewasused asdetailedbyPereiraetal.(2015).Theinitialvaluesof parame-terswere:KcbandpastabledbyAllenetal.(1998),Ze,TEWand

REWestimatedaccordingtoAllenetal.(1998,2005),DPandCR parametersasproposedbyLiuetal.(2006)forsandy-loamsoils, andCNastabledbyAllenetal.(2007).Thefirstiterationsaimed atimprovingtheKcbandpvaluesandthefollowingiterationsalso

consideredthesoilevaporationparameters;later,theDP,CRand CNparameterswereoptimized,andfinallyallparameterswere adjustedagain.Thetrialanderrorprocedurewasendedwhen dif-ferencesbetweensimulatedandobservedsoilwatercontent(SWC) valueswereminimizedanddidnotchangefromaniterationtothe next.ThecalibrationwasperformedusingdatafromPlot1in2013. Validationofthemodelwasperformedforalltheremainingdata setsusingtheparametersobtainedfromthecalibration.

Theevaluationanddiscussionofthemodelapplicationwas per-formedusinggoodness-of-fitindicators(Moriasietal.,2007;Wang etal.,2012;Pereiraetal.,2015).Toassesstheaccuracyofmodel pre-dictions,severalapproacheswereusedinadditiontoanalysingthe graphicaltimedependentrepresentationsofmodel-simulatedvs. observedSWCthatwasusedduringthetrialanderrorprocedure. Thefirstapproachwasthelinearregressionbetweenobservedand model-predictedSWCforcedtotheorigin,whichregression coef-ficientis b0=

n

i=1 OiPi n

i=1 O2 i

(10)

(6)

and the ordinary least squares regression which coefficient of determinationis: r2=

n

i=1



Oi− ¯O

 

Pi− ¯P





n

i=1



Oi− ¯O



2



0.5



n

i=1



Pi− ¯P



2



0.5

2 (11)

whereOiandPi(i=1,2,...,n)representpairsofobservedand

pre-dictedvaluesforagivenvariable,and ¯Oand ¯P aretherespective meanvalues. Whenb0 is closeto1.0 thecovarianceis closeto

thevarianceoftheobservedvalues,indicatingthatpredictedand observedvaluesarestatisticallysimilar.Ar2closeto1.0indicates

thatmostofthetotalvarianceoftheobservedvalueswasexplained bythemodel.

Inaddition,asetofindicatorsconsideringtheresidual estima-tionerrorswasalsoused(Moriasietal.,2007;Pereiraetal.,2015): a.)The rootmeansquare error(RMSE),which characterizesthe varianceoftheerrorsandisexpressedinthesameunitsasthe observedvaluesOi: RMSE=



n i=1(Oi−Pi) 2 n



0.5 (12) b.)TheratioRSRoftheRMSEtothestandarddeviationofobserved data(sd)thatstandardizesRMSEusingthesdofobservations, withRSRvaluescloseto0.0indicatingagoodsimulation per-formance; RSR=



n i=1(Oi−Pi)2



0.5



n i=1



Oi− ¯P



2



0.5 (13)

c.)Theaverageabsoluteerror(AAE),whichexpressesthesizeof theestimationerrors,inthesameunitsasOi:

AAE= 1n n

i=1





Oi−Pi





(14)

d.)The averagerelative error(ARE), whichindicatesthe sizeof errorsinrelativetermsandisexpressedasapercentage: ARE=100 n n

i=1





Oi−Pi Oi





(15)

e.)Thepercentbias(PBIAS)thatmeasurestheaveragetendencyof thesimulateddatatobelargerorsmallerthantheir correspond-ingobservations,withlowvaluesindicatinganaccuratemodel simulation;positiveornegativevaluesrefertotheoccurrence ofanunder-orover-estimationbias.

PBIAS=100



n i=1(Oi−Pi)



n i=1Oi (16) f.)Themodelingefficiency,EF,anormalizedstatisticdevelopedby NashandSutcliffe(1970)thatdeterminestherelative magni-tudeoftheresidualvariancecomparedtothemeasureddata variance: EF=1.0−



n i=1(Oi−Pi)2



n i=1



Oi− ¯O



2 (17)

EFcloseto1.0indicatesthattheresidualvarianceismuchsmaller thanthemeasureddatavariance,thusanexcellentsimulation per-formance.Contrarily,anullornegativevalueforEFindicatesthat

thesimulationispoorandthatusingthemeanofobservationsis asgoodasthemodel.

3. Resultsanddiscussion 3.1. Fieldobservationresults

In2012twotreatmentswereconsidered:Plot1wasrain-fed andPlot2wasirrigated.In2013and2014bothplotswereirrigated withdifferentirrigationdepths.Theseasonalirrigationdepthsare showninTable2.IrrigationstartedbyearlyJulyandendedafew daysbeforeharvest,inSeptember.Generally,theintervalbetween irrigationeventswasfourdays.Surfacedripirrigationwasused. Thelateralpipeswereequippedwithin-linenon-compensating emittersspacedby50cmalongthecroprow,thusresultinginfour emittersperplant;theemittersflowratewas2Lh−1.Toassessthe variabilityofdischargesalongthelaterals,fieldevaluationswere performed.Netapplicationdepthsvaried3.9–9.9mm.

Duringthethreecropseasonsstudied,thedatesofthe phe-nologicalstagesweredeterminedaccordingtotheBBCHsystem (Rossbaueretal.,1995).TheseBBCHphenologicaldateswerelater convertedintotheFAOstandardcropgrowthstages(Allenetal., 1998)forbuildingthecropcoefficient(KcandKcb)curves:the

ini-tialstage(thatreferstoKciniorKcbini)startsatplantinitiationand

endsatformationofsideshoots(BBCHstage2);thecrop develop-mentstageisfromthereuntilflowering(stage6);themid-season stage(KcmidorKcbmid)includesfloweringandthedevelopmentof

cones(stage7);thelateseasonisfromthenuntilmaturity/harvest (stage8);theendseason(KcendorKcbend)isatharvesting.Thedates

limitingeachcropgrowthstagearegiveninTable1forthethree cropseasons;theyvariedmuchduringtheinitialandcrop develop-mentperiodsduetothevariabilityofrelatedweatherconditions, butthatvariabilitydecreasedafterthestartofthemid-season.No differenceswereobservedbetweenplots.

Cropdatawascollected/observedinsixplantsperplot,within eightrowsperplotandtworeplicationsofthreeplantsineachplot. Cropheightswereobservedthroughouttheseasonsandtheir val-uesatthedatesofthecropgrowthstagesarepresentedinTable1. Thecropattained amaximumheightof6.0m,whichrelated to theadoptedtrellissystem.Theeffectiverootdepthwas0.80mas observedinthefield.Thefractionofgroundcovered/shadedby thecrop(fc),thatwasusedtocomputethecroptranspirationand

evaporationfromfcandheightasproposedbyAllenandPereira

(2009),wasmeasuredduringthethreeseasonswithhelpof pho-tostakennearthesolarnooninsunshinedaystowellobservethe shadowproducedbythecrop.Themaximumhopcovernearsolar noonranged8–9%ofthecroppedareadependingonthemaximum vegetativedevelopmentachieved.

Observationsoftheactivegroundcover,mainlynatural herba-ceous vegetation and rapeseed in the inter-row area, were performedthroughoutallcropseasonsandincludedthe respec-tivedensity,heightandfractionofsurfacecover.Thesedataare giveninAppendix1referringtothedatesofrelatedgroundcover managementoperationsandwereusedasmodelinputtoproperly performingthepartitionofactualevapotranspiration.

Thesoilwatercontent(SWC)wasmonitoredwithaTDR100 (CampbellScientific,USA),whichoperatesinthefieldusingthe softwarePCTDR(Soutoetal.,2008).TDRusedwaveguidestainless steelof0.80mlengthintegratingSWCtotherootzone.The equa-tionofToppetal.(1980)relatingthevolumetricwatercontentwith themeasuredbulkdielectric constantwasusedsince itproved appropriateforsoilsthatdonot containsubstantialamountsof boundwater,e.g., mostsandyandloamysoils(Robinson etal., 2003).TheSWCwasmeasuredin12stationsperplot; observa-tionswereperformedtoadepthof0.80m.Measurementswere

(7)

Table1

Hopgrowthstagesdates,andrespectivecropheight(h)andfractionofgroundcoverbythecrop(fc),2012–2014seasons.

Cropgrowthstages 2012 2013 2014

Dates h(m) fc Dates h(m) fc Dates h(m) fc

Initiation 22March 0.01 0.01 15April 0.01 0.01 11March 0.05 0.01

Startrapidgrowth 10May 0.10 0.04 19May 0.15 0.05 20April 0.15 0.04

Startmid-season 15July 5.00 0.08 30July 5.50 0.09 10July 6.00 0.08

Startmaturity 15August 6.00 0.08 25August 6.00 0.09 10August 6.00 0.08

Harvesting 11September 6.00 0.08 13September 6.00 0.09 04September 6.00 0.08

Table2

Treatmentsappliedinallseasonsandlocations.Irrigationandrainfalldepths.

Year Location Treatment Numberof

irrigations Irrigation depth(mm) SeasonETo (mm) 2012 Plot1 Rainfed 0 0 578 Plot2 Drip 14 128 2013 Plot1 Drip 15 69 546 Plot2 58 2014 Plot1 Drip 15 148 603 Plot2 141

performedtwodaysafterirrigationtoavoidmeasurementbiasas advisedbyAllenetal.(2011),withatotalof9,11and10 measure-mentsdays,in2012,2013and2014,respectively.SWCdatawere usedforcalibrationandvalidationoftheSIMDualKcmodel.

Duringthe2012season,yieldproductionandqualitywere eval-uatedusingallplantsofthreerowspertreatment.Differently,at harvestsof2013and2014seasonssixplantspertreatmentwere cutoffatgroundlevelandthenumberofbinesandconesperplant wereaccounted.Freshweightofhopconesharvestedinthefull experimentalareawasdetermined,andthenfoursamplesperplant (about250grofhopspersample)weretakenanddriedat55±5◦C untilconstantweightwasobserved.Samplesofdryconeswere ana-lysedbythe‘SociedadAnónimaEspa ˜noladeFomentodeLúpulo´ı’ (SAEFL),inLeón,todeterminethepercentageofalphaand beta-acidsusingthemethod7.7(EBC-EuropeanBreweryConvention, 2010).Adescriptiveanalysisofresultswasapplied,forthedifferent yearsandtreatments,inrelationtoyieldandqualityparameters. 3.2. Modelcalibrationandvalidation

Aspreviously discussed,modelcalibrationallowedadjusting modelparameterstominimizedeviationsbetweensimulatedand observedSWC.SIMDualKcwascalibratedwithdataofPlot 1in 2013,whichwasselectedbecauseithadhighervariabilityofSWC thentheotherdatasets.TheremainingseasonsanddatafromPlot 2in2013wereusedforvalidation.Table3presentsalltheinitial andcalibratedparametervalues.

Thepotential basal cropcoefficients obtainedare similarto thosetabled by Allenetal. (1998); however, Kcbend values are

higher,likelydue tothefact that,inthis study,harvestingwas performed beforesenescence was much developed. Kcb values

reportedby Krofta et al. (2013) are much smaller but authors referredtheoccurrenceof waterstressduringlong dryperiods withinthecropseason;thus,thosevaluesrefertoKcb.actandnot

topotentialKcb.Thesoilwaterdepletionfractionfornostress(p)

valueswerehigherthanthoseproposedbyAllenetal.(1998).This factrelatestocropmanagement,tothevarietyandtotheclimatic demand,whichwasnotveryhighintheGalicianconditions, par-ticularlyatendseason,whenthecalibratedpendwasquitelarger

thanthetabledvalues.Unfortunately,literaturelacksother infor-mationonhopKcborKc,orrelativetothepfraction.Thecalibrated

parametersrelativetosoilevaporation,deeppercolation, ground-watercontributionandrunoffresultedclosetotheinitial/default ones(Table3).

Fig.2.Observedvs.simulatedsoilwatercontentrelativetoallhopexperimental

data(2012–2014).

The“goodnessoffit”indicatorsrelativetomodelcalibrationand validationforallcropseasonsareshowninTable4.Resultsforthe regressioncoefficientb0varyfrom0.99to1.03,thusverycloseto

1.0,indicatingthatpredictedandobservedvalueswerestatistically similarforallcropseasons.Valuesofr2rangedfrom0.72to0.97,

thusindicatingthatmostofthetotalvarianceoftheobserved val-ueswasexplainedbythemodel.Fig.2showstheregressionforced totheoriginbetweenSWCobservationsandsimulations;itrefers toalldatasetsandconfirmsthegoodnessofvaluesobtainedforb0

andr2.

RMSE values are quite low, ranging from 0.012 to 0.015cm3cm−3, thus indicating that errors of estimation were

small,representingonly1.2–1.6%ofTAW.Thesevaluescombined withlowRSRratios(ranging0.10–0.14),thusindicatinglow resid-ualerrors.AAEvaluesrangedbetween0.009and0.011cm3cm−3,

thus being also quite small. ARE values were also very small, rangingfrom3.1to5.0%.ThePBIASwereverylow, indicatinga slightover-estimationbiasinthecalibrationplot(PBIAS=1.5)and aslightlyunder-estimationbiasinplot2duringthesameyear.For 2012,PBIASresultsshowa slightunder-estimationbiasandfor 2014averylowover-estimationbias.Thus,themodeldoesnot showatrendforunderorover-estimationbias.TheNash–Sutcliffe

(8)

Table3

Initialandcalibratedmodelparameters.

Parameter Initialvaluesc Calibratedvalues

Crop KcbHopini 0.15 0.16

KcbHopmid 1.00 1.00

KcbHopend 0.80 0.85

pini 0.50 0.60

pmed 0.50 0.60

pend 0.50 0.70

Soilevaporation TEW(mm) 25 29

REW(mm) 10 9 Ze(m) 0.15 0.12 Deeppercolation aD 400 380 bD −0.0173 −0.0173 Runoff CN 75 72 Groundwater contribution a1 380 380 b1 −0.17 −0.17 a2 305 303 b2 −0.27 −0.27 a3 −1.3 −1.3 b3 6.3 6.0a/6.6b a4 4.2 4.0a/4.4b b4 −0.65 −1.00a/−0.85b

KcbHopini,midandend:basalhopcoefficientforinitial,midandendseason.pini,midandend:soilwaterdepletionfractionfornostressforinitial,midandendseason.TEW:total

evaporablewater;REW:readilyevaporablewater;Ze:depthoftheevaporablelayer;aD:soilwaterstoragevaluecomprisedbetweenFCandSat;bD:<−0.0173forsoils

drainingquicklyandb>−0.0173forsoilswithslowdrainage;CN:curvenumber;a1:FC;a2:1.1(FC+WP)/2.

aPlot1. bPlot2.

c AdaptedfromAllenetal.(1998,2007)andLiuetal.(2006).

Table4

Indicatorsof“goodness-of-fit”relativetomodelcalibrationandvalidation.

b0 r2 RMSE

(cm3cm−3) RSR AAE(cm3cm−3) ARE(%) PBIAS(%) EF

Calibration 2013,plot1 0.99 0.90 0.015 0.14 0.011 4.0 1.5 0.81

Validation 2012,bothplots 1.01 0.73 0.012 0.10 0.010 4.4 -1.9 0.84

2013,plot2 1.03 0.97 0.015 0.12 0.011 5.0 -3.5 0.86

2014,bothplots 0.99 0.72 0.012 0.10 0.009 3.1 0.4 0.81

b0:regressioncoefficient,r2:determinationcoefficient,RMSE:rootmeansquareerror,RSR:RMSE-observationsstandarddeviationratio;AAE:averageabsoluteerror,ARE: absoluterelativeerror,PBIAS:Percentbias;EF:modellingefficiency.

modelefficiencywashighforboththecalibration(EF=0.85)and validation(EF>0.81),whichmeansthattheresidualvariancewas muchsmallerthanthemeasureddatavariance,thusindicatinga goodmodelsimulationperformance.Overall,thegoodnessoffit indicatorsdemonstratetheabilityofthemodeltopredictthesoil watercontentoverawiderangeofobservedvaluesaswellasto predictthetermsofthesoilwaterbalance,includingtheactual evapotranspiration.

3.3. Cropcoefficientcurves

Thehoppotentialbasalcropcoefficientcurves(KcbHoppot)and

actualKcbcurves(KcbHopact),withKcbHopact=KsKcbHoppot,are

pre-sentedinFig.3togetherwiththeevaporationcoefficient(Ke)and

theactivegroundcoverbasalcropcoefficient(Kcbgcover).To

bet-terfollowtheirdynamics,irrigationandprecipitationeventsare alsodepicted.Becauseresultsforbothirrigatedplotsin2013and 2014wereverymuchsimilar,onlytheresultsforPlot1(usedfor calibration)in2013andforPlot2in2014arepresented.

Resultsshowthataslightwaterstressoccurredduringtheinitial cropgrowthstagein2012,withtheKcbHopactcurvelayingbelow

thatofKcbHoppotbutforashortperiodoftimeonly(Fig.3aand

b).Differently,waterstressdidnotoccurin2013and2014inthe initialstage.Resultsfortherain-fedandirrigatedplotsin2012are contrasting.Aheavywaterstresswasobservedintherain-fedplot (Fig.3a)fromtheendofthecropdevelopmentstageuntilharvest, thuswithKcbHopactbelowtheKcbHoppot duringtheentire mid-andlate-seasonstages.Contrastingly,theirrigatedplot(Fig.3b) hasshownonlyamildstressduringthemid-seasonstage.

Com-paringtheirrigatedplotsrelativetothethreecropseasons,itcan beobservedthatonlymildwaterstressoccurred:in2012during themid-season,whichrelatetoaseveredrysummerwhere irri-gationwasinsufficient;in2013,duringthelateseason,duetoa dryautumnperiod;andin2014,duringaveryshortperiodofthe cropdevelopmentstage.Theseresultsindicatethatirrigationwas performedwithparsimony.

HighKevalueswereobservedduringtheinitialandthecrop

developmentstageinresponsetoprecipitationthatoccurred dur-ingtheseperiods.Thisbehaviouris similarforallcropseasons analysed,includingwhencomparingtherain-fedwiththeirrigated plotsin2012(Fig.3).Nevertheless,differencesbetweentheseplots arenoticeableinFig.3aandbduringthemid-andlate-seasonin relationtotheoccurrenceofirrigationevents.Forallcropseasons, it canbeobserved(Fig.3)thattheKepeaksdecrease fromthe

cropdevelopmentstagetothemid-season duetotheincreased groundcover/shadowbyboththehopcropandtheactiveground covervegetationortherespectiveresidueswhenanherbicideis applied.TheKcbgcovervariesamongthethreecropseasonsdueto

differencesinmanagement:in2012(Fig.3aandb)groundcover vegetationwasactiveuntilendJulyandKcbgcoverwasrelatively

high;in2013(Fig.3c)asmallKcbgcoverwasestimatedfrom

mid-June toharvest;in2014(Fig.3d),Kcbgcover wasquitesmallbut

effectsofrelatedresiduesinlimitingKeareobservable.Forall

sea-sons,anon-negligibleandsteadilygrowingKcbgcovercanbenoticed

(Fig.3),thatrelatestothedevelopmentoftherapeseedcropinthe inter-row.

The curves of the potential KcHop, i.e., the sumKcbHop+Ke,

(9)

Fig.3.VariationofKcbHoppot( ),KcbHopact( ),Kcbgcover( ),Ke( ),irrigation( )andprecipitation( )relativeto:(a)Plot1,rain-fed,2012,(b)Plot2,

irrigated,2012,(c)Plot1,irrigated,2013,and(d)Plot2,irrigated,2014.

KcHopmid=1.02 and KcHopend=0.85. These values are similarto

thoseproposedbyAllenetal.(1998)exceptthetabledKcHopinithat

ismuchsmaller.Howeverthoseauthorsrecommendedthattabled Kcinivaluesshouldbereplacedbyvaluescomputedaccordingtothe

soilwettingamounts,frequencyandatmosphericdemand. There-foretheproposedvaluetoKcHopiniisappropriatetotheclimate

conditionsofthestudyarea.Ifactivegroundcoverisadoptedthan theKcvalueshavetobeincreasedby0.05–0.20intheinitialstage,

0.05–0.10duringmid-seasonandupto0.20atend-season depend-ingupontheinter-rowmanagementselected.

The potential basal crop coefficients resulting from this study are the following: KcbHopini=0.16; KcbHopmid=0.97 and

KcbHopend=0.83,whicharesimilartothosetabledbyAllenetal. (1998).These Kc and Kcb values should beusedwithirrigation

schedulingmodels tosupportirrigation management, henceto supporthopgrowerstomanageirrigationwithprecisionandto maximizeyieldandqualityofproduces.Examplesrelativeto appli-cationstocottonandmaizewerereportedrespectivelybyPereira etal.(2009)andParedesetal.(2014).ItisexpectedthatKcHopand

KcbHopvaluesproposedhereinmayalsobeusedasdefault

poten-tialvaluesforotherareas,mainlyinnorthernSpainwhereclimate isnotverydifferent.Nevertheless,KcHop andKcbHopneedtobe

usedwiththeappropriateinformationontheactualdatesofthe phenologicalstages.

3.4. ETpartitioningandsoilwaterbalancecomponents

Theresultsofpartitioning ETcact intoEs, THop and Tcover are

showninFig.4.Resultsshowthattranspirationslightlyincreases fromcropinitiationtothemid-season,whenthemaximum tran-spirationrate,near5mmd−1,wasattainedintheirrigatedplots (Fig.4b–d).Intherain-fedplot,THop valuesaresimilartothose

oftheirrigated plotinthesameyearof 2012but weresmaller fromtheendofthecropdevelopmentstageuntilharvesting(cf. Fig.4aandb).ThemaximumvalueforTHopoftherain-fedcrop

wascloseto4mmd−1andwasachievedearlier,duringthecrop developmentstage,i.e.,beforewaterstressaffectedthecrop.This

mainlyrelateswithlowerwater availabilitywhich caused crop waterstress(Fig.3a).

Groundcovertranspirationvariedwiththemanagementofthe groundcovervegetation(Appendix1).In2012Tcoverwas

increas-ingfromcropinitiation,atendofthewinter,untilthecompetition by the crop reduced its photosynthetic activity when the hop cropdeveloped.AtreatmentbyJulyalsoreduceditsactivityand Tcover becamenullduringlatemid-season untilrapeseed

devel-opedduringlateseason(Fig.4).Differencesbetweentherain-fed andirrigatedplotswereonlynoticeablebythelateseasonwhen waterwasfullyavailablefortheirrigatedplotbutinsufficientfor therain-fed.Differently,in2013thegroundcoverwasactivefrom thecropdevelopmentstageuntilharvestingbutwithasteadily smallTcoverwhilein2014groundcoverwasactivefromthe

mid-seasontoharvest,alsowithsmallTcover.Bytheendoftheseason

andforallyearsTcoversteadilyincreasedduetosowingrapeseedby

theendofmid-season.Thus,Tcoverinfluencedthewateravailability

forthehopcropandthereforedecreasedTHopandEs.

Soilevaporationishighduringtheinitialandcropdevelopment stages,whenmoreenergywasavailableatthesoilsurfacefor evap-oration.Esishighlyinfluencedbythegroundcovervegetationasit

canbenoticedcomparing2012(Fig.4aandb)withthefollowing cropseasonsof2013and2014(Fig.4candd):Eswashigherduring

thereferredperiodsduringtheseyears,whengroundcoverwas notactive(Tcoverwasnull)whileEswassmallerin2012whenan

activegroundcoverwaspresent.Thisinfluenceisalsoevidenced in2013(Fig.4c),fromthecropdevelopmentstageuntilharvesting, whereEswasmuchsmallerthanfor2012and2014.Inaddition,soil

evaporationwasalsoaffectedwhenvegetationresidualswerenot removedfromthefield,thusactingasanorganicmulchtoreduce Es,Thismaybeobservedwheninterpretingthedynamicsofthe

evaporationcoefficientKeobservingtogetherFigs.3and4.

Theseasonalsoilwaterbalancecomponentsofthehop plan-tationforallthreeseasonsarepresentedinTable5.ETcactvaried

between398and568mmwhilethevariationofTHopwassmaller,

from273to371mm.THopwasthemaincomponentofETcact

(10)

Fig.4.Variationofsoilevaporation(Es, ),hoptranspiration(THop, )andgroundcovertranspiration(Tcover, )throughoutthecropseasonfor;(a)Plot1,

rain-fed,2012;(b)Plot2,irrigated,2012;(c)Plot1,irrigated,2013(calibration)and(d)Plot2,irrigated,2014.

Table5

Partitionevapotranspirationandsoilwaterbalancecomponentsforallexperimentalplots(2012–2014).

Treatment P (mm) I (mm) ETo (mm) ETcact (mm) THop (mm) Tcover (mm) Es (mm) SWC (mm) GWC (mm) RO (mm) 2012 Plot1 335 0 578 449 273 79 97 5 125 17 Plot2 128 537 352 84 102 -20 110 17 2013 Plot1 172 69 546 461 324 27 110 86 133 3 Plot2 58 398 273 23 102 58 109 3 2014 Plot1 311 148 603 576 375 15 187 13 101 0 Plot2 141 568 371 15 182 58 56 0

P:precipitation;I:irrigation;ETo:referenceevapotranspiration;ETcact:actualevapotranspiration;THop:croptranspiration;Tcover:covercroptranspiration;Es:soil evapora-tion;SWC:variationinstoredsoilwater;GWC:groundwatercontribution;RO:runoff.

theirrigatedplots,butalowervaluewasobservedintherain-fed plotduetoahightranspirationoftheactivegroundcoverin2012. AmuchlowerTHoppercentage(29%)wasreferredbyUrbanetal.

(2012)likelyduetoabundantrainfallandbaresoilinthe inter-row.Tcoverwashighin2012butduetodifferentmanagementof

thevegetationintheinter-rowdecreasedinthefollowingyears becomingnegligiblein2014whenitwaslessthan3%ofETcact.Soil

evaporationwasanimportantcomponentofETcact,rangingfrom

19to32%,withlowpercentageswhenTcoverwashighin2012and

higherpercentagewhenTcoverwasthelowestin2014.Itcanbe

concludedthatgroundcovermanagementpracticesallowedthat moreenergybecameavailableatsoilsurfaceforevaporationwhen Tcoverwasreduced.

Thelowestprecipitationwasobservedin2013butduetoits gooddistributionalongthecropseasonandtothecapillaryrise froma shallowwatertable,thetotalirrigationdepthwassmall withoutgreatlyaffectingcroptranspirationbutproducingonlya mildstress.Resultsshowthatgroundwatercontribution(GWC) duetocapillaryriseplaysanimportantroleinsupportingETcact

withtheratioGWC/ETcactrangingfrom10%inthePlot2in2014

to29%inPlot1inthedriestseasonof2013.Thatratiowasalso

veryhigh(28%)intherain-fedplotin2012.Thecontributionof thesoilwaterstoredinthesoilbytheendofwinterwasnegligible in2012becausewinterrainsweresmall,andranged13–86mm inthefollowingyears.HigherSWCwasobservedin2013when rainfallduringthecropseasonwaslowerandwinterrainfallwas notlow.ROwasnegligible,representing5and1%ofthe precipi-tationin2012and2013,respectively;thehighervalueobserved in 2012wasdue toa heavy rainof approximately40mmthat occurredwhensoilwaterstoragewashigh.Deeppercolationwas notobserved/simulatedlikelybecauseheavyrainsdidnotoccur duringthestudyseasonsandsurfacedripirrigationmanagement wasappropriate.

3.5. Impactsofhoptranspirationonhopsyieldandquality

Mean of hop cone yield were calculated for all treatments (Table6).In2012,yieldobtainedintherain-fedplot1was37% lowerthanintheirrigatedplot2.In2013and2014allplotswere irrigatedandresultsofplot1and2werecomputedtogether,sothe trendobservedin2012couldnotbefollowed.Toassesstheimpacts ofwateruseonhopconeyieldalinearregressionbetweenyield

(11)

Table6

Yieldandqualityparametersofhopscv.‘Nugget’.

Treatment Drymatterhops (kgha−1) Alpha-acids (%) Beta-acids (%) 2012 Plot1 932.7 13.06 4.11 Plot2 1486.0 12.66 4.06 2013 Plot1 869.3 12.83 4.05 Plot2 2014 Plot1 1639.1 12.70 4.60 Plot2

Fig.5. Linearregressionbetweenyield(drymatterhops)andhoptranspiration (THop).Filledpointsrepresentedirrigatedexperiment;emptypointrepresented rain-feddata.Errorbarsrepresentedstandarddeviation.

andhoptranspirationwasapplied.Itresultedapositiveregression coefficientandahighcoefficientofdeterminationr2=0.92(Fig.5).

Theseresultsshowthattranspirationfavourshopsyield.Svoboda etal.(2008)andDelahuntyetal.(2011)reportedanincreaseabout yielddue toirrigation.Mozny et al.(2009) referred thatyields increasedunder rainfedconditions when summerprecipitation washigher,andNakawuka(2013)referredpositivetrendsrelative toevapotranspiration.However,norelationswithtranspirationare reportedintheliterature.

Averageobservedvaluesofthealphaandbeta-acidscontent aregivenin Table6.Alpha-acidsobservedin thecurrentstudy weresimilartoaveragevaluesreportedbyOlmedoetal.(2009) atthesamelocation.LinearregressionsrelatingTHopand

alpha-acids,beta-acidsandtheratiobetweenalphaandbeta-acidshave shownregressioncoefficientsnotsignificantlydifferentfromzero. Thisbehaviourcouldbeexpectedknowingthattheacidscontents relatemostlywiththecultivarunlessthatahighdifferentiationof temperatureandwateravailabilitycouldhavebeenimposed,what wasnotthecase.Nakawuka(2013)reportedthatnosignificant differenceswerefoundrelativetocontentofalpha-acidsbetween irrigationtreatments.Avariationofalpha-acidscouldbeexpected inrelationtothetemperaturepatternattheendofthecycle,when alpha-acidssynthesisismoreintense;however,temperatureby thenwasnotverydifferentforthethreeyearsofstudyand irri-gationapplieduntiltheendoftheseasonwasenoughtodonot producestressbythen.Wangetal.(2008)describedthat accumula-tionofalpha-acidsasmostintensiveinthirdandfourthweekafter

hopflowering.Sreˇcecetal.(2008)foundasignificantdecreaseof alpha-acidswhentheclimaticdemandforwaterattheflowering andconeformation stagewasveryhighandrainfallwas insuf-ficient.Differently,Benítezetal.(1998)reportedanon-response toclimaticdata.Thereporteddifferentialeffectsoftemperature andwateravailabilitymightberelatedtothetimepointsofthe differentphenologicalstagesasthedescribedeffectsof tempera-ture(negativeeffect)andwatersupply(positiveeffect)aremost relevantduringflowering,coneformationandearlyripening,i.e., beforethestrongestaccumulationofalpha-acids.Ingeneral,results ontrendsofalpha-acidsshoweddifferencesinrelationwith culti-var,locationandclimateconditions,mainlyfromvegetativestages untilearlyripeningstages(Sreˇcecetal.,2008,2013;Pavlovicetal., 2012,2013;Potop,2014).

Severalmetabolicpathwaysareinvolvedinthebiosynthesisof alphaandbeta-acids(ZanoliandZavatti,2008).Itisoften consid-eredthat,duringthebiosynthesisofthebittersubstancesincones, firstasurplusofthebeta-acidscomparedtothealpha-acidsmay occur(Goeseetal.,1999).Subsequently,beta-acidsconvertinto alpha-acids,oraredegradedbyoxidation,andtheratioalpha-beta acidsthenincreases.Ifincreaseoftranspirationdoesnotpromote thesynthesisofalpha-acids,itmayhappenthatbeta-acids accu-mulateandthenapositivecorrelationappears.However,excluding therain-fedtreatment,sincenowaterorheatstressoccurred,a bal-ancebetweenalphaandbeta-acidswasobservedthatresultedina stableconcentrationofbitteracidsinthethreeyearsofstudysince thatconcentrationismainlydependentonthecultivar,inabsence ofextremeclimateconditions(Cehˇ etal.,2007).Nakawuka(2013) alsoreportedthatnosignificantdifferenceswerefoundrelativeto contentofbeta-acids.

4. Conclusions

TheSIMDualKcmodelperformedwellindetermininghop tran-spirationandthesoilwaterbalancecomponentsofH.lupulusL. cv.‘Nugget’croppedinGalicia,namelysoilevaporation, ground-watercontribution,deeppercolation andrunoff. THop represent

92%ofETcactduringthemid-season,andEswas69%ofETcact

dur-ingtheinitialstage.Calibratedparameters,particularlybasalcrop coefficients,depletionfractionfornostressandsoilevaporation parametersmaywellbeusedasdefaultparametersforoperational applicationsofthemodelwhentobeusedtosupportirrigation managementorforplanningpurposes.

AlinearregressionbetweenTHopanddryyieldcone(r2=0.92)

hasshownthatyieldincreaseswhencropandirrigation manage-mentfavourcroptranspiration.Differently,thelinearregressions betweenTHopandtheconcentrationsofalpha-acidsandbeta-acids

hadregression coefficients notsignificantlydifferentfromzero. Thisresultmeansthattheappliedirrigationmanagementdidnot influencethesynthesisofthebitteracids,whichiscultivar depen-dentbutcouldbemodifiedifstresshadoccurred.Thus,itcould beconcludedthatirrigationmanagementappliedwasappropriate intermsofthequalityofthehopconesproduced.Nevertheless, it isdesirable todevelopfurtherresearchusing different treat-mentswhichcouldinducedifferentresponsesofthecropinterms ofqualityandthatcouldconfirmthehopyieldresponsestowater. Acknowledgements

Thisresearchwas funded bytheenterprise ‘Hijosde Rivera InversionesCorporativas,S.L.’(EstrelladeGaliciabeer)(CN-12-045), EuropeanAgriculturalFundforRuralDevelopment(EAFRD),No. 2012/34,throughConselleríadoMedioRuraledoMar—Xuntade Galicia.Firstauthorthanksto‘LEAF-Landscape,Environment, Agri-cultureandFood(ISA-Univ.Lisbon)fortheinvitationtodevelopa stayresearch.

(12)

Appendix1.

Fraction,densityandheightoftheactivegroundcover,before andaftereachgroundcovermanagementoperationforallseasons.

Date Location fgcover Density hgcover

Before After Before After Before After

2012

InitialConditions Row 40 40 15 15 0.05 0.05

(22-March) Inter-row 37 37 25 25 0.05 0.05 10-May Row 80 80 30 30 0.10 0.10 10-May Inter-row 75 75 50 50 0.10 0.10 27-June Row 65 65 50 50 0.20 0.20 24-July Inter-row-sowing 0 0 0 0 0.00 0.00 26-July Row 65 65 30 30 0.25 0.25 03-August Row-herbicide* 65 0 30 0 0.30 0.00 23-August Inter-row 85 85 1 1 0.01 0.01 02-September Inter-row 85 85 15 15 0.03 0.03 06-September Inter-row 85 85 20 20 0.05 0.05

Finalconditions Row 0 0 0 0 0.00 0.00

(11-September) Inter-row 85 85 35 35 0.10 0.10

2013

Initialconditions Row 0 0 0 0 0.00 0.00

(15-April) Inter-row 30 30 30 30 0.02 0.02 24-April Inter-row 30 0 60 0 0.05 0.00 31-May Row 0 10 0 10 0.00 0.01 07-June Row 10 10 10 10 0.02 0.02 14-June Row 20 20 20 20 0.05 0.05 28-June Row 85 85 70 70 0.25 0.25 31-July Inter-row-sowing 0 0 0 0 0.00 0.00 31-July Row 85 85 70 70 0.40 0.40 18-August Row-herbicide* 40 0 35 0 0.40 0.00 22-August Inter-row 85 85 5 5 0.01 0.01 27-August Inter-row 85 85 10 10 0.02 0.02

Finalconditions Row 0 0 0 0 0.00 0.00

(13-September) Inter-row 85 85 35 35 0.15 0.15

2014

Initialconditions Row 0 0 0 0 0.00 0.00

(11-March) Inter-row 0 0 0 0 0.00 0.00 10-June Row 0 10 0 10 0.00 0.00 17-June Row 15 15 15 15 0.02 0.02 26-June Row 15 15 20 20 0.02 0.02 02-July Row 20 20 20 20 0.03 0.03 09-July Row 33 33 20 20 0.05 0.05 09-July Inter-row 0 0 0 0 0.00 0.00 17-July Inter-row 40 40 20 20 0.05 0.05 17-July Row 33 33 40 40 0.10 0.10 21-July Row 40 40 50 50 0.10 0.10

21-July Inter-row-ploughed 50 0 40 0 0.15 0.00

29-July Row-herbicide* 40 0 50 0 0.15 0.00

29-July Inter-row-sowing 0 0 0 0 0.00 0.00

15-August Row* 40 0 30 0 0.15 0.00

26-August Inter-row 85 85 15 15 0.05 0.05

Finalconditions Row 0 0 0 0 0.00 0.00

(04-September) Inter-row 85 85 25 25 0.10 0.10

fgcover:fractionofthegreenactivegroundcover;hgcover:heightofthegreenactivegroundcover *Turnstomulch.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.indcrop.2015.08. 042.

References

Abram,V., ˇCeh,B.,Vidmar,M.,Hercezi,M.,Lazi ´c,N.,Bucik,V.,Mozina,S.S.,Kosirb,

I.J.,Kaca,M.,Demsar,L.,Ulrih,N.P.,2015.Acomparisonofantioxidantand

antimicrobialactivitybetweenhopleavesandhopcones.Ind.CropsProd.64, 124–134.

Allen,R.G.,Pereira,L.S.,2009.Estimatingcropcoefficientsfromfractionofground

coverandheight.Irrig.Sci.28,17–34.

Allen,R.G.,Pereira,L.S.,Raes,D.,Smith,M.,1998.CropEvapotranspiration.

GuidelinesforComputingCropWaterRequirements.FAOIrrigationand DrainagePaper56,FAO,Rome,Italy,pp.300.

Allen,R.G.,Pereira,L.S.,Smith,M.,Raes,D.,Wright,J.L.,2005.FAO-56dualcrop

coefficientmethodforestimatingevaporationfromsoilandapplication extensions.J.Irrig.Drain.Eng.131,2–13.

Allen,R.G.,Wright,J.L.,Pruitt,W.O.,Pereira,L.S.,2007.Waterrequirements.In:

Hoffman,G.J.,Evans,R.G.,Jensen,M.E.,Martin,D.L.,Elliot,R.L.(Eds.),Design andOperationofFarmIrrigationSystems.,2ndedn.ASABEMonograph,St. Joseph,MI,pp.208–288.

Allen,R.G.,Pereira,L.S.,Howell,T.A.,Jensen,M.E.,2011.Evapotranspiration

informationreporting:I.Factorsgoverningmeasurementaccuracy.Agric. WaterManage.98(6),899–920.

Bárek,V.,Halaj,P.,Igaz,D.,2009.Theinfluenceofclimatechangeonwater

demandsforirrigationofspecialplantsandvegetablesinSlovakia.In: Strelcová,K.(Ed.),BioclimatologyandNaturalHazards.Springer,Netherlands, pp.271–282.

(13)

Bavec,F.,Breˇznik,B.C.,Breˇznik,M.,2003.Hopyieldevaluationdependingon experimentalplotareaunderdifferentnitrogenmanagement.PlantSoil Environ.49(4),163–167.

Benítez,J.L.,Magadán,J.A.,GdelValle,M.D.,Santamarta,I.,1998.Estudiodela

influenciadelascondicionesmeteorológicasenlaproduccióndealfaácidosen laprovinciadeLeón.CervezayMaltaXXXV140(4),20–22.

Briggs,D.E.,Boulton,C.A.,Brookes,P.A.,Stevens,R.,2000.BrewingScienceand

Practice.WoodheadPublishingLimited,Cambridge.

Cameira,M.R.,Fernando,R.M.,Ahuja,L.,Pereira,L.S.,2005.Simulatingthefateof

waterinfieldsoil-cropenvironment.J.Hydrol.315,1–24.

Cammalleri,C.,Rallo,G.,Agnese,C.,Ciraolo,G.,Minacapilli,M.,Provenzano,G.,

2013.Combineduseofeddycovarianceandsapflowtechniquesforpartition

ofETfluxesandwaterstressassessmentinanirrigatedoliveorchard.Agric. WaterManage.120,89–97.

Cancela,J.J.,Fandi ˜no,M.,Rey,B.,Martínez,E.,2015.Automaticirrigationsystem

basedondualcropcoefficient,soilandplantwaterstatusforVitisvinifera(cv GodelloandcvMencía).Agric.WaterManage.151,52–63.

ˇ

Ceh,B.,Kaˇc,M.,Koˇsir,J.I.,Abram,V.,2007.Relationshipsbetweenxanthohumol

andpolyphenolcontentinhopleavesandhopconeswithregardtowater supplyandcultivar.Int.J.Mol.Sci.8,989–1000.

Centinari,M.,Poni,S.,Intrigliolo,D.S.,Dragoni,D.,Lakso,A.N.,2012.Covercrop

evapotranspirationinanortheasternUSConcord(Vitislabruscana)vineyard. Aust.J.GrapeWineRes.18,73–79.

Delahunty,K.,Johnston,J.,Westfield,M.E.,2011.AnExperimentonthe

EffectivenessofIrrigationandCoverCroppingtoProduceSustainableHopsin Maine.USDANortheastSAREFinalReport:FNE11–711.

Ding,R.,Kang,S.,Zhang,Y.,Hao,X.,Tong,L.,Du,T.,2013.Partitioning

evapotranspirationintosoilevaporationandtranspirationusingamodified dualcropcoefficientmodelinirrigatedmaizefieldwithground-mulching. Agric.WaterManage.127,85–96.

EBC-EuropeanBreweryConvention,2010.Analytica-EBC.Section7HopsMethod

7.7␣-and␤-acidsinHopandHopProductsbyHPLC.EBCMethodsofAnalysis. FachverlagHansCarl,Nürnberg,Germany.

Engelhard,B.,2004.Theimpactofweatherconditionsonthebehaviourof

powderymildewininfectinghop(Humulus).In:IInternationalHumulus Symposium.ActaHortic.668,111–116.

Fandi ˜no,M.,Cancela,J.J.,Rey,B.J.,Martínez,E.M.,Rosa,R.G.,Pereira,L.S.,2012.

Usingthedual-kcapproachtomodelevapotranspirationofalbari ˜novineyards (NorthwestSpain)withconsiderationofactivegroundcover.Agric.Water Manage112,75–87.

Forkutsa,I.,Sommer,R.,Shirokova,Y.I.,Lamers,J.P.A.,Kienzler,K.,Tischbein,B.,

Martius,C.,Vlek,P.L.G.,2009.Modelingirrigatedcottonwithshallow

groundwaterintheAralSeaBasinofUzbekistan:I.Waterdynamics.Irrig.Sci. 27,331–346.

Gloser,V.,Baláˇz,M.,Jupa,R.,Korovetska,H.,Svoboda,P.,2013.Theresponseof

Humuluslupulustodrought:thecontributionofstructuralandfunctionalplant traits.In:IIIInternationalHumulusSymposium.ActaHortic.1010,149–154.

Goese,M.,Kammhuber,K.,Bacher,A.,Zenk,M.H.,Eisenreich,W.,1999.

Biosynthesisofbitteracidsinhops.Eur.J.Biochem.263,447–454.

González,M.G.,Ramos,T.B.,Carlesso,R.,Paredes,P.,Petry,M.T.,Martins,J.D.,Aires,

N.P.,Pereira,L.S.,2015.Modellingsoilwaterdynamicsoffullanddeficitdrip

irrigatedmaizecultivatedunderarainshelter.Biosyst.Eng.132,1–18.

Grünberger,O.,Michelot,J.L.,Bouchaou,L.,Macaigne,P.,Hsissou,Y.,Hammecker,

C.,2011.Capillaryrisequantificationsbasedonin-situartificialdeuterium

peakdisplacementandlaboratorysoilcharacterization.Hydrol.EarthSyst.Sci. 15,1629–1639.

Hniliˇcková,H.,Hniliˇcka,F.,Svoboda,P.,Koˇren,J.,2009.Theimpactofwaterdeficit

onselectedphysiologicalcharacteristicsofjuvenilehopplants(Humulus lupulusL.).CerealRes.Commun.37,301–304.

Keukeleire,J.,deJanssens,I.,Heyerick,A.,Ghekiere,G.,Cambie,J.,Roldan-Ruiz,I.,

VanBockstaele,E.,DeKeukeleire,D.,2007.Relevanceoforganicfarmingand

effectofclimatologicalconditionsontheformationofalpha-acids,beta-acids, desmethylxanthohumol,andxanthohumolinhop(HumuluslupulusL.).J.Agric. FoodChem.55(1),61–66.

Kool,D.,Agam,N.,Lazarovitch,N.,Heitman,J.L.,Sauer,T.J.,Ben-Gal,A.,2014.A

reviewofapproachesforevapotranspirationpartitioning.Agric.For.Meteorol. 184,56–70.

Koˇren,J.,2007.Influenceofplantationrowspacingonqualityandyieldofhops.

PlantSoilEnviron.53(6),276–282.

Kottek,M.,Grieser,J.,Beck,C.,Rudolf,B.,Rubel,F.,2006.Worldmapofthe

Köppen–Geigerclimateclassificationupdated.Meteorol.Z.15(3),259–263.

Krofta,K.,Kuˇcera,J.,Urban,J.,2013.Transpiration—animportantcontributionto

overallwaterbalanceofthehopplantation.In:IIIInternationalHumulus Symposium.ActaHortic.1010,183–190.

Kuˇcera,J.,Krofta,K.,2009.Mathematicalmodelforpredictionofyieldandalpha

acidcontentsfrommeteorologicaldataforsaazaromavariety.ActaHortic. 848,131–139.

Liu,Y.,Pereira,L.S.,Fernando,R.M.,2006.Fluxesthroughthebottomboundaryof

therootzoneinsiltysoils:parametricapproachestoestimategroundwater contributionandpercolation.Agric.WaterManage.84,27–40.

Luo,Y.,Sophocleous,M.,2010.Seasonalgroundwatercontributiontocrop-water

useassessedwithlysimeterobservationsandmodelsimulations.J.Hydrol. 389,325–335.

Luo,Y.,He,C.,Sophocleous,M.,Yin,Z.,Ren,H.,Zhu,O.,2008.Assessmentofcrop

growthandsoilwatermodulesinSWAT2000usingextensivefieldexperiment datainanirrigationdistrictoftheYellowRiverBasin.J.Hydrol.352,139–156.

Ma,Y.,Feng,S.,Song,X.,2013.Arootzonemodelforestimatingsoilwaterbalance

andcropyieldresponsestodeficitirrigationintheNorthChinaPlain.Agric. WaterManage.127,13–24.

Martins,J.D.,Rodrigues,G.C.,Paredes,P.,Carlesso,R.,Oliveira,Z.B.,Knies,A.E.,

Petry,M.T.,Pereira,L.S.,2013.DualcropcoefficientsformaizeinSouthern

Brazil:modeltestingforsprinkleranddripirrigationandmulchedsoil. Biosyst.Eng.115(3),291–310.

Moir,M.,2000.Hops—amilleniumreview.J.Am.Soc.Brew.Chem.58(4),131–146.

Moriasi,D.N.,Arnold,J.G.,VanLiew,M.W.,Bingner,R.L.,Harmel,R.D.,Veith,T.L.,

2007.Modelevaluationguidelinesforsystematicquantificationofaccuracyin

watershedsimulations.T.ASABE50,885–900.

Mozny,M.,Tolasz,R.,Nekovar,J.,Sparks,T.,Trnka,M.,Zalud,Z.,2009.Theimpact

ofclimatechangeontheyieldandqualityofSaazhopsintheCzechRepublic. Agric.ForestMeteorol.149,913–919.

Nakawuka,P.,2013.EffectofDeficitIrrigationonYield,QualityandGrower

ReturnsofNativeSpearmintandHopsinWashingtonState.Doctoral Dissertation.WashingtonStateUniversity.

Nash,J.E.,Sutcliffe,J.V.,1970.Riverflowforecastingthroughconceptualmodels:

part1.Adiscussionofprinciples.J.Hydrol.10(3),282–290.

Olmedo,J.L.,2011.RecuperacióndelcultivodelLúpuloenGalicia.CervezayMalta

XLVIII192(4),51–58.

Olmedo,J.L.,Valladares,J.,Fernández,J.,Pi ˜neiro,J.,2009.Recoveringhop

cultivationinGalicia(NWSpain).In:In:InternationalHopGrowers‘ Convention(I.H.G.C.)ProceedingsoftheScientificCommission,León,Spain,p. p117.

Pac¸o,T.A.,Ferreira,M.I.,Rosa,R.D.,Paredes,P.,Rodrigues,G.C.,Conceic¸ão,N.,

Pacheco,C.A.,Pereira,L.S.,2012.Thedualcropcoefficientapproachusinga

densityfactortosimulatetheevapotranspirationofapeachorchard: SIMDualKcmodelversuseddycovariancemeasurements.Irrig.Sci.30(2), 115–126.

Pac¸o,T.A.,Pôc¸as,I.,Cunha,M.,Silvestre,J.C.,Santos,F.L.,Paredes,P.,Pereira,L.S.,

2014.Evapotranspirationandcropcoefficientsforasuperintensiveolive

orchard.AnapplicationofSIMDualKcandMETRICmodelsusinggroundand satelliteobservations.J.Hydrol.519,2067–2080.

Paredes,P.,Rodrigues,G.C.,Alves,I.,Pereira,L.S.,2014.Partitioning

evapotranspiration,yieldpredictionandeconomicreturnsofmaizeunder variousirrigationmanagementstrategies.Agric.WaterManage.135,27–39.

Pavlovic,V.,Pavlovic,M.,Cerenak,A.,Kosir,I.J.,Ceh,B.,Rozman,C.,Turk,J.,Pazek,

K.,Krofta,K.,Gregoric,G.,2012.Environmentandweatherinfluenceonquality

andmarketvalueofhops.PlantSoilEnviron.58(4),155–160.

Pavlovic,M.,Pavlovic,V.,Rozman,C.,Udovc,A.,Stajnko,D.,Wang,D.,Gavric,M.,

Srecec,S.,2013.Marketvalueassessmentofhopsbymodelingofweather

attributes.PlantSoilEnviron.59(6),267–272.

Pereira,L.S.,Paredes,P.,Cholpankulov,E.D.,Inchenkova,O.P.,Teodoro,P.R.,Horst,

M.G.,2009.Irrigationschedulingstrategiesforcottontocopewithwater

scarcityintheFerganaValley,CentralAsia.Agric.WaterManage.96,723–735.

Pereira,L.S.,Paredes,P.,Rodrigues,G.C.,Neves,M.,2015.Modelingmaltbarley

wateruseandevapotranspirationpartitioningintwocontrastingrainfall years.AssessingAquaCropandSIMDualKcmodels.Agric.WaterManage.159, 239–254.

Potop,V.,2014.TheimpactofdryandweteventsonthequalityandyieldofSaaz

hopsintheCzechhopgrowingregions.In:Roˇznovsk ´y,J.,Litschmann,T.,(eds):

Mendelabioklimatologie.ISBN978-80-210-6983-1.

Raes,D.,Geerts,S.,Kipkorir,E.,Wellens,J.,Sahli,A.,2006.Simulationofyield

declineasaresultofwaterstresswitharobustsoilwaterbalancemodel. Agric.WaterManage.81(3),335–357.

Ramos,T.B., ˇSim ˚unek,J.,Gonc¸alves,M.C.,Martins,J.C.,Prazeres,A.,Pereira,L.S.,

2012.Two-dimensionalmodelingofwaterandnitrogenfatefromsweet

sorghumirrigatedwithfreshandblendedsalinewaters.Agric.WaterManage. 111,87–104.

Ritchie,J.T.,1972.Modelforpredictingevaporationfromarowcropwith

incompletecover.WaterResour.Res.8,1204–1213.

Robinson,D.A.,Jones,S.B.,Wraith,J.M.,Or,D.,Friedman,S.P.,2003.Areviewof

advancesindielectricandelectricalconductivitymeasurementinsoilsusing timedomainreflectometry.VadoseZoneJ.2,444–475.

Rosa,R.D.,Paredes,P.,Rodrigues,G.C.,Alves,I.,Fernando,R.M.,Pereira,L.S.,Allen,

R.G.,2012a.Implementingthedualcropcoefficientapproachininteractive

software.1.Backgroundandcomputationalstrategy.Agric.WaterManage. 103,8–24.

Rosa,R.D.,Paredes,P.,Rodrigues,G.C.,Fernando,R.M.,Alves,I.,Pereira,L.S.,Allen,

R.G.,2012b.Implementingthedualcropcoefficientapproachininteractive

software.2.Modeltesting.Agric.WaterManage.103,62–77.

Rossbauer,G.,Buhr,L.,Hack,H.,Hauptmann,S.,Klose,R.,Meier,U.,Stauss,R.,

Weber,E.,1995.PhänologischeentwicklungsstadienvonKultur-Hopfen

(HumuluslupulusL.).Nachrichtenbl.Deut.Pflanzenschutzd.47(10), 249–253.

Rothfuss,Y.,Biron,P.,Braud,I.,Canale,L.,Durand,J.-L.,Gaudet,J.-P.,Richard,P.,

Vauclin,M.,Bariac,T.,2010.Partitioningevapotranspirationfluxesintosoil

evaporationandplanttranspirationusingwaterstableisotopesunder controlledconditions.Hydrol.Process.24,3177–3194.

Schönberger,C.,Kostelecky,T.,2011.125thanniversaryreview:theroleofhopsin

brewing.J.Inst.Brew.117(3),259–267.

Souto,F.J.,Dafonte,J.,Escariz,M.,2008.Designandair–watercalibrationofa

waveguideconnectorforTDRmeasurementsofsoilelectricpermittivityin stonysoils.Biosyst.Eng.101(4),463–471.

(14)

Sreˇcec,S.,Kvaternjak,I.,Kauˇci ´c,D.,Mari ´c,V.,2004.Dynamicsofhopgrowthand accumulationof␣–acidsinnormalandextremeclimaticconditions.Agric. Conspec.Sci.69(2–3),59–62.

Sreˇcec,S.,Kvaternjak,I.,Kauˇcic,D., ˇSpoljar,A.,Erhati ´c,R.,2008.Influenceof

climaticconditionsonaccumulationofalpha-acidsinhopcones.Agric. Conspec.Sci.73,161–166.

Sreˇcec,S., ˇCeh,B.,Ciler,T.S.,Ferleˇz,A.R.,2013.Empiricmathematicalmodelfor

predictingthecontentofalpha-acidsinhop(HumuluslupulusL.)cv.Aurora.

SpringerPlus,2,59.

Steenackers,B.,DeCooman,L.,DeVos,D.,2015.Chemicaltransformationsof

characteristichopsecondarymetabolitesinrelationtobeerpropertiesandthe brewingprocess:areview.FoodChem.172,742–756.

Sutanto,S.J.,Wenninger,J.,Coenders-Gerrits,A.M.J.,Uhlenbrook,S.,2012.

Partitioningofevaporationintotranspiration,soilevaporationand

interception:acomparisonbetweenisotopemeasurementsandaHYDRUS-1D model.Hydrol.EarthSyst.Sci.16,2605–2616.

Svoboda,P.,Hniliˇcková,H.,Hniliˇcka,F.,2008.Changesinyieldandqualityofhop

dependingontheirrigation.CerealRes.Commun.36,891–894.

Topp,G.C.,Davis,J.L.,Annan,A.P.,1980.Electromagneticdeterminationofsoil

watercontent:measurementincoaxialtransmissionlines.WaterResour.Res. 16,574–582.

Urban,J.,Krofta,K.,Kuˇcera,J.,2012.Calibrationofstemheatbalancesensorsupon

astudyofwaterbalanceofthehopplantation.In:VIIIInternational SymposiumonSapFlow.ActaHortic.951,79–86.

USDA-SCS,1972,NationalEngineeringHandbook,Section4,Washington,D.C.

Verzele,M.,1986.100yearsofhopchemistryanditsrelevancetobrewing.J.Inst.

Brew.92,33–48.

Wample,R.L.,Farrar,S.L.,1983.Yieldandqualityoffurrowandtrickleirrigated

hop(HumuluslupulusL.)inWashingtonstate.Agric.WaterManage.7, 457–470.

Wang,G.,Tian,L.,Aziz,N.,Broun,P.,Dai,X.,He,J.,King,A.,Zhao,P.X.,Dixon,R.A.,

2008.Terpenebiosynthesisinglandulartrichomesofhop.PlantPhysiol.148,

1254–1266.

Wang,X.,Williams,J.R.,Gassman,P.W.,Baffaut,C.,Izaurralde,R.C.,Jeong,J.,Kiniry,

J.R.,2012.EPICandAPEX:modelusecalibrationandvalidation.Trans.ASABE

55,1447–1462.

Wei,Z.,Paredes,P.,Liu,Y.,Chi,W.W.,Pereira,L.S.,2015.Modellingtranspiration,

soilevaporationandyieldpredictionofsoybeaninNorthChinaPlain.Agric. WaterManage.147,43–53.

Williams,D.G.,Cable,W.,Hultine,K.,Hoedjes,J.C.B.,Yepez,E.A.,Simonneaux,V.,

Er-Raki,S.,Boulet,G.,deBruin,H.A.R.,Chehbouni,A.,Hartogensis,O.K.,Timouk,

F.,2004.Evapotranspirationcomponentsdeterminedbystableisotope,sap

flowandeddycovariancetechniques.Agric.ForestMeteorol.125,241–258.

Wu,Y.,Liu,T.,Paredes,P.,Duan,L.,Pereira,L.S.,2015.Waterusebyagroundwater

dependentmaizeinasemi-aridregionofInnerMongolia:evapotranspiration partitioningandcapillaryrise.Agric.WaterManage.152,222–232.

YakimaChief,2013.HopVarietalGuide.http://www.uvm.edu/extension/cropsoil/

wp-content/uploads/Hop-Varietal-Guide-2013pdf

Zanoli,P.,Zavatti,M.,2008.Pharmacognosticandpharmacologicalprofileof

HumuluslupulusL.J.Ethnopharmacol.116,383–396.

Zhang,B.,Liu,Y.,Xu,D.,Zhao,N.,Lei,B.,Rosa,R.D.,Paredes,P.,Pac¸o,T.,Pereira,L.S.,

2013.Thedualcropcoefficientapproachtoestimateandpartitioning

evapotranspirationofthewinterwheat-summermaizecropsequencein NorthChinaPlain.Irrig.Sci.31(6),1303–1316.

Zhao,N.N.,Liu,Y.,Cai,J.B.,Rosa,R.,Paredes,P.,Pereira,L.S.,2013.Dualcrop

coefficientmodellingappliedtothewinterwheat-summermaizecrop sequenceinNorthChinaPlain:basalcropcoefficientsandsoilevaporation component.Agric.WaterManage.117,93–105.

Imagem

Fig. 1. Total daily precipitation ( ) and reference evapotranspiration ( ) in the experimental area: (a) 2012, (b) 2013 and (c) 2014.
Fig. 2. Observed vs. simulated soil water content relative to all hop experimental data (2012–2014).
Fig. 3. Variation of K cb Hop pot ( ), K cb Hop act ( ), K cb gcover ( ), K e ( ), irrigation ( ) and precipitation ( ) relative to: (a) Plot 1, rain-fed, 2012, (b) Plot 2, irrigated, 2012, (c) Plot 1, irrigated, 2013, and (d) Plot 2, irrigated, 2014.
Fig. 4. Variation of soil evaporation (E s , ), hop transpiration (T Hop , ) and ground cover transpiration (T cover , ) throughout the crop season for; (a) Plot 1, rain-fed, 2012; (b) Plot 2, irrigated, 2012; (c) Plot 1, irrigated, 2013 (calibration) and

Referências

Documentos relacionados

Dentro do conceito de marketing de relacionamento surge um termo chamado CRM (Customer Relationship Management) que tem como finalidade a gestão do relacionamento

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

Y éstas han sido todas las actividades presentadas y trabajadas en el taller supramencionado; por algunas tuvimos que pasar “en volandas” debido a la escasez de tiempo destinado a

Eu me assusto porque o Programa de Saúde da Família não está bem estruturado ainda para colocar um aluno que está em formação terminal, dentro de uma equipe em que o médico não

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

As cinco categorias mais importantes e que definem a revista feminina focam-se no Estilo, onde a moda e as últimas tendências desde a roupa a acessórios são abordados; a

FIGURA 5 - FLUTUAÇÃO POPULACIONAL DE Hypothenemus eruditus, Sampsonius dampfi e Xyleborus affinis (SCOLYTINAE, CURCULIONIDAE) COLETADOS COM ARMADILHAS ETANÓLICAS (25%)

Em sua pesquisa sobre a história da imprensa social no Brasil, por exemplo, apesar de deixar claro que “sua investigação está distante de ser um trabalho completo”, ele