• Nenhum resultado encontrado

Multiplicity Dependence Of Charged Pion, Kaon, And (anti)proton Production At Large Transverse Momentum In P-pb Collisions Root S-nn=5.02 Tev

N/A
N/A
Protected

Academic year: 2021

Share "Multiplicity Dependence Of Charged Pion, Kaon, And (anti)proton Production At Large Transverse Momentum In P-pb Collisions Root S-nn=5.02 Tev"

Copied!
17
0
0

Texto

(1)

SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://www.sciencedirect.com/science/article/pii/S0370269316303914

DOI: 10.1016/j.physletb.2016.07.050

Direitos autorais / Publisher's copyright statement:

©2016 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo

CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

(2)

Multiplicity

dependence

of

charged

pion,

kaon,

and

(anti)proton

production

at

large

transverse

momentum

in

p–Pb

collisions

at

s

NN

=

5

.

02 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received16January2016

Receivedinrevisedform13July2016 Accepted20July2016

Availableonline22July2016 Editor:L.Rolandi

The productionofchargedpions,kaonsand(anti)protons hasbeenmeasuredatmid-rapidity(−0.5< y<0) inp–Pbcollisions at√sNN=5.02 TeV usingthe ALICEdetector atthe LHC. Exploitingparticle

identification capabilitiesathightransversemomentum(pT),thepreviouslypublished pTspectrahave

been extended toinclude measurements upto 20 GeV/c forseven event multiplicity classes.The pT

spectraforppcollisionsat√s=7 TeV,neededtointerpolateappreferencespectrum,havealsobeen extendedupto20 GeV/c tomeasurethenuclearmodificationfactor(RpPb)innon-singlediffractivep–Pb

collisions.

At intermediate transverse momentum (2<pT<10 GeV/c) the proton-to-pion ratio increases with

multiplicityinp–Pbcollisions,asimilareffectisnotpresentinthekaon-to-pionratio.ThepTdependent

structure ofsuchincreaseisqualitatively similar tothoseobserved inppandheavy-ion collisions.At high pT(>10 GeV/c),theparticleratiosareconsistentwiththosereportedforppandPb–Pbcollisions

attheLHCenergies.

AtintermediatepTthe(anti)protonRpPbshowsaCronin-likeenhancement,whilepionsandkaonsshow

littleornonuclearmodification.AthighpTthechargedpion,kaonand(anti)protonRpPb areconsistent

withunitywithinstatisticalandsystematicuncertainties.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In heavy-ion collisions at ultra-relativistic energies, it is well establishedthatastronglycoupledQuark–Gluon-Plasma(sQGP)is formed[1–5].Someofthecharacteristicfeatures ofthesQGPare strongcollectiveflowandopacitytojets.Thecollectivebehavioris observedbothasanazimuthalanisotropyofproducedparticles[6], wherethemagnitudeisdescribed byalmostideal(reversible) hy-drodynamics,andasahardeningofpTspectraforheavierhadrons,

such as protons,by radial flow [7].Jet quenchingis observed as a reduction of both high pT particles [8,9] and also fully

recon-structedjets[10].TheinterpretationofthesesQGP properties re-quirescomparisonswithreferencemeasurementslikeppandp–A collisions. Recentmeasurements in highmultiplicity pp,p–A and d–Acollisions atdifferentenergies haverevealedstrongflow-like effects even in these small systems [11–20]. The origin of these phenomenaisdebated[21–29]andthedatareportedhereprovide furtherinputstothisdiscussion.

 E-mailaddress:alice-publications@cern.ch.

In a previous work, we reported the evidence ofradial flow-like patternsin p–Pbcollisions [30].Thiseffect was foundto in-crease with increasing event multiplicity and to be qualitatively consistent with calculationswhich incorporatethe hydrodynami-cal evolution of the system. It was also discussed that in small systems, mechanisms like color-reconnection mayproduce radial flow-like effects. Thepresent paperreportscomplementary mea-surements coveringtheintermediate pT region(2–10 GeV/c)and

thehigh-pTregion(10–20 GeV/c)exploitingthecapabilitiesofthe

High MomentumParticle IdentificationDetector(HMPID)andthe Time ProjectionChamber (TPC). Inthis way,highprecision mea-surementsare achievedintheintermediate pT regionwherecold

nuclear matter effects like the Cronin enhancement [31,32] have beenreportedbypreviousexperiments[33,34],andwherethe par-ticle ratios, e.g., the proton(kaon) production relative to that of pions,areaffectedbylargefinalstateeffectsincentralPb–Pb col-lisions[35].Particleratiosareexpectedtobemodifiedbyflow,but hydrodynamicsistypicallyexpectedtobeapplicableonlyup toa few GeV/c [36].Athigher pT,ideas suchaspartonrecombination

havebeenproposed leadingtobaryon–meson effects[37].Inthis waythenewdatasetcomplementsthelower pT results.

http://dx.doi.org/10.1016/j.physletb.2016.07.050

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

Inaddition,particleidentificationatlargetransversemomenta inp–Pbcollisions providesnewconstraintsonthenuclearparton distributionfunctions(nPDF) whicharekeyinputsininterpreting a large amount ofexperimental data like d–Au anddeep inelas-ticscattering [38]. Finally,the measurement is alsoimportant to studytheparticlespeciesdependencyofthenuclearmodification factor

(R

pPb

)

,tobetterunderstandpartonenergylossmechanisms

inheavy-ioncollisions.

In this paper, the charged pion, kaon and (anti)proton RpPb

are reportedfor non-singlediffractive (NSD) p–Pb collisions. The pp reference spectra for this measurement were obtained us-ing interpolations of data at different collision energies. The al-ready published pT spectra for inelastic (INEL) pp collisions at

s

=

7 TeV [39] were extended up to 20 GeV/c and the results are presented here for the first time. These measurements to-gether with the results for INEL pp collisions at

2

=

2

.

76 TeV (pT

<

20 GeV

/c)

[35]wereusedtodetermineppreferencespectra

at

s

=

5

.

02 TeV usingtheinterpolationmethoddescribedin[40]. Thepaperisorganized asfollows.InSec.2theALICEdetector aswellastheeventandtrackselectionsarediscussed.The analy-sisprocedures forparticleidentificationusingtheHMPIDandTPC detectorsareoutlinedinSec. 3andSec. 4,respectively.Section5 presentstheresultsanddiscussions.Finally,Sec.6summarizesthe mainresults.

2. Datasample,eventandtrackselection

The results are obtained using data collected with the ALICE detectorduring the 2013 p–Pbrun at

sNN

=

5

.

02 TeV. The

de-taileddescription oftheALICEdetectorcanbe foundin [41] and the performance during run 1 (2009–2013) is described in [42]. Becauseofthe LHC 2-in-1 magnetdesign,it isimpossibleto ad-justtheenergy ofthe protonandlead-ionbeams independently. Theyare 4 TeV per Z which gives different energies due to the differentZ

/A of

thecollidingprotonsandleadions.Thenucleon– nucleoncenter-of-masssystemismoving inthelaboratory frame with a rapidity of yNN

= −

0

.

465 in the direction of the proton

beamrapidity.Inthefollowing, ylab(ηlab)areusedtoindicatethe

(pseudo)rapidityinthelaboratoryreferenceframe,whereas y (

η)

denotesthe (pseudo)rapidityin thecenter-of-massreference sys-temwherethePbbeamisassignedpositiverapidity.

In the analysis of the p–Pb data, the event selection follows that used in the analysis of inclusive charged particle produc-tion[43].The minimumbias(MB)triggersignal wasprovided by theV0 counters[44],which contain two arraysof32 scintillator tileseach coveringthefullazimuthwithin 2

.

8

<

η

lab

<

5

.

1 (V0A)

and

3

.

7

<

η

lab

<

1

.

7 (V0C). The signal amplitude and arrival

timecollectedineachtilewererecorded.Acoincidenceofsignals inboth V0Aand V0Cdetectors was required to remove contam-inationfrom single diffractiveand electromagneticevents.In the offlineanalysis,backgroundeventswerefurthersuppressedby re-quiring the arrival time of signals on the neutron Zero Degree CalorimeterA,whichispositionedinthePb-goingdirection,tobe compatiblewith a nominal p–Pbcollision occurringclose to the nominalinteractionpoint.Theestimatedmeannumberof interac-tionsper bunch crossingwas below1% inthe sample chosenfor thisanalysis.Duetotheweakcorrelationbetweencollision geom-etryandmultiplicity,theparticleproductioninp–Pbcollisions is studiedineventmultiplicityclassesinsteadofcentralities[45].The multiplicity classes are defined using the total charge deposited in the V0A detector as in [30], where V0A is positioned in the Pb-going direction. The MB results have been normalized to the totalnumberofNSDeventsusingatriggerandvertex reconstruc-tionefficiencycorrection whichamountsto3

.

6%

±

3

.

1% [46].The multiplicitydependentresultshavebeennormalizedtothevisible

Table 1

Transverse momentum ranges(GeV/c) covered bythe individual and combined analysesforppcollisionsat√s=7 TeV andp–Pbcollisionsat√sNN=5.02 TeV.

Analysis π++π− K++K− p+ ¯p pp Published[39]a 0.1–3.0 0.2–6.0 0.3–6.0 TPC dE/dx rel. rise 2–20 3–20 3–20 p–Pb Published[30]b 0.1–3.0 0.2–2.5 0.3–4.0 HMPID 1.5–4.0 1.5–4.0 1.5–6.0 TPC dE/dx rel. rise 2–20 3–20 3–20 a Includeddetectors:ITS,TPC,Time-of-Flight(TOF),HMPID.Theresultsalso in-cludethekink-topologyidentificationoftheweakdecaysofchargedkaons.

b Includeddetectors:ITS,TPC,TOF.

(triggered) cross-section correcting for the vertex reconstruction efficiency (this was not done in [30]). This correction is of the order of 5% for the lowest V0A multiplicity class (80–100%) and negligiblefortheothermultiplicityclasses(

<

1%).

Inthe

s

=

7 TeV ppanalysistheMB triggerrequireda hitin the two innermostlayers of the Inner TrackingSystem(ITS), the SiliconPixelDetector(SPD),orinatleastoneoftheV0 scintilla-torarraysincoincidence withthe arrivalofprotonbunchesfrom both directions.The offline analysisto eliminate backgroundwas done usingthetime informationprovidedby theV0 detectorsin correlationwiththenumberofclustersandtracklets1intheSPD.

TracksarerequiredtobereconstructedinboththeITSandthe TPC.Additionaltrackselectioncriteriaarethesameasin[47]and basedonthe numberofspacepoints,thequality ofthetrackfit, and the distance of closest approach to the reconstructed colli-sionvertex. Chargedtracks wheretheidentityofthe particlehas changeddueto aweakdecay, e.g.,K−

μ

+ ¯

ν

μ, areidentified bythetrackingalgorithmduetotheirdistinctkinktopologies[48] andrejectedinthisanalysis. Theremainingcontaminationis neg-ligible (



1%). In order to have the same kinematic coverage as used in the p–Pb low pT analysis [30], the tracks were selected

in the pseudorapidity interval

0

.

5

<

η

<

0. In addition, for the HMPID analysisit isrequired that thetracks are propagated and matchedtoaprimaryionizationclusterintheMulti-Wire Propor-tionalChamber(MWPC)gapoftheHMPIDdetector[39,47].

The published results of charged pion,kaon and(anti)proton production at low pT for pp [39] and p–Pb [30] collisions at

s

=

7 TeV and

sNN

=

5

.

02 TeV,respectively,useddifferent

Par-ticleIDentification (PID) detectorsandtechniques.A summary of the pT rangescoveredbythepublishedanalysesandtheanalyses

presentedinthispapercanbefoundinTable 1.

In the following, the analysis techniques used to obtain the identified particle pT spectra in the intermediate and high-pT

rangesusingHMPIDandTPCwillbediscussed. 3. HMPIDanalysis

TheHMPID detector[49]islocated about5 mfromthebeam axis, covering a limited acceptance of

|

η

lab

|

<

0

.

5 and 1

.

2◦

<

φ <

58

.

5◦, that corresponds to

5% of the TPC geometrical

ac-ceptance (2π in azimuthal angle and the pseudo-rapidity inter-val

|

η

|

<

0

.

9 [50]) for high pT tracks. The HMPID analysis uses

9

×

107 minimum-bias p–Pb events at

sNN

=

5

.

02 TeV. The

eventandtrackselectionandtheanalysistechniquearesimilarto thosedescribedin[39,47].Itisrequiredthattracksarepropagated andmatchedtoaprimaryionizationclusterintheMulti-Wire Pro-portionalChamber(MWPC)gapoftheHMPIDdetector.ThePIDin theHMPIDisdonebymeasuringtheCherenkovangle,

θ

Ch[49]:

1 TrackletsarepairsofhitsfromthetwolayersoftheSPDwhichmakealine pointingbacktothecollisionvertex.

(4)

Fig. 1. (Coloronline.)CherenkovanglemeasuredintheHMPIDasafunctionofthe trackmomentuminp–Pbcollisionsat√sNN=5.02 TeV forthe0–5%V0A multiplic-ityclass(seethetextforfurtherdetails).Thedashedlinesrepresenttheexpected curvescalculatedusingEq.(1)foreachparticlespecies.

cos

θ

Ch

=

1 n

β

=⇒ θ

Ch

=

arccos



p2

+

m2 np



,

(1)

wheren istherefractive indexofthe radiatorused(liquid C6F14

withn

=

1

.

29 atEph

=

6

.

68 eV andtemperatureT

=

20◦C), p and

m are the momentum and the mass of the given particle, re-spectively. The measurement of the single photon

θ

Ch angle in

theHMPIDrequirestheknowledgeofthetrackparameters,which areestimatedbythetrackextrapolationfromthecentral tracking detectors up to the radiator volume, where the Cherenkov pho-tons are emitted. Only one charged particle cluster is associated to each extrapolatedtrack, selected as the closest cluster to the extrapolatedtrackpoint on thecathode plane. Toreject thefake cluster-matchassociations inthe detector,a selectionon the dis-tanced(track-MIP)computedonthecathodeplanebetweenthetrack

extrapolationpointandthereconstructedcharged-particle cluster position is applied. The distance has to be less than 5 cm, in-dependent oftrack momentum. Starting fromthe photon cluster coordinates on the photocathode, a back-tracking algorithm cal-culatesthe correspondingemissionangle.TheCherenkovphotons areselectedbytheHoughTransformMethod(HTM)[51]that dis-criminatesthe signal fromthe background.Foragiventrack, the Cherenkovangle

θ

Ch is then computed asthe weighted mean of

the single photon angles selected by the HTM. Fig. 1 showsthe

θ

Ch asa function ofthe trackmomentum.The reconstructed

an-gledistributionforagivenmomentuminterval isfittedbya sum ofthreeGaussiandistributions, correspondingto thesignalsfrom pions,kaons,andprotons.The fittingisdone intwosteps.Inthe firststeptheinitialvaluesoffitparametersaresettotheexpected values.Themeanvalues,

Ch

i,are obtainedfromEq.(1),tuning

therefractiveindextomatchtheobservedCherenkovangles,and theresolutionvaluesare takenfromaMonteCarlosimulation of thedetectorresponse.Afterthisfirststep,the pT dependencesof

themeanandwidtharefittedwiththefunctiongivenby Eq.(1) anda polynomialone,respectively. Inthesecondstep,the fitting isrepeatedwiththeyieldsastheonlyfreeparameters, constrain-ingthemeanandresolutionvaluestothefittedvalue.Thesecond iteration is particularly important at high pT where the

separa-tionbetweendifferentspeciesisreduced.Fig. 2givesexamplesof fitstothereconstructedCherenkovangledistributionsintwo nar-rowpTintervalsforthe0–5%multiplicityclass.Therawyieldsare

then correctedby thetotal reconstructionefficiency givenbythe convolution of the tracking,PID efficiency, anddistance cut cor-rection. The tracking efficiency, convoluted with the geometrical

Fig. 2. (Color online.) Distributions of the Cherenkov angle measured in the HMPID for positivetracks having pT between2.5–2.6 GeV/c (left)and between 3.8–4.0 GeV/c (right),inp–Pbcollisionsat√sNN=5.02 TeV forthe0–5%V0A mul-tiplicityclass(seethetextforfurtherdetails).

acceptanceofthedetector,hasbeenevaluatedusingMonteCarlo simulations. Forall threeparticle speciesthisefficiencyincreases from

5% at1.5 GeV/c upto

6%at high pT.The PIDefficiency

isdetermined bytheCherenkovanglereconstruction efficiency.It has been computedby means of Monte-Carlo simulations and it reaches

90%forparticleswithvelocity

β

1,withnosignificant difference betweenpositive andnegative tracks.The distancecut correction,definedastheratiobetweenthenumberofthetracks that pass thecut ond(track-MIP) andall thetracksin thedetector

acceptance, has been evaluated from data. It is momentum de-pendent,andit is equalto

53% at1.5GeV/c, reaches

70%for particles withvelocity

β

1.Asmalldifference betweenpositive and negative tracks is present; negative tracks having a distance correction

2%lower thanthepositiveones.Thiseffectiscaused by aradialresidualmisalignmentoftheHMPIDchambersandan imperfect estimation ofthe energyloss inthe materialtraversed by the track. Tracking efficiency, PID efficiency and distance cut correctiondonotshowvariationwiththeeventtrackmultiplicity. 3.1. Systematicuncertainties

ThesystematicuncertaintyontheresultsoftheHMPID analy-sishascontributionsfromtracking,PIDandtracksassociation[39, 47].Theuncertaintiesrelatedtothetrackinghavebeenestimated by changingthe trackselectioncutsindividually,e.g. thenumber of crossed readout rowsin the TPC and the value of the track’s

χ

2 normalizedtothenumberofTPCclusters.ToestimatethePID

contribution,theparameters(meanandresolution)ofthefit func-tion used to extract the raw yields were varied by a reasonable quantity,leavingthemfreeinagivenrange;therangechosenfor the mean values is [

Ch

σ,

Ch

+

σ

] andfor the resolution

0

.

1σ,

σ

+

0

.

1σ].A variationof10% oftheresolution corre-sponds to its maximum expected variation when takinginto ac-countthedifferentrunningconditionsofthedetectorduringdata takingwhichhaveanimpactonitsperformance.Whenthemeans are changed,the resolution values are fixed to the defaultvalue andvice versa.The variation ofparameters isdone forthe three Gaussians(correspondingtothethreeparticlespecies) simultane-ously.Inaddition,theuncertaintyoftheassociationofthetrackto thechargedparticlesignalisobtainedbyvaryingthedefaultvalue ofthe distancecutrequiredforthematchby

±

1 cm.These con-tributions do notvary withthecollision multiplicity.A summary ofthedifferentcontributionstothesystematicuncertaintyforthe HMPIDp–PbanalysisisshowninTable 2.

4. TPCdE

/

dx relativisticriseanalysis

The relativistic rise regime of the specific energyloss, dE

/

dx, measuredbytheTPCallowsidentificationofchargedpions,kaons,

(5)

Table 2

MainsourcesofsystematicuncertaintiesfortheHMPIDp–Pbanalysis. Effect π++π− K++K− p+ ¯p

pTvalue (GeV/c) 2.5 4 2.5 4 2.5 4

PID 6% 12% 6% 12% 4% 5%

Tracking efficiency 6% 6% 7% Distance cut correction 6% 2% 6% 2% 4% 2%

Fig. 3. (Coloronline.)Specificenergyloss,dE/dx,asafunctionofmomentump in

thepseudorapidityrange−0.5<η<−0.375 forminimumbiasp–Pbcollisions.In eachmomentumbinthedE/dx spectrahavebeennormalizedtohaveunitintegrals andonlybinswithmorethan2%ofthecountsareshown(makingelectronsnot visibleinthefigure,exceptatverylowmomentum).ThecurvesshowthedE/dx responseforpions,kaons,protonsandelectrons.

and(anti)protons up to pT

=

20 GeV

/c.

The results presentedin

this paper were obtained using the method detailed in [47]. In thisanalysis, around 8

×

107 (4

.

7

×

107) p–Pb(pp) MB triggered

eventswere used.Theeventandtrackselection hasalreadybeen discussedinSection2.

Asdiscussedin[47],thedE

/

dx iscalibratedtakingintoaccount chambergainvariations,trackcurvatureanddiffusion,toobtaina response that essentially only dependson

β

γ

. Inherently, tracks atforwardrapiditywillhavebetterresolutionduetolonger inte-gratedtrack-lengths,soinordertoanalyzehomogeneoussamples theanalysisisperformedinfour

η

intervals.Samplesof topolog-icallyidentified pions (fromK0S decays),protons (from

decays) andelectrons (from

γ

conversions)wereusedtoparametrizethe Bethe–Blochresponse,



dE

/

dx

γ

)

, andthe relative resolution,

σ

dE/dx

(



dE

/

dx

)

[47]. For the p–Pb data, these response

func-tionsarefoundtobeslightlymultiplicitydependent(the



dE

/

dx

changes by

0.4% and the sigma by

2.0%). However, a single setof functionsisused forall multiplicity intervals, andthe de-pendenceisincludedinthesystematicuncertainties.Fig. 3shows dE

/

dx as afunction ofmomentumforp–Pb events.The

charac-teristic separation power between particle species in number of standard deviations (Sσ ) as a function of p, is shown in Fig. 4 forminimumbiasp–Pbcollisions. Forexample, Sσ forpionsand kaonsiscalculatedas:

=



dE dx



π++π−



dE dx



K++K− 0

.

5



σ

π+

+

σ

K++K−

 .

(2)

Theseparationinnumberofstandarddeviationsisthe largest (smallest) betweenpions andprotons(kaonsandprotons)andit isnearlyconstantatlargemomenta.

Themainpartofthisanalysisisthedeterminationofthe rela-tive particleabundances,hereafter calledparticlefractions,which are definedasthe

π

+

+

π

−, K+

+

K−,p

+ ¯

p and e+

+

e− yields normalized to that for inclusive charged particles. Since the TPC dE

/

dx signalisGaussiandistributedasillustrated in[47],particle fractions are obtainedusingfour-Gaussian fits to dE

/

dx distribu-tions in

η

and p intervals.The parameters (mean and width) of thefits arefixed usingtheparametrizedBethe–Blochand resolu-tioncurvesmentioned earlier.Examplesofthesefitscan beseen in Fig. 5 for two momentum intervals, 3

.

4

<

p

<

3

.

6 GeV

/c and

8

<

p

<

9 GeV

/c.

Theparticlefractionsina pTrange,areobtained

astheweightedaverageofthecontributingp intervals.Since the particlefractionsasafunctionof pT arefoundtobe independent

of

η

,they are averaged. The particlefractions measured in p–Pb and pp collisions are corrected forrelative efficiency differences usingDPMJET[52] andPHOJET[53]MonteCarlo(MC) generators, respectively.Furthermore,therelativepionandprotonabundances werecorrectedforthecontaminationofsecondaryparticles (feed-down),moredetailsofthemethodcanbefoundin[47].

Theinvariantyields,1

/(

pT

)

d2N/d ydpT,areconstructed

us-ingtwo components:thecorrectedparticlefractionsandthe cor-rected invariant charged particle yields. For the pp analysis at

s

=

7 TeV,thelattercomponentwastakendirectlyfromthe pub-lished results forinclusive chargedparticles [40].However, anal-ogous resultsfor p–Pb data are neither available for neither the kinematic range

0

.

5

<

y

<

0 nor for the different multiplicity classes [54], they were therefore measured here and the results usedtodeterminetheinvariantyields.

4.1. Systematicuncertainties

Thesystematicuncertaintiesmainlyconsistoftwocomponents: thefirstisduetotheeventandtrackselection,andthesecondone isduetothePID.Thefirstcomponentwasobtainedfromthe anal-ysisofinclusivechargedparticles[40,54].ForINELppcollisionsat 7TeV,thesystematicuncertaintieshavebeentakenfrom[40].For p–Pb collisions, thereare no measurements in the

η

interval re-portedhere(

0

.

5

<

η

<

0);however,it hasbeenshownthat the systematicuncertaintyexhibitsa negligibledependenceon

η

and multiplicity [45].Therefore, thesystematic uncertainties reported

Fig. 4. Separationinnumberofstandarddeviationsbetween:pionsandprotons(leftpanel),pionsandkaons(middlepanel),andkaonsandprotons(rightpanel).Resultsfor minimumbiasp–Pbdataandfortwospecificpseudorapidityintervalsareshown.Moredetailscanbefoundin[47].

(6)

Fig. 5. (Coloronline.)Four-Gaussianfits(lines)tothedE/dx spectra(markers)fortrackshavingmomentum3.4<p<3.6 GeV/c (toprow)and8.0<p<9.0 GeV/c (bottom

row)within−0.125<η<0.Allofthespectraarenormalizedtohaveunitintegrals.ColumnsrefertodifferentV0Amultiplicityclasses.Individualsignalsofchargedpions, kaons,and(anti)protonsareshownasred,green,andbluedashedareas,respectively.Thecontributionofelectronsisnotvisibleandisnegligible(<1%).

Table 3

Summaryofthesystematicuncertaintiesforthechargedpion,kaon,and(anti)protonspectraandfor theparticle ratios.NotethatK/π= (K++K−)/(π++π)and p/π= (p+ ¯p)/(π++π).

pT(GeV/c) π++π− K++K− p+ ¯p K p

2.0 10 3.0 10 3.0 10 3.0 10 3.0 10

pp collisions Uncertainty

Eventandtrackselectiona 7.3% 7.3% 7.3%

Feed-downcorrection 0.2% – 1.2% 0.2% 1.2%

Efficiencycorrection 3.2% 3.2% 3.2% 4.5% 4.5%

Correctionformuons 0.3% 0.5% – – 0.3% 0.5% 0.3% 0.5% ParametrizationofBethe–Bloch

andresolutioncurves

1.8% 1.9% 20% 6.9% 24% 15% 17% 9.0% 17% 19%

p–Pb collisions Uncertainty

Eventandtrackselectiona 3.3% 3.6% 3.3% 3.6% 3.3% 3.6%

Feed-downcorrection ≤0.2% – 2.6% 0.7% ≤0.2% 2.6% 0.7%

Efficiencycorrection 3.2% 3.2% 3.2% 4.5% 4.5%

Correctionformuonsb 0.3% 0.4% 0.3% 0.4% 0.3% 0.4%

ParametrizationofBethe–Bloch andresolutioncurves Multiplicity classes 0–5% 1.7% 1.9% 17% 8.0% 15% 13% 16% 10.4% 12% 11% 5–10% 1.7% 2.0% 17% 5.6% 16% 12% 18% 7.2% 14% 24% 10–20% 1.6% 1.9% 16% 7.2% 16% 12% 18% 9.5% 16% 15% 20–40% 1.6% 2.0% 16% 6.7% 17% 15% 18% 8.0% 17% 18% 40–60% 1.5% 1.9% 15% 6.5% 17% 12% 18% 8.3% 18% 13% 60–80% 1.6% 1.8% 16% 6.3% 20% 13% 21% 8.3% 22% 18% 80–100% 1.4% 1.5% 13% 5.9% 20% 13% 16% 7.3% 23% 21% a Commontoallspecies,valuestakenfrom[40,54].

b Foundtobemultiplicityindependent.

in [54] have been assigned to the identified charged hadron pT

spectraforalltheV0Amultiplicityclasses.

Thesecond componentwas measuredfollowingtheprocedure described in [47], where the largestcontribution is attributedto theuncertainties in theparameterization ofthe Bethe–Blochand resolutioncurvesusedtoconstrainthefits.Theuncertaintyis cal-culatedby varyingthe



dE

/

dx

and

σ

dE/dx intheparticlefraction

fits(Fig. 5)withintheprecisionofthedE

/

dx responsecalibration,

1% and5%for



dE

/

dx

and

σ

dE/dx,respectively.Asmallfraction

ofthisuncertaintywasfoundtobemultiplicitydependent,itwas estimatedasdoneinthepreviousALICEpublication[30].

A summary of the main systematic uncertainties on the pT

spectraand theparticle ratios forp–Pb andpp collisions can be

found inTable 3fortwo pT intervals. Forpions,themain

contri-bution is related toevent andtrackselection andthe associated commoncorrections. Inthe caseofkaonsandprotonsthelargest uncertainty isattributedto the parametrizationof thedE

/

dx re-sponse.Forkaons,theuncertaintydecreaseswithpT andincreases

withmultiplicitywhileforprotonsthemultiplicitydependenceis opposite.Thisvariationmainlyreflectsthechangesintheparticle ratioswithpT andmultiplicity.

5. Resultsanddiscussions

The totalsystematicuncertaintyforallthe spectraforagiven particlespeciesisfactorizedforeach pT interval intoa

(7)

multiplic-Fig. 6. (Coloronline.)TheratioofindividualspectratothecombinedspectrumasafunctionofpTforpions(left),kaons(middle),andprotons(right).Fromtop-to-bottom therowsshowtheV0Amultiplicityclass0–5%,20–40%and60–80%.Statisticalanduncorrelatedsystematicuncertaintiesareshownasverticalerrorbarsanderrorbands, respectively.OnlythepTrangeswhereindividualanalysisoverlapareshown.Seethetextforfurtherdetails.

Fig. 7. (Coloronline.) Transversemomentumspectraofchargedpions(left),kaons(middle),and(anti)protons(right)measuredinp–Pbcollisionsat√sNN=5.02 TeV. Statisticalandsystematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.Thespectra(measuredforNSDeventsandfordifferentV0Amultiplicity classes)havebeenscaledbytheindicatedfactorsinthelegendforbettervisibility.

ityindependentandmultiplicitydependentsystematicuncertainty. Thetransversemomentum distributionsobtainedfromthe differ-ent analyses are combined in the overlapping pT region using a

weightedaverage.The weightforthe combinationswasdone ac-cordingtothetotalsystematicuncertaintytoobtainthebest over-allprecision.Sincethesystematicuncertaintiesdueto normaliza-tionandtrackingarecommontoalltheanalyses,theywereadded directly to the final combined results. The statistical

uncertain-tiesaremuchsmallerandthereforeneglectedinthecombination weights.Themultiplicitydependentsystematicuncertaintyforthe combinedspectrais alsopropagated usingthesameweights. For theresults showninthispaperthe fullsystematicuncertainty is always used,butthemultiplicitycorrelated anduncorrelated sys-tematicuncertaintiesaremadeavailableatHepData.Fig. 6shows examples of the comparisons amongthe individual analyses and the combined pT spectra, focusingon the overlapping pT region.

(8)

Fig. 8. (Coloronline.)Transversemomentumspectraofchargedpions(left),kaons(middle),and(anti)protons(right)measuredinINELppcollisionsat√s=2.76 TeV andat

s=7 TeV.Statisticalandsystematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.Thespectrumat√s=5.02 TeV representsthereferenceinINEL ppcollisions,constructedfrommeasuredspectraat√s=2.76 TeV andat√s=7 TeV.Seethetextforfurtherdetails.Panelsonthebottomshowtheratioofthemeasured yieldstotheinterpolatedspectra.Onlyuncertaintiesoftheinterpolatedspectraareshown.

Withinsystematicandstatisticaluncertaintiesthenewhigh-pT

re-sults, measured with HMPID and TPC, agree with the published results [30]. Similar agreement is obtained forthe pT spectra in

INELppcollisionsat7 TeV[39].

5.1. Transversemomentumspectraandnuclearmodificationfactor Thecombined chargedpion,kaonand(anti)proton pT spectra

inp–Pbcollisions fordifferentV0Amultiplicity classesare shown inFig. 7. Asreported in [30], for pT below2–3 GeV

/c the

spec-tra behave like in Pb–Pb collisions, i.e., the pT distributions

be-comeharder asthemultiplicity increasesandthechangeismost pronounced forprotons andlambdas. Inheavy-ion collisions this effectiscommonlyattributedtoradial flow. Forlargermomenta, thespectrafollowapower-lawshapeasexpectedfrom perturba-tiveQCD.

In order to quantify any particle species dependence of the nuclear effects in p–Pb collisions, comparisons to reference pT

spectrain pp collisions areneeded. In theabsence ofpp data at

s

=

5

.

02 TeV,thereferencespectraareobtainedbyinterpolating datameasuredat

s

=

2

.

76 TeV andat

s

=

7 TeV.Theinvariant crosssectionforidentifiedhadronproductioninINELppcollisions, 1

/(

pT

)

d2

σ

ppINEL

/

d ydpT, isinterpolated ineach pT interval,

as-sumingapowerlawdependenceasafunctionof

s.Themethod was cross-checked using events simulated by Pythia 8.201 [55], wherethedifference betweentheinterpolated andthesimulated referencewas found tobe negligible.The maximum relative sys-tematicuncertaintyofthespectraat

s

=

2

.

76 TeV and at

s

=

7 TeV hasbeenassignedasa systematicuncertainty tothe refer-ence.Inthetransversemomentuminterval3

<

pT

<

10 GeV

/c,

the

totalsystematicuncertainties forpions andkaons arebelow8.6% and10%,respectively.Whilefor(anti)protonsitis7.7%and18%at 3 GeV/c and10 GeV/c,respectively.Theinvariant yieldsareshown inFig. 8,wheretheinterpolated pTspectraarecomparedtothose

measuredinINELppcollisionsat2.76TeVand7TeV. Thenuclearmodificationfactoristhenconstructedas:

RpPb

=

d2NpPb

/

d ydpT

TpPb

d2

σ

INEL pp

/

d ydpT (3)

Fig. 9. (Coloronline.)Thenuclearmodificationfactor RpPbasafunctionof trans-verse momentum pT for differentparticle species.Thestatisticalandsystematic uncertainties areshownas verticalerror barsandboxes, respectively. Thetotal normalization uncertainty is indicated bya verticalscale ofthe empty boxat

pT=0 GeV/c and RpPb=1.Theresultforinclusivechargedhadrons[54]isalso shown.

where, for minimum bias (NSD) p–Pb collisions the average nu-clear overlap function,

TpPb

, is 0

.

0983

±

0

.

0035 mb−1 [43]. In absenceofnucleareffectstheRpPb isexpectedtobeone.

Fig. 9 showsthe identified hadron RpPb compared to that for

inclusivechargedparticles (h±)[54] inNSDp–Pbevents.Athigh pT (

>

10 GeV

/c),

all nuclear modification factors are consistent

withunity withinsystematicandstatisticaluncertainties. Around 4 GeV

/c,

where aprominent Croninenhancement hasbeen seen atlowerenergies[33,34],theunidentifiedchargedhadron RpPb is

above unity, albeitbarely significantwithin systematic uncertain-ties [54]. Remarkably, the (anti)proton enhancement is

3 times largerthanthatforchargedparticles,whileforchargedpionsand kaons the enhancement is below that of charged particles. The STAR andPHENIXCollaborations have observeda similar pattern at RHIC,where thenuclear modification factorforMB d–Au

(9)

col-Fig. 10. (Coloronline.) Kaon-to-pion(upperpanel)andproton-to-pion(bottompanel)ratiosasafunctionofpT fordifferentV0Amultiplicityclasses.Resultsfor p–Pb collisions(fullmarkers)arecomparedtotheratiosmeasuredinINELpp collisionsat2.76TeV[35](emptycircles)andat 7TeV[39](fullcircles).Thestatisticaland systematicuncertaintiesareplottedasverticalerrorbarsandboxes,respectively.

lisions, RdAu, in the range 2

<

pT

<

5 GeV

/c,

is 1

.

24

±

0

.

13 and

1

.

49

±

0

.

17 forchargedpionsand(anti)protons,respectively[20]. Anenhancement of protons inthe same pT rangeis also

ob-served in heavy-ion collisions [35,47], whereit commonlyis in-terpretedasradial-flowandhasastrongcentralitydependence.In thenextsection, westudythemultiplicitydependenceofthe in-variantyield ratiostoseewhetherprotonsaremoreenhancedas afunctionofmultiplicitythanpions.

5.2.Transversemomentumandmultiplicitydependenceofparticle ratios

The kaon-to-pion andthe proton-to-pion ratios asa function of pT fordifferent V0Amultiplicity classes are shownin Fig. 10.

The results for p–Pb collisions are compared to those measured forINELpp collisions at2.76 TeV [35] andat7TeV [39]. Within systematicandstatisticaluncertainties,thepTdifferential

kaon-to-pionratiosdonot show anymultiplicitydependence.In fact,the

resultsaresimilartothoseforINELppcollisionsatbothenergies. The pT differentialproton-to-pionratiosshow aclearmultiplicity

evolution at low and intermediate pT (

<

10 GeV

/c).

This

multi-plicityevolutionisqualitativelysimilartothe centralityevolution observedinPb–Pbcollisions[35,47].

Itisworthnotingthattheaveragemultiplicitiesatmid-rapidity for peripheral Pb–Pb collisions (60–80%) and high multiplicity p–Pb collisions (0–5% V0A multiplicity class) are very similar,



dNch

/

50.Evenifthephysicalmechanismsforparticle

pro-duction could bedifferent, it seems interesting tocompare these systemswithsimilarunderlyingactivityasdoneinFig. 11,where INEL

s

=

7 TeV ppresultsareincludedasanapproximate base-line. Withinsystematic andstatistical uncertainties, the kaon-to-pion ratiosare the same forall systems. Onthe other hand,the proton-to-pionratiosexhibitsimilarflow-likefeaturesforthep–Pb andPb–Pb systems,namely,the ratiosare belowthepp baseline for pT

<

1 GeV

/c and

above for pT

>

1

.

5 GeV

/c.

Quantitative

(10)

Fig. 11. (Coloronline.)Particleratiosasafunctionoftransversemomentum.Three differentcollidingsystemsarecompared,pp(opensquares),0–5%p–Pb(open cir-cles)and60–80%Pb–Pb(fulldiamonds)collisionsat√sNN=7 TeV,5.02TeVand 2.76TeV,respectively.

Fig. 12. (Coloronline.)ParticleratiosasafunctionofdNch/dη ineachV0A mul-tiplicityclass(see[30]formoredetails).Threedifferentcollidingsystemsare com-pared:pp,p–PbandperipheralPb–Pbcollisions.

canbeattributedtothedifferencesintheinitialstateoverlap ge-ometryandthebeamenergy.

Theresultsfortheparticleratiossuggestthat themodification ofthe(anti)protonspectralshapegoingfrompptop–Pbcollisions couldplaythedominantroleintheCroninenhancementobserved forinclusivechargedparticleRpPbatLHCenergies.Toconfirmthis

picture one would have to studythe nuclear modificationfactor asa functionof multiplicity aswe didin [45], where,the possi-blebiasesintheevaluationofthemultiplicity-dependentaverage nuclearoverlap function

TpPb

werediscussed. Theseresultswill becomeavailableinthefuture.

InFig. 12wecomparetheparticleratiosathighpT(10

<

pT

<

20 GeV

/c)

measured inINEL

s

=

7 TeV pp collisions,peripheral Pb–Pb collisions and the multiplicity dependent results in p–Pb collisions.Withinstatisticalandsystematicuncertainties,theratios donotshowanyevolutionwithmultiplicity.Moreover,sinceithas beenalreadyreportedthat inPb–Pb collisionsthey are centrality independent[47]we concludethatthey aresystem-size indepen-dent.

The strongsimilarity ofparticle ratios asa function of multi-plicityinp–PbandcentralityinPb–Pbcollisionsinthelow, inter-mediate,andhigh-pTregionsisstriking.Ingeneral,theresultsfor

p–Pbcollisions appeartoraise questionsaboutthelong standing ideas ofspecificphysics modelsforsmallandlarge systems[56]. For example, in the low pT publication [30], hydrodynamic

in-spired fits gave higher transverse expansion velocities (

T

) for

p–PbthanforPb–Pbcollisions.Hydrodynamics,whichsuccessfully describesmanyfeatures ofheavy-ioncollisions, hasbeenapplied tosmall systemsandcan explain thiseffect [21],but careneeds to be taken since its applicability to small systemsis still under debate [56]. On the other hand, models like color reconnection, wherethesoftandhardcomponentsareallowed tointeract,

pro-showconstituentquarkscalinginp–Pbcollisions [60]. 6. Conclusions

We havereportedon thechargedpion, kaonand(anti)proton productionuptolargetransversemomenta(pT

20 GeV

/c)

inp–

Pb collisions at

sNN

=

5

.

02 TeV. The pT spectra in

s

=

7 TeV

ppcollisionswerealsomeasuredupto20 GeV

/c to

allowthe de-terminationofthe

s

=

5

.

02 TeV ppreferencecrosssectionusing theexistingdataat2.76 TeVandat7 TeV.

At intermediate pT (2

<

pT

<

10 GeV

/c),

the(anti)proton RpPb

for non-singlediffractivep–Pb collisions was found tobe signifi-cantlylarger than thoseforpions andkaons, inparticularin the region where the Cronin peak was observed by experiments at lowerenergies.Hence,themodestenhancementwhichwealready reportedforunidentifiedchargedparticlescanbeattributedtothe modification ofthe protonspectral shape going fromppto p–Pb collisions. Athigh pT thenuclearmodificationfactorsforcharged

pions, kaons and (anti)protons are consistent with unity within systematicandstatisticaluncertainties.

Theenhancement ofprotonswithrespecttopionsat interme-diate pT showsastrongmultiplicitydependence.Thisbehavioris

not observed for the kaon-to-pion ratio. At high transverse mo-menta (10

<

pT

<

20 GeV

/c)

the pT integratedparticleratios are

system-size independent for pp, p–Pb and Pb–Pb collisions. For a similar multiplicity at mid-rapidity, the pT-differential particle

ratios are alike for p–Pb andPb–Pb collisions over the broad pT

rangereportedinthispaper. Acknowledgements

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion ofperformanceofthe LHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Grid centresandthe WorldwideLHC ComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running the ALICEdetector:State CommitteeofScience,WorldFederation of Scientists (WFS)and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq), Fi-nanciadora de Estudose Projetos(FINEP),Fundaçãode Amparoà Pesquisa do Estado de São Paulo (FAPESP); National Natural Sci-ence Foundation of China (NSFC), the Ministry of Education of the People’s Republic of China (CMOE) and the Ministry of Sci-ence and Technology of the People’s Republic of China (MSTC); Ministry of Education, Youth and Sports of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Founda-tion andtheDanish NationalResearchFoundation;The European ResearchCouncilundertheEuropeanCommunity’sSeventh Frame-work Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS–IN2P3, the ‘Region Pays de Loire’, ‘Re-gion Alsace’, ‘Region Auvergne’ and CEA, France; German Bun-desministerium fur Bildung, Wissenschaft, Forschung und

(11)

Tech-nologie(BMBF)andtheHelmholtzAssociation;GeneralSecretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary;DepartmentofAtomic Energy,GovernmentofIndia and DepartmentofScience andTechnology of theGovernment of In-dia;InstitutoNazionalediFisicaNucleare (INFN)andCentroFermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna;NationalResearchFoundation ofKorea(NRF);Consejo Na-cional de Ciencia y Tecnología (CONACYT), Direccion General de AsuntosdelPersonalAcademico(DGAPA),México,AmeriqueLatine Formationacademique–EuropeanCommission(ALFA-EC)andthe EPLANETProgram (EuropeanParticle PhysicsLatin American Net-work);StichtingvoorFundamenteelOnderzoekderMaterie(FOM) andtheNederlandseOrganisatievoorWetenschappelijkOnderzoek (NWO),Netherlands; ResearchCouncil ofNorway (NFR);National Science Centre, Poland; Ministry of National Education/Institute forAtomic Physics andNational Council ofScientific Researchin Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Educa-tion and Science of the Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Fed-eralAgency for Science andInnovation and the Russian Founda-tionforBasicResearch;MinistryofEducationofSlovakia; Depart-mentofScienceandTechnology,RepublicofSouthAfrica;Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT),E-InfrastructuresharedbetweenEuropeandLatin Amer-ica(EELA),Ministeriode EconomíayCompetitividad(MINECO)of Spain,XuntadeGalicia(ConselleríadeEducación),Centrode Apli-cacionesTecnológicasyDesarrolloNuclear(CEADEN),Cubaenergía, Cuba,andIAEA(InternationalAtomicEnergyAgency);Swedish Re-search Council (VR) and Knut and Alice Wallenberg Foundation (KAW);MinistryofEducationandScienceofUkraine;United King-domScienceandTechnologyFacilitiesCouncil(STFC);TheU.S. De-partmentofEnergy,theUnitedStatesNationalScienceFoundation, theStateofTexas,andtheStateofOhio; MinistryofScience, Ed-ucationandSportsofCroatiaandUnitythroughKnowledgeFund, Croatia; Council of Scientific andIndustrial Research (CSIR), New Delhi,India;PontificiaUniversidadCatólicadelPerú.

References

[1]STARCollaboration,J.Adams,etal.,Experimentalandtheoreticalchallengesin thesearchforthequarkgluonplasma:theSTARCollaboration’scritical assess-mentoftheevidencefromRHICcollisions,Nucl.Phys.A757(2005)102–183, arXiv:nucl-ex/0501009.

[2]PHENIX Collaboration, K. Adcox, et al., Formation of dense partonic mat-terinrelativisticnucleus–nucleuscollisionsatRHIC:experimentalevaluation bythe PHENIXcollaboration,Nucl.Phys.A757(2005)184–283, arXiv:nucl-ex/0410003.

[3]BRAHMSCollaboration,I.Arsene,etal.,Quarkgluonplasmaandcolorglass condensateatRHIC?TheperspectivefromtheBRAHMSexperiment,Nucl.Phys. A757(2005)1–27,arXiv:nucl-ex/0410020.

[4]PHOBOSCollaboration,B.B.Back,etal.,ThePHOBOSperspectiveondiscoveries atRHIC,Nucl.Phys.A757(2005)28–101,arXiv:nucl-ex/0410022.

[5]ALICECollaboration, J. Schukraft,Heavy Ionphysics withthe ALICE experi-mentat the CERNLHC,Philos.Trans.R.Soc. Lond.A370(2012)917–932, arXiv:1109.4291[hep-ex].

[6]ALICECollaboration,K.Aamodt,etal.,Higherharmonicanisotropicflow mea-surementsofchargedparticlesinPb–Pbcollisionsat√sNN=2.76 TeV,Phys. Rev.Lett.107(2011)032301,arXiv:1105.3865[nucl-ex].

[7]ALICECollaboration,B.Abelev,etal.,Pion,kaon,andprotonproductionin cen-tralPb–Pbcollisionsat√sNN=2.76 TeV,Phys.Rev.Lett.109(2012)252301, arXiv:1208.1974[hep-ex].

[8]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofcharged parti-cleproductionatlargetransversemomentuminPb–Pbcollisionsat√sNN= 2.76 TeV,Phys.Lett.B720(2013)52–62,arXiv:1208.2711[hep-ex].

[9]CMSCollaboration,S.Chatrchyan,etal.,Studyofhigh-pTchargedparticle

sup-pressioninPbPbcomparedtoppcollisionsat√sNN=2.76 TeV,Eur.Phys.J.C 72(2012)1945,arXiv:1202.2554[nucl-ex].

[10]ALICECollaboration,B.Abelev,etal.,Measurementofchargedjetsuppression inPb–Pbcollisionsat √sNN=2.76 TeV,J.HighEnergy Phys.03(2014)013, arXiv:1311.0633[nucl-ex].

[11]ALICECollaboration,B.Abelev,etal.,Transversesphericityofprimarycharged particles in minimumbiasproton–proton collisionsat √s=0.9, 2.76and 7 TeV,Eur.Phys.J.C72(2012)2124,arXiv:1205.3963[hep-ex].

[12]CMSCollaboration,S.Chatrchyan,etal.,Studyoftheproductionofcharged pions,kaons,andprotonsinp–Pbcollisionsat√sNN=5.02 TeV,Eur.Phys.J.C 74 (6)(2014)2847,arXiv:1307.3442[hep-ex].

[13]CMSCollaboration,V.Khachatryan,etal.,Observationoflong-rangenear-side angular correlations inproton–proton collisions at the LHC,J. HighEnergy Phys.1009(2010)091,arXiv:1009.4122[hep-ex].

[14]CMSCollaboration,S.Chatrchyan,etal.,Observationoflong-rangenear-side angular correlations inproton-lead collisionsat the LHC,Phys. Lett. B718 (2013)795–814,arXiv:1210.5482[nucl-ex].

[15]ALICECollaboration,B.Abelev,etal.,Long-rangeangularcorrelations onthe nearandawaysideinp–Pbcollisionsat√sNN=5.02 TeV,Phys.Lett.B719 (2013)29–41,arXiv:1212.2001[nucl-ex].

[16]ATLAS Collaboration, G. Aad, et al., Observation of associated near-side and away-side long-rangecorrelations in√sNN=5.02 TeV proton-lead col-lisions with the ATLAS detector, Phys. Rev. Lett. 110 (18) (2013) 182302, arXiv:1212.5198[hep-ex].

[17]ATLASCollaboration,G.Aad,etal.,MeasurementwiththeATLASdetectorof multi-particle azimuthalcorrelations inp–Pbcollisions at√sNN=5.02 TeV, Phys.Lett.B725(2013)60–78,arXiv:1303.2084[hep-ex].

[18]CMSCollaboration,S.Chatrchyan,etal.,Multiplicityandtransversemomentum dependence oftwo- andfour-particlecorrelationsinp–Pband Pb–Pb colli-sions,Phys.Lett.B724(2013)213–240,arXiv:1305.0609[nucl-ex].

[19] PHENIXCollaboration,A.Adare,S.Afansaiev,etal.,Spectraandratiosof iden-tifiedparticlesinAu+Auandd+Au collisionsat√sNN=200 GeV,Phys.Rev. C88(Aug.2013)024906,http://link.aps.org/doi/10.1103/PhysRevC.88.024906. [20]STARCollaboration,J.Adams,etal.,Identifiedhadronspectraatlarge

trans-versemomentuminp+pandd+Aucollisionsat200GeV,Phys.Lett.B637 (2006)161–169,arXiv:nucl-ex/0601033.

[21]E.Shuryak,I.Zahed,High-multiplicityppandpAcollisions:hydrodynamicsat itsedge,Phys.Rev.C88 (4)(2013)044915,arXiv:1301.4470[hep-ph].

[22]K.Werner,M.Bleicher,B.Guiot,I.Karpenko,T.Pierog,Evidenceforflowfrom hydrodynamicsimulationsofp–Pbcollisionsat5.02 TeVfromν2mass split-ting,Phys.Rev.Lett.112 (23)(2014)232301,arXiv:1307.4379[nucl-th].

[23]P. Bozek, W.Broniowski, G. Torrieri, Mass hierarchy in identified particle distributions inproton-lead collisions, Phys. Rev.Lett. 111(2013) 172303, arXiv:1307.5060[nucl-th].

[24]A.Dumitru,K.Dusling,F.Gelis,J.Jalilian-Marian,T.Lappi,etal.,TheRidgein proton–protoncollisionsattheLHC,Phys.Lett.B697(2011)21–25.

[25]B.Schenke,S.Schlichting,R.Venugopalan,Azimuthalanisotropiesinp–Pb col-lisions from classicalYang–Mills dynamics,Phys. Lett.B 747(2015) 76–82, arXiv:1502.01331[hep-ph].

[26]G.-L.Ma, A.Bzdak,Long-rangeazimuthalcorrelationsinproton–protonand proton–nucleuscollisionsfromtheincoherentscatteringofpartons,Phys.Lett. B739(2014)209–213,arXiv:1404.4129[hep-ph].

[27]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852–867.

[28]R.Corke,T.Sjöstrand,Interleavedpartonshowersandtuningprospects,J.High EnergyPhys.03(2011)032,arXiv:1011.1759[hep-ph].

[29] A.Ortiz,P.Christiansen,E.Cuautle,I.A.Maldonado,G.Pai ´c,Colorreconnection andflowlikepatternsinppcollisions,Phys.Rev.Lett.111(Jul2013)042001,

http://link.aps.org/doi/10.1103/PhysRevLett.111.042001.

[30]ALICECollaboration,B.B.Abelev,etal.,Multiplicitydependenceofpion,kaon, proton andlambdaproductioninp–Pbcollisionsat√sNN=5.02 TeV,Phys. Lett.B728(2014)25–38,arXiv:1307.6796[nucl-ex].

[31]B.Kopeliovich,J.Nemchik,A.Schafer,A.Tarasov,Cronineffectinhadron pro-ductionoffnuclei,Phys.Rev.Lett.88(2002)232303,arXiv:hep-ph/0201010.

[32]R.C.Hwa,C.B.Yang,FinalstateinteractionastheoriginoftheCronineffect, Phys.Rev.Lett.93(2004)082302,arXiv:nucl-th/0403001.

[33]J.W.Cronin,H.J.Frisch,M.J.Shochet,J.P.Boymond,P.A.Piroué,R.L.Sumner, Pro-ductionofhadronswithlargetransversemomentumat200-GeVand300-GeV, Phys.Rev.Lett.31(Dec1973)1426–1429.

[34] J.W. Cronin,H.J. Frisch, M.J. Shochet, J.P. Boymond, P.A. Piroué, R.L. Sum-ner, Productionofhadronsat largetransversemomentumat 200,300,and 400GeV, Phys. Rev.D11(Jun. 1975)3105–3123,http://dx.doi.org/10.1103/ PhysRevD.11.3105.

[35]ALICECollaboration,B.B.Abelev,etal.,Productionofchargedpions,kaonsand protonsatlargetransversemomentainppandPb–Pb collisionsat √sNN= 2.76 TeV,Phys.Lett.B736(2014)196–207,arXiv:1401.1250[nucl-ex].

[36]P.Huovinen,P.F.Kolb,U.W.Heinz,P.V.Ruuskanen, S.A.Voloshin,Radialand elliptic flow at RHIC: further predictions, Phys. Lett. B503 (2001) 58–64, arXiv:hep-ph/0101136.

[37]K.P.Das,R.C.Hwa,Quark–anti-quarkrecombinationinthefragmentation re-gion,Phys.Lett.B68(1977)459,Phys.Lett.B73(1978)504,Erratum.

(12)

ex].

[43]ALICECollaboration,B.Abelev,etal.,Transversemomentumdistributionand nuclearmodificationfactorofchargedparticlesinp–Pbcollisionsat√sNN= 5.02 TeV,Phys.Rev.Lett.110 (8)(2013)082302,arXiv:1210.4520[nucl-ex].

[44] ALICECollaboration,K.Aamodt,etal.,PerformanceoftheALICEVZERO system, J. Inst.8 (10)(2013)P10016,http://stacks.iop.org/1748-0221/8/i=10/a=P10016. [45]ALICECollaboration,J.Adam,etal.,Centralitydependenceofparticle produc-tioninp–Pbcollisionsat√sNN=5.02 TeV,Phys.Rev.C91 (6)(2015)064905, arXiv:1412.6828[nucl-ex].

[46]ALICECollaboration,B.Abelev,etal.,Pseudorapiditydensityofcharged parti-clesinp+Pb collisionsat √sN N=5.02 TeV,Phys.Rev.Lett.110 (3)(2013)

032301,arXiv:1210.3615[nucl-ex].

[47]ALICECollaboration,J.Adam,etal.,Centralitydependenceofthenuclear mod-ification factorofcharged pions,kaons, and protonsinPb–Pb collisionsat

s

NN=2.76 TeV,Phys.Rev.C93 (3)(2016)034913,arXiv:1506.07287 [nucl-ex].

[48]ALICECollaboration,K.Aamodt,etal.,Productionofpions,kaonsandprotons inppcollisionsat √s=900 GeV withALICEatthe LHC,Eur.Phys. J.C71 (2011)1655,arXiv:1101.4110[hep-ex].

[49] ALICECollaboration,F.Piuz,W.Klempt,L.Leistam,J.DeGroot,J.Schukraft, AL-ICEhigh-momentumparticleidentification: technicaldesignreport,Technical

[53]R.Engel,Photoproductionwithinthetwo-componentDualPartonModel: am-plitudesandcrosssections,Z.Phys.C66(1995)203–214.

[54]ALICECollaboration,B.B.Abelev,etal.,Transversemomentumdependenceof inclusiveprimary charged-particleproduction inp–Pbcollisions at √sNN= 5.02 TeV,Eur.Phys.J.C74 (9)(2014)3054,arXiv:1405.2737[nucl-ex].

[55]T.Sjöstrand,S.Ask,J.R.Christiansen,R.Corke,N.Desai,etal.,Anintroduction toPYTHIA8.2,Comput.Phys.Commun.191(2015)159–177,arXiv:1410.3012 [hep-ph].

[56]F.Antinori,etal.,Thoughtsonopportunitiesfromhigh-energynuclear colli-sions,arXiv:1409.2981[hep-ph].

[57]C.Bierlich,J.R.Christiansen,Effectsofcolourreconnectiononhadronflavour observables,arXiv:1507.02091[hep-ph].

[58] A.Ortiz,E.Cuautle,G.Pai ´c,Mid-rapiditychargedhadrontransverse spheroc-ityinpp collisionssimulatedwithpythia,Nucl.Phys. A941(2015)78–86,

http://www.sciencedirect.com/science/article/pii/S0375947415001311. [59]C.Bierlich,G.Gustafson,L.Lönnblad,A.Tarasov,Effectsofoverlappingstrings

inppcollisions,J.HighEnergyPhys.1503(2015)148,arXiv:1412.6259 [hep-ph].

[60]CMSCollaboration,V.Khachatryan,etal.,Long-rangetwo-particlecorrelations ofstrangehadronswithchargedparticlesinpPbandPbPbcollisionsat LHC energies,Phys.Lett.B742(2015)200–224,arXiv:1409.3392[nucl-ex].

ALICECollaboration

J. Adam

40

,

D. Adamová

84

,

M.M. Aggarwal

88

,

G. Aglieri Rinella

36

,

M. Agnello

110

,

N. Agrawal

48

,

Z. Ahammed

132

,

S. Ahmad

19

,

S.U. Ahn

68

,

S. Aiola

136

,

A. Akindinov

58

,

S.N. Alam

132

,

D. Aleksandrov

80

,

B. Alessandro

110

,

D. Alexandre

101

,

R. Alfaro Molina

64

,

A. Alici

12

,

104

,

A. Alkin

3

,

J.R.M. Almaraz

119

,

J. Alme

38

,

T. Alt

43

,

S. Altinpinar

18

,

I. Altsybeev

131

,

C. Alves Garcia Prado

120

,

C. Andrei

78

,

A. Andronic

97

,

V. Anguelov

94

,

T. Antiˇci ´c

98

,

F. Antinori

107

,

P. Antonioli

104

,

L. Aphecetche

113

,

H. Appelshäuser

53

,

S. Arcelli

28

,

R. Arnaldi

110

,

O.W. Arnold

37

,

93

,

I.C. Arsene

22

,

M. Arslandok

53

,

B. Audurier

113

,

A. Augustinus

36

,

R. Averbeck

97

,

M.D. Azmi

19

,

A. Badalà

106

,

Y.W. Baek

67

,

S. Bagnasco

110

,

R. Bailhache

53

,

R. Bala

91

,

S. Balasubramanian

136

,

A. Baldisseri

15

,

R.C. Baral

61

,

A.M. Barbano

27

,

R. Barbera

29

,

F. Barile

33

,

G.G. Barnaföldi

135

,

L.S. Barnby

101

,

V. Barret

70

,

P. Bartalini

7

,

K. Barth

36

,

J. Bartke

117

,

E. Bartsch

53

,

M. Basile

28

,

N. Bastid

70

,

S. Basu

132

,

B. Bathen

54

,

G. Batigne

113

,

A. Batista Camejo

70

,

B. Batyunya

66

,

P.C. Batzing

22

,

I.G. Bearden

81

,

H. Beck

53

,

C. Bedda

110

,

N.K. Behera

50

,

I. Belikov

55

,

F. Bellini

28

,

H. Bello Martinez

2

,

R. Bellwied

122

,

R. Belmont

134

,

E. Belmont-Moreno

64

,

V. Belyaev

75

,

P. Benacek

84

,

G. Bencedi

135

,

S. Beole

27

,

I. Berceanu

78

,

A. Bercuci

78

,

Y. Berdnikov

86

,

D. Berenyi

135

,

R.A. Bertens

57

,

D. Berzano

36

,

L. Betev

36

,

A. Bhasin

91

,

I.R. Bhat

91

,

A.K. Bhati

88

,

B. Bhattacharjee

45

,

J. Bhom

128

,

L. Bianchi

122

,

N. Bianchi

72

,

C. Bianchin

134

,

57

,

J. Bielˇcík

40

,

J. Bielˇcíková

84

,

A. Bilandzic

81

,

37

,

93

,

G. Biro

135

,

R. Biswas

4

,

S. Biswas

79

,

S. Bjelogrlic

57

,

J.T. Blair

118

,

D. Blau

80

,

C. Blume

53

,

F. Bock

74

,

94

,

A. Bogdanov

75

,

H. Bøggild

81

,

L. Boldizsár

135

,

M. Bombara

41

,

J. Book

53

,

H. Borel

15

,

A. Borissov

96

,

M. Borri

83

,

124

,

F. Bossú

65

,

E. Botta

27

,

C. Bourjau

81

,

P. Braun-Munzinger

97

,

M. Bregant

120

,

T. Breitner

52

,

T.A. Broker

53

,

T.A. Browning

95

,

M. Broz

40

,

E.J. Brucken

46

,

E. Bruna

110

,

G.E. Bruno

33

,

D. Budnikov

99

,

H. Buesching

53

,

S. Bufalino

36

,

27

,

P. Buncic

36

,

O. Busch

94

,

128

,

Z. Buthelezi

65

,

J.B. Butt

16

,

J.T. Buxton

20

,

D. Caffarri

36

,

X. Cai

7

,

H. Caines

136

,

L. Calero Diaz

72

,

A. Caliva

57

,

E. Calvo Villar

102

,

P. Camerini

26

,

F. Carena

36

,

W. Carena

36

,

F. Carnesecchi

28

,

J. Castillo Castellanos

15

,

A.J. Castro

125

,

E.A.R. Casula

25

,

C. Ceballos Sanchez

9

,

P. Cerello

110

,

J. Cerkala

115

,

B. Chang

123

,

S. Chapeland

36

,

M. Chartier

124

,

J.L. Charvet

15

,

S. Chattopadhyay

132

,

S. Chattopadhyay

100

,

A. Chauvin

93

,

37

,

V. Chelnokov

3

,

M. Cherney

87

,

C. Cheshkov

130

,

B. Cheynis

130

,

V. Chibante Barroso

36

,

D.D. Chinellato

121

,

S. Cho

50

,

P. Chochula

36

,

K. Choi

96

,

M. Chojnacki

81

,

S. Choudhury

132

,

P. Christakoglou

82

,

C.H. Christensen

81

,

P. Christiansen

34

,

(13)

T. Chujo

128

,

S.U. Chung

96

,

C. Cicalo

105

,

L. Cifarelli

12

,

28

,

F. Cindolo

104

,

J. Cleymans

90

,

F. Colamaria

33

,

D. Colella

59

,

36

,

A. Collu

74

,

25

,

M. Colocci

28

,

G. Conesa Balbastre

71

,

Z. Conesa del Valle

51

,

M.E. Connors

136

,

ii

,

J.G. Contreras

40

,

T.M. Cormier

85

,

Y. Corrales Morales

110

,

I. Cortés Maldonado

2

,

P. Cortese

32

,

M.R. Cosentino

120

,

F. Costa

36

,

P. Crochet

70

,

R. Cruz Albino

11

,

E. Cuautle

63

,

L. Cunqueiro

54

,

36

,

T. Dahms

93

,

37

,

A. Dainese

107

,

M.C. Danisch

94

,

A. Danu

62

,

D. Das

100

,

I. Das

100

,

S. Das

4

,

A. Dash

121

,

79

,

S. Dash

48

,

S. De

120

,

A. De Caro

12

,

31

,

G. de Cataldo

103

,

C. de Conti

120

,

J. de Cuveland

43

,

A. De Falco

25

,

D. De Gruttola

12

,

31

,

N. De Marco

110

,

S. De Pasquale

31

,

A. Deisting

97

,

94

,

A. Deloff

77

,

E. Dénes

135

,

i

,

C. Deplano

82

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

36

,

P. Di Nezza

72

,

M.A. Diaz Corchero

10

,

T. Dietel

90

,

P. Dillenseger

53

,

R. Divià

36

,

Ø. Djuvsland

18

,

A. Dobrin

62

,

82

,

D. Domenicis Gimenez

120

,

B. Dönigus

53

,

O. Dordic

22

,

T. Drozhzhova

53

,

A.K. Dubey

132

,

A. Dubla

57

,

L. Ducroux

130

,

P. Dupieux

70

,

R.J. Ehlers

136

,

D. Elia

103

,

E. Endress

102

,

H. Engel

52

,

E. Epple

136

,

B. Erazmus

113

,

I. Erdemir

53

,

F. Erhardt

129

,

B. Espagnon

51

,

M. Estienne

113

,

S. Esumi

128

,

J. Eum

96

,

D. Evans

101

,

S. Evdokimov

111

,

G. Eyyubova

40

,

L. Fabbietti

93

,

37

,

D. Fabris

107

,

J. Faivre

71

,

A. Fantoni

72

,

M. Fasel

74

,

L. Feldkamp

54

,

A. Feliciello

110

,

G. Feofilov

131

,

J. Ferencei

84

,

A. Fernández Téllez

2

,

E.G. Ferreiro

17

,

A. Ferretti

27

,

A. Festanti

30

,

V.J.G. Feuillard

15

,

70

,

J. Figiel

117

,

M.A.S. Figueredo

124

,

120

,

S. Filchagin

99

,

D. Finogeev

56

,

F.M. Fionda

25

,

E.M. Fiore

33

,

M.G. Fleck

94

,

M. Floris

36

,

S. Foertsch

65

,

P. Foka

97

,

S. Fokin

80

,

E. Fragiacomo

109

,

A. Francescon

36

,

30

,

U. Frankenfeld

97

,

G.G. Fronze

27

,

U. Fuchs

36

,

C. Furget

71

,

A. Furs

56

,

M. Fusco Girard

31

,

J.J. Gaardhøje

81

,

M. Gagliardi

27

,

A.M. Gago

102

,

M. Gallio

27

,

D.R. Gangadharan

74

,

P. Ganoti

89

,

C. Gao

7

,

C. Garabatos

97

,

E. Garcia-Solis

13

,

C. Gargiulo

36

,

P. Gasik

93

,

37

,

E.F. Gauger

118

,

M. Germain

113

,

A. Gheata

36

,

M. Gheata

36

,

62

,

P. Ghosh

132

,

S.K. Ghosh

4

,

P. Gianotti

72

,

P. Giubellino

110

,

36

,

P. Giubilato

30

,

E. Gladysz-Dziadus

117

,

P. Glässel

94

,

D.M. Goméz Coral

64

,

A. Gomez Ramirez

52

,

V. Gonzalez

10

,

P. González-Zamora

10

,

S. Gorbunov

43

,

L. Görlich

117

,

S. Gotovac

116

,

V. Grabski

64

,

O.A. Grachov

136

,

L.K. Graczykowski

133

,

K.L. Graham

101

,

A. Grelli

57

,

A. Grigoras

36

,

C. Grigoras

36

,

V. Grigoriev

75

,

A. Grigoryan

1

,

S. Grigoryan

66

,

B. Grinyov

3

,

N. Grion

109

,

J.M. Gronefeld

97

,

J.F. Grosse-Oetringhaus

36

,

J.-Y. Grossiord

130

,

R. Grosso

97

,

F. Guber

56

,

R. Guernane

71

,

B. Guerzoni

28

,

K. Gulbrandsen

81

,

T. Gunji

127

,

A. Gupta

91

,

R. Gupta

91

,

R. Haake

54

,

Ø. Haaland

18

,

C. Hadjidakis

51

,

M. Haiduc

62

,

H. Hamagaki

127

,

G. Hamar

135

,

J.C. Hamon

55

,

J.W. Harris

136

,

A. Harton

13

,

D. Hatzifotiadou

104

,

S. Hayashi

127

,

S.T. Heckel

53

,

H. Helstrup

38

,

A. Herghelegiu

78

,

G. Herrera Corral

11

,

B.A. Hess

35

,

K.F. Hetland

38

,

H. Hillemanns

36

,

B. Hippolyte

55

,

D. Horak

40

,

R. Hosokawa

128

,

P. Hristov

36

,

M. Huang

18

,

T.J. Humanic

20

,

N. Hussain

45

,

T. Hussain

19

,

D. Hutter

43

,

D.S. Hwang

21

,

R. Ilkaev

99

,

M. Inaba

128

,

E. Incani

25

,

M. Ippolitov

75

,

80

,

M. Irfan

19

,

M. Ivanov

97

,

V. Ivanov

86

,

V. Izucheev

111

,

N. Jacazio

28

,

P.M. Jacobs

74

,

M.B. Jadhav

48

,

S. Jadlovska

115

,

J. Jadlovsky

115

,

59

,

C. Jahnke

120

,

M.J. Jakubowska

133

,

H.J. Jang

68

,

M.A. Janik

133

,

P.H.S.Y. Jayarathna

122

,

C. Jena

30

,

S. Jena

122

,

R.T. Jimenez Bustamante

97

,

P.G. Jones

101

,

A. Jusko

101

,

P. Kalinak

59

,

A. Kalweit

36

,

J. Kamin

53

,

J.H. Kang

137

,

V. Kaplin

75

,

S. Kar

132

,

A. Karasu Uysal

69

,

O. Karavichev

56

,

T. Karavicheva

56

,

L. Karayan

97

,

94

,

E. Karpechev

56

,

U. Kebschull

52

,

R. Keidel

138

,

D.L.D. Keijdener

57

,

M. Keil

36

,

M. Mohisin Khan

19

,

iii

,

P. Khan

100

,

S.A. Khan

132

,

A. Khanzadeev

86

,

Y. Kharlov

111

,

B. Kileng

38

,

D.W. Kim

44

,

D.J. Kim

123

,

D. Kim

137

,

H. Kim

137

,

J.S. Kim

44

,

M. Kim

137

,

S. Kim

21

,

T. Kim

137

,

S. Kirsch

43

,

I. Kisel

43

,

S. Kiselev

58

,

A. Kisiel

133

,

G. Kiss

135

,

J.L. Klay

6

,

C. Klein

53

,

J. Klein

36

,

C. Klein-Bösing

54

,

S. Klewin

94

,

A. Kluge

36

,

M.L. Knichel

94

,

A.G. Knospe

118

,

122

,

C. Kobdaj

114

,

M. Kofarago

36

,

T. Kollegger

97

,

A. Kolojvari

131

,

V. Kondratiev

131

,

N. Kondratyeva

75

,

E. Kondratyuk

111

,

A. Konevskikh

56

,

M. Kopcik

115

,

P. Kostarakis

89

,

M. Kour

91

,

C. Kouzinopoulos

36

,

O. Kovalenko

77

,

V. Kovalenko

131

,

M. Kowalski

117

,

G. Koyithatta Meethaleveedu

48

,

I. Králik

59

,

A. Kravˇcáková

41

,

M. Kretz

43

,

M. Krivda

59

,

101

,

F. Krizek

84

,

E. Kryshen

86

,

36

,

M. Krzewicki

43

,

A.M. Kubera

20

,

V. Kuˇcera

84

,

C. Kuhn

55

,

P.G. Kuijer

82

,

A. Kumar

91

,

J. Kumar

48

,

L. Kumar

88

,

S. Kumar

48

,

P. Kurashvili

77

,

A. Kurepin

56

,

A.B. Kurepin

56

,

A. Kuryakin

99

,

M.J. Kweon

50

,

Y. Kwon

137

,

S.L. La Pointe

110

,

P. La Rocca

29

,

P. Ladron de Guevara

11

,

C. Lagana Fernandes

120

,

I. Lakomov

36

,

R. Langoy

42

,

C. Lara

52

,

A. Lardeux

15

,

A. Lattuca

27

,

E. Laudi

36

,

R. Lea

26

,

L. Leardini

94

,

G.R. Lee

101

,

S. Lee

137

,

F. Lehas

82

,

R.C. Lemmon

83

,

V. Lenti

103

,

E. Leogrande

57

,

I. León Monzón

119

,

H. León Vargas

64

,

M. Leoncino

27

,

P. Lévai

135

,

S. Li

7

,

70

,

X. Li

14

,

J. Lien

42

,

R. Lietava

101

,

S. Lindal

22

,

V. Lindenstruth

43

,

C. Lippmann

97

,

M.A. Lisa

20

,

H.M. Ljunggren

34

,

D.F. Lodato

57

,

P.I. Loenne

18

,

V. Loginov

75

,

C. Loizides

74

,

X. Lopez

70

,

E. López Torres

9

,

A. Lowe

135

,

P. Luettig

53

,

M. Lunardon

30

,

G. Luparello

26

,

T.H. Lutz

136

,

A. Maevskaya

56

,

M. Mager

36

,

S. Mahajan

91

,

Referências

Documentos relacionados

Este trabalho teve como objetivo comprovar a capacidade predatória de Doru luteipes Scudder (Dermaptera, Forficulidae) quando exposta ao tripes do feijão,

MATERIAL E MÉTODOS 1- Efeito da distância entre juvenis de segundo estádio e as raízes de tomateiro na presença ou não de Acinobacter johnsonii nos danos e reprodução de

Neste capítulo será abordada a importância em se conhecer conceitos fundamentais específicos a cada elemento estrutural que constitui o projeto de estruturas, fazendo uma análise

Joaquim Gomes de Souza comete certo exagero ao afirmar que na sua mem´oria M´etodos Gerais de Integra¸c˜ao, em 69 p´aginas, abrangeria o c´alculo todo, al´em de reproduzir

Mike Featherstone refere ao modo como os locais cotidianos tornam-se locais de experimentação imagética e de usos diversos (não necessariamente normativos, como querem as redes

Classes de capacidade de uso I - terras cultivaveis, aparentemente sem restric;:iies ao uso, nao necessitando de praticas especiais de conservac;:iio do solo; A- Terras

existe no filme. É um falso documentário, gênero que será discutido com detalhes mais adiante. Nesses casos, os filmes estabelecem uma discussão e friccionam os

Em vista dos aspectos acima discutidos, este trabalho teve como objetivos gerais: a) Conceber um modelo simples e continuo, para simulacao do escoamento e erosao, que considere