• Nenhum resultado encontrado

1ª Série - Ensino Médio Caderno do Professor Volume Material Complementar

N/A
N/A
Protected

Academic year: 2021

Share "1ª Série - Ensino Médio Caderno do Professor Volume Material Complementar"

Copied!
140
0
0

Texto

(1)

Material Complementar

Versão Preliminar

1ª Série - Ensino Médio

Caderno do Professor

(2)
(3)

Expedien

te

EXPEDIENTE

ORGANIZADORES E COLABORADORES

Governador do Estado de Goiás

Marconi Ferreira Perillo Júnior

Secretária de Estado de Educação, Cultura e Esporte

Raquel Figueiredo Alessandri Teixeira

Superintendente Executivo de Educação

Marcos das Neves

Superintendente de Ensino Fundamental

Luciano Gomes de Lima

Superintendente de Ensino Médio

João Batista Peres Júnior

Superintendente de Desporto Educacional

Maurício Roriz dos Santos

Superintendente de Gestão Pedagógica

Marcelo Jerônimo Rodrigues Araújo

Superintendente de Inclusão

Márcia Rocha de Souza Antunes

Superintendente de Segurança Escolar e Colégio Militar

Cel. Júlio Cesar Mota Fernandes

Gerente de Estratégias e Material Pedagógico

Wagner Alceu Dias

Língua Portuguesa

Ana Christina de P. Brandão Débora Cunha Freire

Dinete Andrade Soares Bitencourt Edinalva Filha de Lima

Edinalva Soares de Carvalho Oliveira Elizete Albina Ferreira

Ialba Veloso Martins Lívia Aparecida da Silva Marilda de Oliveira Rodovalho

Matemática

Abadia de Lourdes da Cunha Alan Alves Ferreira

Alexsander Costa Sampaio Carlos Roberto Brandão Cleo Augusto dos Santos Deusite Pereira dos Santos Inácio de Araújo Machado Marlene Aparecida da Silva Faria Regina Alves Costa Fernandes Robespierre Cocker Gomes da Silva Silma Pereira do Nascimento

Coordenadora do Projeto

Giselle Garcia de Oliveira

Revisoras

Luzia Mara Marcelino Maria Aparecida Costa Maria Soraia Borges

Nelcimone Aparecida Gonçalves Camargo

Projeto Gráfico e Diagramação

Adolfo Montenegro Adriani Grün

Alexandra Rita Aparecida de Souza Climeny Ericson d’Oliveira Eduardo Souza da Costa Karine Evangelista da Rocha

Colaboradores

Ábia Vargas de Almeida Felicio Ana Paula de O. Rodrigues Marques Augusto Bragança Silva P. Rischiteli Erislene Martins da Silveira Giselle Garcia de Oliveira

Paula Apoliane de Pádua Soares Carvalho Sarah Ramiro Ferreira

Valéria Marques de Oliveira Vanuse Batista Pires Ribeiro Wagner Alceu Dia

Idealização Pedagógica

Marcos das Neves - Criação e Planejamento

(4)
(5)

Ap

resen

taç

ão

APRESENTAÇÃO

Queridos professores, coordenadores pedagógicos, gestores e alunos,

Projeto inovador e genuinamente goiano, o Aprender+ está sendo ampliado em 2018 para todos os alunos do 5º ano do Ensino Fundamental à 3ª série do Ensino Médio. Lançado em fevereiro de 2017, o projeto foi totalmente elaborado pela equipe da Secretaria de Educação, Cultura e Esporte (Seduce) e integra o compromisso do Governo de Goiás de ter a excelência e a equidade como pilares norteadores das políticas públicas do setor.

O Aprender+ é um material pedagógico complementar destinado ao uso de professores, alunos, coordenadores e gestores, dentro e fora da sala de aula. Inclui conhecimentos e expectativas do Currículo Referência do Estado de Goiás e da Matriz de Referência do Saeb.

Além das atividades de Língua Portuguesa e Matemática, fundamentais para a vida de todos, o conteúdo de 2018 inclui as habilidades socioemocionais, que ganharam importância no mundo inteiro nas últimas décadas. Conteúdo específico, formatado em parceria com o Instituto Ayrton Senna. A abordagem socioemocional ensina a colocarmos em prática as melhores atitudes para controlar emoções, alcançar objetivos, demonstrar empatia, manter relações sociais positivas e tomar decisões de maneira responsável. Visa apoiar o aluno no desenvolvimento das competências que ele necessita para enfrentar os desafios do século 21.

Esse material une modernidade e qualidade pedagógica em uma oportunidade para que todos os alunos da rede tenham chance de aprender mais.

(6)
(7)

Apresentação ... 05

Matemática ... 09

Unidade 1 ... 13

Unidade 2 ... 21

Unidade 3 ... 27

Unidade 4 ... 35

Unidade 5 ... 45

Unidade 6 ... 51

Unidade 7 ... 59

Unidade 8 ... 67

Língua Portuguesa ... 75

Unidade 1 ... 79

Unidade 2 ... 85

Unidade 3 ... 91

Unidade 4 ... 97

Unidade 5 ... 103

Unidade 6 ... 107

Unidade 7 ... 111

Unidade 8 ... 117

Competências Socioemocionais ... 123

Sumário

(8)
(9)

Ensino Médio

Caderno do Professor

Volume 2

Série

(10)
(11)

Ma

temá

tic

a

MATEMÁTICA

APRESENTANDO A UNIDADE 1

O QUE SABER SOBRE ESTA UNIDADE?

Professor(a), esta unidade propõe atividades relacionadas com três expectativas de aprendizagem, do Currículo Referência da Rede Estadual de Educação de Goiás de Matemática, da 1ª Série do Ensino Médio.

As atividades foram elaboradas, tendo por base essas três expectativas seguindo uma gradação de complexidade entre eles. Assim, pretende-se estimular as habilidades dos alunos em identificar uma função polinomial do 2º grau, compreender o significado dos coeficientes de uma função polinomial do 2º grau, e calcular as raízes e o vértice (pontos de máximo e de mínimo) de uma função polinomial do 2º grau.

QUAIS EXPECTATIVAS DE APRENDIZAGEM/DESCRITORES ESTÃO EM FOCO?

Esta unidade tem por base as seguintes expectativas de aprendizagem:

î E 30 ─ Identificar uma função polinomial do 2º grau.

î E 33 ─ Compreender o significado dos coeficientes de uma função polinomial do 2º grau.

î E 31 ─ Calcular as raízes e o vértice (pontos de máximo e de mínimo) de uma função polinomial do 2º grau. Assim as atividades estão elaboradas permitindo aos estudantes o desenvolvimento desses conceitos através de uma gradação intencional embasadas nos descritores os quais diagnosticam a consolidação dessas habilidades no estudante.

QUAIS AS ATIVIDADES PROPOSTAS?

Professor (a), nas atividades 1 e 2 é desenvolvida a habilidade do estudante em identificar uma função polinomial do 2º grau. Nas atividades de 3 a 6, de compreender o significado dos coeficientes de uma função polinomial do 2º grau, e nas atividades 7 e 10, de identificar calcular as raízes de uma função polinomial do 2º grau.

Os estudantes poderão resolver, individualmente as atividades, mas, é fundamental que eles socializem com os demais colegas. É imprescindível a correção das atividades propostas de modo que engaje e envolva toda a turma e esclareça as dúvidas que, por ventura, os alunos manifestarem.

Ressaltamos a importância de você, professor (a), discutir outras situações que possam colaborar/ampliar/ sistematizar o conhecimento dos estudantes. Portanto, é fundamental provocar os alunos, percebendo as dificuldades deles e procurando saná-las. Lembrando que o caderno do estudante contempla as expectativas de aprendizagem e alguns descritores. Desta forma, caso identifique alguma lacuna no ensino e/ou aprendizagem do aluno, pesquise outras situações que demonstrem essas habilidades presentes na unidade.

Professor(a), utilize cada atividade, de modo que alcance a proposta desta unidade e, ao mesmo tempo, como instrumento de avaliação para sua prática pedagógica.

(12)

Ma

temá

tic

a

12

MATEMÁTICA

UNIDADE 1

CONTEÚDO(S)

î Função polinomial do 2º grau.

EIXO(S) TEMÁTICO(S)

î Números e operações.

EXPECTATIVAS DE APRENDIZAGEM

î E 30 ─ Identificar uma função polinomial do 2º grau.

î E 33 ─ Compreender o significado dos coeficientes de uma função polinomial do 2º grau.

(13)

Lín

gua P

ortu

gu

esa

UNIDADE 1

ATIVIDADES

A função , é denominada de função polinomial do 2º grau.

Considerando essa definição, identifique a seguir a alternativa que apresenta uma função polinomial do 2º grau.

𝒇: ℝ → ℝ na forma 𝒇 𝒙 = a𝒙𝟐+ 𝒃𝒙 + 𝒄, com a ∈ ℝe b e c ∈ ℝ

1.

(A)𝑓 𝑥 = 2𝑥3− 3𝑥 + 5. (B)𝑓 𝑥 = 12𝑥2+ 5𝑥 − 2. (C)𝑓 𝑥 = 0𝑥2− 𝑥 − 1. (D)𝑓 𝑥 = 𝑥6− 7𝑥 + 8. (E)𝑓 𝑥 = 5𝑥 + 10. Gabarito: B Solução

Professor(a), para o estudante responder as atividades 1 e 2 é necessário que ele saiba identificar uma função polinomial de 2º grau. O enunciado da questão apresenta a definição desta função sendo: a função

𝑓: ℝ → ℝ na forma 𝑓 𝑥 = 𝑎𝑥2+ 𝑏𝑥 + 𝑐, com 𝑎 ∈ ℝe 𝑏 𝑒 𝑐 ∈ ℝ, que é denominada de função polinomial do 2º grau.

Logo, para satisfazer a definição e observando os coeficientes a, b e c , tem-se que a alternativa correta

é a “B”, com a = 12 , b = 5 e c = -2.

Observe as seguintes funções.

2.

𝒇 𝒙 = −𝒙2− 3𝒙 − 3,𝒈 𝒙 = 4𝒙3+ 2𝒙 − 1, 𝒉 𝒙 = 3𝒙 + 4,𝒋 𝒙 = 2𝒙2+ 3, 𝒍 𝒙 = 𝒙2− 9𝒙 A alternativa a seguir que apresenta somente funções polinomiais de 2º grau é

(A) 𝑓 𝑥 , ℎ 𝑥 𝑒𝑗 𝑥 . (B) 𝑔 𝑥 , ℎ 𝑥 𝑒 𝑗 𝑥 . (C) 𝑓 𝑥 , 𝑗 𝑥 𝑒 𝑙 𝑥 . (D)𝑓 𝑥 , 𝑔 𝑥 𝑒 𝑗 𝑥 . (E)𝑓 𝑥 , 𝑔 𝑥 𝑒 𝑙 𝑥 . Gabarito: C Solução

Professor(a), para o estudante responder essa atividade é necessário que ele saiba identificar as funções polinomiais de 2º grau. (Veja definição na solução da atividade 1).

Logo as funções:

𝑓 𝑥 = −𝑥2− 3𝑥 − 3, 𝑗 𝑥 = 2𝑥2+ 3,𝑙 𝑥 = 𝑥2− 9𝑥 . são funções polinomiais de 2º grau.

Observe o gráfico a seguir.

3.

(14)

Ma

temá

tic

a

14

(A) os coefi cientes a>0, b>0 e c>0. (B) os coefi cientes a>0, b>0 e c<0. (C) os coefi cientes a>0, b<0 e c>0. (D) os coefi cientes a>0, b=0 e c>0. (E) os coefi cientes a>0, b<0 e c<0. Gabarito: A

Solução

Professor(a), para o estudante responder as ati vidades de 3 a 5 é necessário que ele compreenda o signifi cado dos coefi cientes a,b e c da equação polinomial de 2º grau. Tem-se que função

f de ℝ em ℝ dada pela lei de formação 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐,

Sabe-se a, b e c são os coefi cientes dessa função. Sobre os coefi cientes pode-se dizer que:

Se a>0 a concavidade da parábola é voltada para cima. E se a<0 a concavidade da parábola é voltada para baixo.

A análise do coefi ciente “b” nos diz à inclinação que a parábola toma após passar o eixo Y.

Este é o ponto que a parabola corta o Y, apos este ponto a curva segue descendo Logo, “b” é negati vo (b<0). números reais e a ≠ 0. x Y b > 0 x

Y O “b” é maior que zero, pois, acompanhando a curva iremos subir após o ponto de corte.

x

Y Agora o “b” é igual a zero, pois logo após o ponto de corte, segue reto.

A função do coefi ciente “c” é indicar onde a parábola “corta” o eixo Y. Se ele for positi vo ela irá “cortar” o eixo Y acima da origem; se for negati vo irá “cortar” acima da origem e; se for ZERO, irá cortar o eixo Y na origem, ou seja, ponto (0,0).

(15)

Ma

temá

tic

a

Observe o gráfi co a seguir:

4.

-4

-5

Observando os coefi cientes da função polinomial do 2º grau, representada no gráfi co, temos que:

(A) os coefi cientes a<0, b>0 e c>0. (B) os coefi cientes a<0, b>0 e c=0. (C) os coefi cientes a<0, b>0 e c<0. (D) os coefi cientes a<0, b=0 e c>0. (E) os coefi cientes a<0, b<0 e c<0. Gabarito: C

Solução

Professor(a), observe as justi fi cati vas da análise dos coefi cientes na ati vidade 2.

O gráfi co a seguir representa uma função polinomial do 2º grau.

5.

(16)

Ma

temá

tic

a

16

Os gráfi cos a seguir representam uma função polinomial do 2º grau.

6.

Gráfi co 1 Gráfi co 2 Gráfi co 3

Sobre os coefi cientes da equação polinomial de 2º grau, é correto o que se afi rma em:

(A) no Gráfi co 1, a>0,b<0 e c>0. (B) no Gráfi co 2, a>0,b>0 e c<0. (C) no Gráfi co 3, a<0,b>0 e c<0.

(D) no Gráfi co 1, a abertura da concavidade é maior, pois o coefi ciente “a” da função que determina esse Gráfi co é menor que o coefi ciente “a” dos Gráfi cos 2 e 3.

(E) no gráfi co 2 a abertura da concavidade é maior, pois o coefi ciente”a” da função que determina esse Gráfi co é menor que o coefi ciente “a” dos Gráfi cos 1 e 3.

Gabarito: D

Solução

Professor(a), com essa ati vidade fi nalizou-se a série com ati vidades para o desenvolvimento da habilidade do estudante compreender o signifi cado dos coefi cientes de uma função polinomial do 2º grau. Percebe-se que o coefi ciente “a” também controla a abertura da parábola. Quanto maior for o valor absoluto desse parâmetro, menor será a abertura, e vice-versa.

Sobre os coefi cientes a, b e c é correto o que se afi rma em:

(A) uma vez que o vérti ce passa pela origem do sistema de coordenadas cartesianas a=0. (B) uma vez que o vérti ce passa pela origem do sistema de coordenadas cartesianas b=0. (C) uma vez que o vérti ce passa pela origem do sistema de coordenadas cartesianas b>0. (D)a>0,b>0 e c>0.

(E) a>0,b=0 e c>0. Gabarito: B

Solução

Professor(a), nesta ati vidade o estudante precisa compreender o comportamento de uma função polinomial de 2º grau. Tem-se então:

O coefi ciente “a>0”, pois a concavidade da parábola está voltada para cima. O coefi ciente “b=0”, pois logo após o ponto de corte, iremos reto.

(17)

Ma

temá

tic

a

Determine, se existi rem, os zeros das funções quadráti cas abaixo:

7.

a)𝒇 𝒙 = 𝒙2− 𝟑𝒙 c)𝒇(𝒙) = −𝒙² + 2𝒙 + 8 b)𝒇 𝒙 = 𝒙2+ 4𝒙 + 5 d)𝒇 𝒙 =– 𝒙² + 3𝒙 – 5 Solução

Professor (a), para o estudante responder essa ati vidade é necessário que ele saiba calcular as raízes de uma função polinomial do 2º grau.

Uma das formas de resolver essa equação é pela fórmula de Bháskara.

𝑥=- b ± b2a2- 4ac

uma vez que não existe raiz quadrada de número negati vo, não existe raiz real.

, uma vez não existe raiz quadrada de número negati vo, não existe raiz real.

a) x =3 ± 92 → x1= 3 e x2 = 0.

b) x=− 4 ± 16 − 202 → x=− 4 ± −42 ,

c) x=− 2 ±−24 + 32→ x=−2 ± 36−2 →x1=−2 e x2= 4.

d) x=− 3 ± 9 − 202 → x=−4 ± −112

Seja 𝒇:ℝ → ℝ dada por 𝒇 𝒙 = 𝒙2+ 4𝒙 − 5.

8.

Sobre essa função é correto o que se afi rma em:

(A) os zeros de ( ) são -1 e 5.

(B) o produto das raízes é igual ao quociente da raiz negati va pela positi va. (C) a soma das raízes é igual a 6.

(D) a raíz menor subtraída da maior é igual a 5.

(E) as raízes pertencem ao conjunto dos números naturais.

𝑓 𝑥

Gabarito: B

Solução

Professor(a), para o estudante responder essa ati vidade é necessário que ele saiba calcular as raízes da função polinomial do 2º grau.

Uma das formas de resolver essa equação é pela fórmula de Bháskara, defi nida por:

𝑥 =−𝑏 ± 𝑏2𝑎2− 4𝑎𝑐→ 𝑥 =−4 ± 62 → 𝑥1= 1 𝑒 𝑥2= −5 Produto das raízes = 1 ∙ ( -5 ) = -5.

Quociente das raízes negati va pelo positi va = -51 = -5.

(PM ES 2013 – Exatus/adaptada). Sobre funções polinomiais é correto o que se afi rma em:

9.

(A) o gráfi co da função y = x² + 2x não intercepta o eixo y.

(B) o gráfi co da função y = x² + 3x + 5 possui concavidade para baixo. (C) o gráfi co da função y = 5x – 7 é decrescente.

(D) a equação x² + 25 = 0 possui duas raízes reais e diferentes. (E) a soma das raízes da função y = x²–3x –10 é igual a 3.

(18)

Ma

temá

tic

a

18

Gabarito: E Solução

Professor(a), para o estudante responder essa ati vidade é necessário que ele saiba calcular as raízes da uma função polinomial de 2º grau e analisar gráfi cos de funções polinomiais de 1º e 2º graus.

Veja:

(A) FALSA: Uma parábola sempre intercepta o eixo y. (B) FALSA: O valor de a = 1 > 0. Concavidade para cima. (C) FALSA: O valor de a = 5 > 0. Crescente.

(D) FALSA: Nenhum número Real elevado ao quadrado torna-se negati vo (raiz complexa). (E) VERDADEIRA

Raízes de y = x² – 3x – 10

O estudante poderá achar as raízes pela fórmula de Bháskara.

𝑥 =−𝑏 ± 𝑏2𝑎2− 4𝑎𝑐→ 𝑥 =3 ± 9 + 402 → 𝑥 = 5 𝑒 𝑥 = −2, logo a soma das raízes dá 3.

(PM ES 2013 – Funcab). Uma festa no páti o de uma escola reuniu um público de 2 800 pessoas numa área retangular de dimensões x e x + 60 metros.

O valor, em metros, de modo que o público tenha sido de, aproximadamente, quatro pessoas por metro quadrado, é:

10.

(A) 5 m (B) 6 m (C) 8 m (D) 10 m (E) 12 m Gabarito: D Solução

Professor(a), para o estudante responder essa ati vidade é necessário que ele saiba que a área de um retângulo é calculada multi plicando-se a base pela altura.

Sendo: Área = x.(x + 60)→Área = x² + 60x

Uma vez que existem 2 800 pessoas e calcula-se 4 pessoas por m²:

2 800 x2+ 60x =4

4.(x² + 60x) = 2800 4x² + 240x = 2800 4x² + 240x – 2800 = 0

Dividindo todos os membros por 4: x² + 60x – 700 = 0

É fácil observar que as raízes são 10 e -70.

(19)

Ma

temá

tic

a

MATEMÁTICA

APRESENTANDO A UNIDADE 2

O QUE SABER SOBRE ESTA UNIDADE?

Professor(a), esta unidade propõe ati vidades relacionadas com duas expectati vas de aprendizagem, do Currículo Referência da Rede Estadual de Educação de Goiás de Matemáti ca da 1ª Série do Ensino Médio.

As ati vidades foram elaboradas, tendo por base três subdescritores, seguindo uma gradação de complexidade entre eles. Assim, pretende-se esti mular as habilidades dos alunos em determinar as coordenadas do vérti ce da parábola gerada por uma função polinomial de 2º grau e resolver problemas que envolvam os pontos de máximo e mínimo no gráfi co dessa mesma função.

QUAIS EXPECTATIVAS DE APRENDIZAGEM/DESCRITORES ESTÃO EM FOCO?

Esta unidade tem por base as seguintes expectati vas de aprendizagem:

î E 31 ─ Calcular as raízes e o vérti ce (pontos de máximo e de mínimo) de uma função polinomial do 2º grau.

î E 36 ─ Resolver problemas que envolvam os pontos de máximo ou de mínimo no gráfi co de uma função polinomial do 2º grau.

î E 34 ─ Representar grafi camente uma função polinomial do 2º grau.

Os subdescritores contemplados, a parti r dessas expectati vas, são: D25A – Determinar as coordenadas do vérti ce da parábola gerada por uma função polinomial de 2º grau; D25B – Resolver problemas que envolvam os pontos de máximo no gráfi co de uma função polinomial do 2º grau e o D25C – Resolver problemas que envolvam os pontos de mínimo no gráfi co de uma função polinomial do 2º grau. As habilidades a serem desenvolvidas, propostas pelas expectati vas, são calcular e resolver problemas que envolvam as raízes e vérti ces de uma função polinomial do 2º grau e representar grafi camente essa função. As ati vidades, estão elaboradas de forma que possibilitam aos estudantes o desenvolvimento desses conceitos através de uma gradação intencional embasadas nos subdescritores os quais diagnosti cam a consolidação dessas habilidades no estudante.

QUAIS AS ATIVIDADES PROPOSTAS?

Professor (a), nas ati vidades 1, 2, 3 e 4, os estudantes determinarão as coordenadas do vérti ce da parábola gerada por uma função polinomial de 2º grau. Nas ati vidades 5 e 6, resolverão problemas que envolvam os pontos de máximo no gráfi co de uma função polinomial do 2º grau e as ati vidades 7 e 8 têm como objeti vo também de resolver problemas, mas que envolvam os pontos de mínimo no gráfi co desta mesma função. Nas ati vidades 9 e 10, representarão grafi camente uma função polinomial do 2º grau.

Os estudantes poderão resolver, individualmente, as ati vidades; mas, é fundamental que eles socializem com os demais colegas. É imprescindível a correção das ati vidades propostas, de modo que engaje e envolva toda a turma e esclareça as dúvidas que, por ventura, os alunos manifestarem.

Ressaltamos a importância de você, professor (a), discuti r outras situações que possam colaborar/ampliar/ sistemati zar o conhecimento dos estudantes. Portanto, é fundamental provocar os alunos, percebendo as difi culdades deles e procurando saná-las. Lembrando que o caderno do estudante contempla as expectati vas de aprendizagem e alguns descritores. Desta forma, caso identi fi que alguma lacuna no ensino e/ou aprendizagem do aluno, pesquise outras situações que demonstrem essas habilidades presentes na unidade.

Professor(a), uti lize cada ati vidade, de modo que alcance a proposta desta unidade e, ao mesmo tempo, como instrumento de avaliação para sua práti ca pedagógica.

(20)

Ma

temá

tic

a

20

MATEMÁTICA

UNIDADE 2

CONTEÚDO(S)

î Números naturais.

EIXO(S) TEMÁTICO(S)

î Função polinomial do 2º grau.

EXPECTATIVAS DE APRENDIZAGEM

î E 31 ─ Calcular as raízes e o vértice (pontos de máximo e de mínimo) de uma função polinomial do 2º grau.

î E 36 ─ Resolver problemas que envolvam os pontos de máximo ou de mínimo no gráfico de uma função polinomial do 2º grau.

î E 34 ─ Representar graficamente uma função polinomial do 2º grau.

DESCRITOR(ES) – SAEB / SUBDESCRITOR(ES)

î D25A ─ Determinar as coordenadas do vértice da parábola gerada por uma função polinomial de 2º grau.

î D25B ─ Resolver problemas que envolvam os pontos de máximo no gráfico de uma função polinomial do 2º grau.

î D25C ─ Resolver problemas que envolvam os pontos de mínimo no gráfico de uma função polinomial do 2º grau.

(21)

Ma

temá

tic

a

UNIDADE 2

ATIVIDADES

Determine as coordenadas do vértice da parábola descrita pela função:

1.

𝒇 𝒙 = 2𝒙2− 4𝒙 + 6 Solução

Professor(a), reforce para os estudantes que para determinarmos os vértices de uma parábola de uma função polinomial de 2º grau, tem-se que encontrar o par ordenado de pontos que constituem as suas coordenadas.

Assim, as coordenadas do vértice da parábola descrita pela função polinomial de 2º grau

𝑓 𝑥 = 𝑎𝑥2+ 𝑏𝑥 + 𝑐 podem ser calculadas pelas fórmulas:

𝑉𝑥= −𝑏2 𝑎 e 𝑉𝑦= −∆4𝑎, onde 𝑎 = 2; 𝑏 = −4 𝑒 𝑐 = 6 𝑉𝑥=−𝑏2𝑎 → 𝑉𝑥=− −42 ∙ 2 =1 𝑉𝑦=−∆4𝑎 → ∆= 𝑏2− 4𝑎𝑐 → ∆= −4 2− 4 ∙ 2 ∙ 6 → ∆= 16 − 48 → ∆= −32 𝑉𝑦=−(−32)4 ∙ 2 → 𝑉𝑦=328 =4 𝑉 = (1,4)

Determine as coordenadas dos vértices das funções a seguir:

2.

a) 𝒇 𝒙 = 3𝒙2− 4𝒙 + 1

b) 𝒇 𝒙 = −𝒙2+ 4𝒙 + 5 Solução

Professor (a), retome as fórmulas:

𝑉𝑥= −𝑏2𝑎 e 𝑉𝑦= −∆4𝑎 a) 𝑓 𝑥 = 3𝑥2− 4𝑥+ 1 ∆= 𝑏2 − 4𝑎𝑐 𝑉𝑥=−𝑏2𝑎=−(−2 3 =4) 46 =23 𝑉𝑦=−∆4𝑎=−[(−4) 2431] 43 = −( 1612 ) 12 =−12 = −4 13 𝑉 = ( 23,−13 ) b) 𝑓 𝑥 = −𝑥2+ 4𝑥 + 5 𝑉𝑥=−𝑏2𝑎=2 ∙ ( −−( 4 1 ))=−42 = 2 ∆= 𝑏2− 4𝑎𝑐 𝑉𝑦=−∆4𝑎=−[ (4 ) 24 ∙ ( −1 ) ∙ 5 ] 4 ∙ (−1) =−( 16− + 420 )=−−364 = 9 𝑉 = 2,9

Observe a função polinomial a seguir:

3.

𝒇 𝒙 = 𝒙2 − 2𝒙 − 3

As coordenadas do vértice dessa função correspondem a

(A) V=(1,-4). (B) V=(1,4). (C) V=(-4,1). (D) V=(4,-1). (E) V=(-1,4). Gabarito: A Solução

Professor(a), retome as fórmulas:𝑉𝑥= −𝑏

2𝑎 e 𝑉𝑦= −∆4𝑎 Relacione com a função:𝑓 𝑥 = 𝑥2− 2𝑥 − 3

𝑉𝑥=−𝑏2𝑎= −( −2 ) 21 = 2 2 = 1 ∆= 𝑏2− 4𝑎𝑐 𝑉=−∆4 =−[ (−2 )244 ∙ ( 1 1 ) ∙ −3 ]=−( 4 + 412 )=−4 = −4 16 𝑓 𝑥 = 𝑥2 − 2𝑥 − 3

(22)

Ma

temá

tic

a

22

Observe a função polinomial a seguir:

4.

𝒇 𝒙 = 2𝒙2− 4𝒙 + 5

As coordenadas do vérti ce dessa função correspondem a

(A) V=(-2,3). (B) V=(1,-3). (C) V=(-3,1). (D) V=(3,-2). (E) V=(1,3). Gabarito: E Solução

Professor(a), retome as fórmulas:𝑉𝑥= −𝑏2𝑎 e 𝑉𝑦= −∆4𝑎 Relacione com a função:𝑓 𝑥 = 2𝑥2− 4𝑥 + 5

𝑉𝑥=−𝑏2𝑎=−( −22 =4 ) 44 = 1 ∆= 𝑏2− 4𝑎𝑐 𝑉𝑦=−∆4𝑎= −[( −4 )24 ∙ ( 2 ) ∙ ( 5 )] 4 ∙ (2) = −[ 16 40 ] 8 =−[ −824 ]= 3 𝑉 = (1, 3)

O lucro de uma fábrica de veículos nas suas vendas é dado pela função: L(x) = -5x2 + 100x - 80, onde x

representa o número de veículos vendidos e L(x) é o lucro dessa fábrica determinado em milhares de reais. Calcule:

5.

a) o lucro máximo obti do pela fábrica na venda de seus veículos.

b) quantos veículos precisam ser vendidos para obtenção do lucro máximo. Solução

Professor(a), na função percebe-se que o termo a= -5 < 0. Isso signifi ca que a parábola que representa essa função tem a concavidade voltada para baixo, tendo, portanto, um ponto de máximo absoluto, que é o vérti ce da parábola. O lucro máximo dessa fábrica será dado pela coordenada do vérti ce da função

𝐿 𝑥 = -5𝑥2+ 100𝑥 − 80

𝐿: 𝑉𝑦= −∆4𝑎onde ∆= 𝑏2− 4𝑎𝑐

Assim tem-se:

𝑉𝑦= −∆4𝑎 = -[(100)2-4 4 ∙ (-5)∙(-5) ∙ (-80)] = -[10 000-20-1 600] = [-8 400-20 ]= 420

Logo, o lucro máximo da fábrica será de R$ 420 000,00.

b) O número de veículos a serem vendidos para obtenção do lucro máximo será dado pela coordenada do vérti ce dox: 𝑉𝑥= −𝑏2𝑎

Assim tem-se:

𝑉𝑥 =−𝑏2𝑎 =2−(100) ∙ (−5)=-100-10 = 10

Portanto, conclui-se que a fábrica precisa vender 10 veículos para obter o lucro máximo desejado. (ESPM-SP-adaptada) A estrutura do lucro de uma pequena empresa pode ser estudada através da equação , sendo o lucro em reais quando a empresa vende x unidades. O número de unidades a serem vendidas a fi m de se obter o lucro máximo e o valor deste, respecti vamente, corresponde a

𝐿 𝑥 = −𝑥2+ 120𝑥 − 2 000

6.

(A) exatamente 60 unidades e lucro maior que R$ 1 500. (B) exatamente 50 unidades e lucro de R$ 1 600.

(C) entre 50 e 55 unidades e lucro maior que R$ 1 500. (D) entre 55 e 60 unidades e lucro entre R$ 1 550 e 1 650. (E) exatamente 55 unidades e lucro menor que R$ 1 700. Gabarito: A

Solução

Professor(a), enfati ze para os estudantes que o número de unidades e o lucro máximo correspondem, respecti vamente, aos vérti ces x e y da parábola da função polinomial de 2º grau𝐿 𝑥 = −𝑥2+ 120𝑥 − 2 000 Portanto, encontrando esses valores tem-se:

𝑉𝑥=−𝑏2𝑎=−( 2 ∙ (−120 1 ))=−1202 = 60 unidades

(23)

Ma

temá

tic

a

Uma fábrica de camisa produz com o custo defi nido pela seguinte função polinomial de 2º grau C(x) = x2 - 80x + 3 000. Considerando o custo C desta fábrica em reais e x a quanti dade de unidades produzidas,

determine a quanti dade de camisas a serem produzidas para que o custo seja mínimo e o valor deste custo mínimo.

7.

Solução

Professor(a), ressalte para os estudantes que a parábola é com concavidade para cima pois a=1>0. A quanti dade de unidades vendidas para que o custo seja mínimo será dado pelo vérti ce do x. Assim, tem-se pela função 𝐶 𝑥 = 𝑥2− 80𝑥 + 3 000:

𝑋𝑣 =−𝑏2𝑎 =−(−80)2 ∙ (1) =802 = 40 𝑢𝑛𝑖𝑑𝑎𝑑𝑒𝑠

Para que o custo seja mínimo, a fábrica deverá produzir somente 40 unidades. O valor do custo mínimo é dado pelo vérti ce do y:

𝑌𝑣=−∆4𝑎 =-[(-80) 2 - 4 ∙ (1) ∙ (3 000)]4 ∙ (1) =-[6 400 - 12 000]4 =5 6004 = 1 400

O valor do custo mínimo será de R$ 1 400. Observe a imagem a seguir:

8.

θ (*c)

O comportamento do volume de um líquido conforme o aumento da temperatura segue a seguinte função 𝒇 𝒙 = 0,05𝒙2− 0,5𝒙 + 7.

O menor volume ocorre em qual temperatura?

(A) 4°C. (B) 4,2°C. (C) 4,5°C. (D) 4,8°C. (E) 5°C. Gabarito: E Solução

Professor(a), o volume mínimo ocorrerá para certa temperatura que será determinada através da fórmula usual para determinar , um fato interessante é que a ati vidade não busca determinar o volume para temperatura desejada, o que se deseja é apenas a temperatura. Assim, temos a coordenada da função 𝑓 𝑥 = 0,05𝑥2− 0,5𝑥 + 7 defi nida assim: 𝑋𝑣

𝑋𝑣=−𝑏2𝑎 =2∙(0,05) =-[-0,5] 0,50,1 =5°𝐶

Esboce o gráfi co da função polinomial do 2º grau𝑭 𝒙 = 𝒙2− 2𝒙 − 3. Solução

Professor(a), ressalte como estudante que para esboçar o gráfi co, faz-se necessário determinar alguns pontos, seguindo alguns passos, sendo:

1º) analisar a função polinomial: o termo a=1>0 então a concavidade é voltada para cima. 2º) encontrar os vérti ces:

𝑌𝑣=−∆4𝑎 = -[(2)2- 4 ∙ (1) ∙ (-3)] 4 ∙ (1) = -[4+12] 4 = -16 4 = −4 𝑋𝑣

9.

(°C)

(24)

Ma

temá

tic

a

24

3º) atribuir dois valores menores e dois maiores que o que sejam equidistantes do vérti ce. Fazer a tabela e com alguns cálculos, tem-se: 𝑋𝑣

X Y -1 0 1 2 3 0 -3 -4 -3 0

4º) marcar os pontos no plano cartesiano usando as coordenadas x e y e depois ligá-los de forma que o desenho seja uma parábola, conforme o gráfi co a seguir:

Esboce o gráfi co da função polinomial do 2º grau𝒇(𝒙) = –𝒙² + 4𝒙 – 3.

10.

Solução

Professor(a), ressalte com o estudante que para esboçar o gráfi co faz-se necessário encontrar alguns pontos, sendo: o ponto de infl exão que coincide com o e seus pontos próximos a ele, os zeros da função, além de analisar sua concavidade através do coefi ciente a. Tem-se:𝑋𝑣

−𝑥 2+ 4𝑥 − 3 = 0 ∆= 42− 4 −1 −3 = 16 - 12 = 4 𝑥 =−4 ± 42(-1) =-4 ± 2-2 𝑥′=−4 + 2 −2 = −2 −2 =1 𝑥′′=−4 − 2−2 =−6−2 =3

Portanto, os zeros dessa função são 1 e 3 e sendo assim o gráfi co passa pelos pontos (1, 0) e (3, 0). Se x=0,obtemos𝑓 0 = -02 + 4 ∙ 0 - 3 = -3.

Assim, o gráfi co também passa pelo ponto (0, -3).

Marcar os pontos no plano cartesiano usando as coordenadas x e y e depois ligá-los de forma que o desenho seja uma parábola, conforme o gráfi co a seguir:

(25)

Ma

temá

tic

a

MATEMÁTICA

APRESENTANDO A UNIDADE 3

O QUE SABER SOBRE ESTA UNIDADE?

Professor(a), esta unidade propõe ati vidades relacionadas com duas expectati vas de aprendizagem do Currículo Referência da Rede Estadual de Educação de Goiás de Matemáti ca, da 1ª Série do Ensino Médio.

As ati vidades foram elaboradas, tendo por base as habilidades e competências necessárias no estudo de funções polinomiais de 2º grau. Assim, pretende-se esti mular as habilidades dosestudantes em uti lizar as raízes da função, estudar o sinal do discriminante ler o gráfi co relati vo à função polinomial de 2º grau e determinar intervalos crescentes e decrescentes da função.

QUAIS EXPECTATIVAS DE APRENDIZAGEM/DESCRITORES ESTÃO EM FOCO?

Esta unidade tem por base as seguintes expectati vas de aprendizagem:

î E 34 ─ Representar grafi camente uma função polinomial do 2º grau.

î E 38 ─ Analisar o gráfi co da função polinomial do 2º grau (crescimento, decrescimento, discriminante e zeros). Assim, as ati vidades foram elaboradas, de forma que proporcionem aos estudantes a aprendizagem dos conceitos aplicados, possibilitando a consolidação dessas habilidades.

QUAIS AS ATIVIDADES PROPOSTAS?

Professor(a), todas as ati vidades dessa unidade se referem a função polinomial de 2º grau. O intuito da gradação das ati vidades é contribuir para que o estudante para resolva situações-problema que tenham relação direta com o tema. Nesse caso é perceptí vel a aplicação do assunto em avaliações em larga escala como o Enem, a OBMEP e a Prova Brasil/Saeb.

As ati vidades 1, 2, 3 e 4 retomam os estudos sobre o sinal do discriminante uti lizando conhecimentos de cálculo do discriminante a parti r da função, leitura das raízes da função no gráfi co e análise de alternati vas a parti r de um gráfi co genérico. As ati vidades 5 e 6 exploram as habilidades relati vas a leitura de gráfi cos, as ati vidades 7 e 8 estudam intervalos crescentes e as de números 9 e 10 retomam o estudo de intervalos decrescentes.

Os estudantes poderão resolver, individualmente, as ati vidades; mas, é fundamental que eles socializem com os demais colegas. É imprescindível a correção das ati vidades propostas, de modo que engaje e envolva toda a turma e esclareça as dúvidas que, por ventura, os alunos manifestarem.

Ressaltamos a importância de você, professor (a), discuti r outras situações que possam colaborar/ampliar/ sistemati zar o conhecimento dos estudantes. Portanto, é fundamental provocar os alunos e percebendo as suas difi culdades procurar saná-las. Lembrando que o caderno do estudante contempla as expectati vas de aprendizagem e alguns descritores. Desta forma, caso identi fi que alguma lacuna no ensino e/ou aprendizagem do aluno, pesquise outras situações que demonstrem essas habilidades presentes na unidade.

Professor(a), uti lize cada ati vidade, de modo que alcance a proposta desta unidade e, ao mesmo tempo, como instrumento de avaliação para sua práti ca pedagógica.

(26)

Ma

temá

tic

a

26

MATEMÁTICA

UNIDADE 3

CONTEÚDO(S)

î Função Polinomial de 2º grau.

EIXO(S) TEMÁTICO(S)

î Números e Operações .

EXPECTATIVAS DE APRENDIZAGEM

î E 34 ─ Representar graficamente uma função polinomial do 2º grau.

î E 38 ─ Analisar o gráfico da função polinomial do 2º grau (crescimento, decrescimento, discriminante e zeros).

SUBDESCRITOR(ES)

î D20C ─ Identificar em gráficos de funções polinomiais de 2º grau intervalos crescentes.

î D20D ─ Identificar em gráficos de funções polinomiais de 2º grau intervalos decrescentes.

(27)

Ma

temá

tic

a

UNIDADE 3

ATIVIDADES

Observe as funções a seguir:

1.

Sobre essas funções o professor escreveu algumas afirmativas no quadro. I – A primeira função intercepta o eixo das abscissas em dois pontos distintos.

II – A segunda função possui duas raízes reais iguais. Portanto, intercepta o eixo das abscissas em um único ponto.

III – A terceira função intercepta o eixo das abscissas em dois pontos distintos. IV – A quarta função não intercepta o eixo das abscissas.

Assinale a alternativa que apresenta os números de todas as afirmativas que o professor escreveu que estão corretas. (A) I e II (B) I e III (C) II e III (D) II e IV (E) III e IV Gabarito: E Solução

Para determinarmos as quantidades de raízes reais de uma função polinomial de 2º grau é necessário fazermos o estudo do discriminante da função (∆).

Assim,

𝑦1= 𝑥2− 6𝑥 + 9

∆ =0

A função terá duas raízes reais iguais. Portanto, a função irá interceptar o eixo das abscissas em um único ponto. (Falsa)

𝑦2 = 𝑥2+ 𝑥 + 8 ∆ = 𝑏2– 4 ∙ 𝑎 ∙ 𝑐

∆ = 12 – 4 ∙ 1 ∙ 8 ∆ =1 – 32

∆ = – 31

A função não possui raízes reais. Portanto, a função não irá interceptar o eixo das abscissas. (Falsa) 𝑦3 = 𝑥2− 6𝑥 + 5 ∆ = 𝑏2– 4 ∙ 𝑎 ∙ 𝑐 ∆ = (−6)2– 4 ∙ 1 ∙5 ∆ =36 – 20 ∆ = 16

A função terá duas raízes reais iguais. Portanto, a função irá interceptar o eixo das abscissas em dois pontos distintos. (Verdadeira)

𝑦4= 𝑥2− 𝑥 + 2 ∆ = b2– 4 ∙ a ∙ c ∆ = (−1)2 – 4 ∙ 1 ∙ 2 ∆ =1 – 8 ∆ = – 7 𝑦4= 𝑥2− 𝑥 + 2 ∆ = b2– 4 ∙ a ∙ c ∆ = (−1)2 – 4 ∙ 1 ∙ 2 𝑦4= 𝑥2− 𝑥 + 2 ∆ = b2– 4 ∙ a ∙ c ∆ = (−1)2 – 4 ∙ 1 ∙ 2 ∆ = (−6)2– 4 ∙ 1 ∙5 ∆ =36 – 20 ∆ = 16 ∆ = (−6)2– 4 ∙ 1 ∙5 ∆ =36 – 20 ∆ = 16 ∆ =1 – 8 ∆ = – 7 ∆ = b2 - 4ac ∆ = (-6)2- 4∙1∙9 ∆ = 36 - 36 ∆ = 0 ∆ = b2– 4 ∙ a ∙ c ∆ = 12 – 4 ∙1 ∙8 y1 = x2 - 6x + 9 y2 = x2 + x + 8 y3 = x2 - 6x + 5 y4 = x2 - x + 2

(28)

Ma

temá

tic

a

28

Observe parte do gráfi co de uma função polinomial de 2º grau.

0 -1 -2 -3 -4 1 2 3 4 5 -1 -2 -3 -4 -5 -6

Admita essa função defi nida por

A parti r dos dados apresentados na parábola correspondente a parte do gráfi co da função dada pode-se inferir que 𝒚 = 𝒂𝒙2+ 𝒃𝒙 + 𝒄. (A) a> 0 e ∆< 0. (B) a> 0 e ∆> 0. (C) a< 0 e ∆< 0. (D) a< 0 e ∆> 0. (E) a> 0 e ∆ = 0. Gabarito: B Solução

Considerando que a parábola tem a concavidade voltada para cima temos que a > 0. E, uma vez que a parábola intercepta o eixo das abscissas em dois pontos disti ntos (-5 e -1) temos que ∆> 0.

Considere a função polinomial de 2º grau , cuja representação gráfica está

representada a seguir 𝒚 = 𝒂𝒙 2+ 𝒃𝒙 + 𝒄. 0 X Y

2.

3.

Sobre essa função é correto afi rmar que

(A) possui duas raízes reais iguais, tal que x’= x” > 0. (B) não possui raízes reais.

(C) possui duas raízes reais disti ntas, tal que x’< 0 e x” < 0. (D) possui duas raízes reais disti ntas, tal que x’< 0 e x” > 0. (E) possui duas raízes reais disti ntas, tal que x’> 0 e x” > 0. Gabarito: E

Solução

Considerando que a parábola intercepta o eixo das abscissas em dois pontos disti ntos tem-se que a função possui duas raízes reais disti ntas. Ao verifi car o gráfi co, percebe-se que ambos os pontos de interceptação da parábola com o eixo x são positi vos. Portanto, x’> 0 e x” > 0.

(29)

Ma

temá

tic

a

29

Observe a parte do gráfi co correspondente a uma função polinomial de 2º grau do ti po

, com a = 1.𝒚 = 𝒂𝒙2+ 𝒃𝒙 + 𝒄. 0 -2 10 2 6 4 8 -2 12 -4 -8 -6

4.

Assinale a alternati va que apresenta uma possível função correspondente a esse gráfi co.

(A) 𝑦 = 𝑥2– 8𝑥 + 12 (B) 𝑦 = 𝑥2– 4𝑥 + 12 (C) 𝑦 = 𝑥2+ 8𝑥 + 12 (D) 𝑦 = – 𝑥2+8𝑥 + 12 (E) 𝑦 = – 𝑥2+8𝑥 –12 Gabarito: C Solução

Do gráfi co tem-se que a > 0 (concavidade voltada para cima) e

𝑥’ = – 6 𝑒 𝑥” = –2.

Da relação de Girard, tem-se:

S = −𝑏𝑎= 8 P = 𝑐 𝑎= 12 Logo, 𝑦 = 𝑎𝑥2+ 𝑏𝑥 + 𝑐, com a = 1. 𝑦 = 𝑥2+ 8𝑥 + 12

Considere a função polinomial de 2º grau a seguir.

5.

𝒚 = – 𝒙2 + 5𝒙 – 6

Assinale a alternati va que apresenta o gráfi co correspondente a essa função em um plano cartesiano ortogonal.

(A)

(B)

Gabarito: B

Solução

Tem-se que a parábola terá a concavidade voltada para baixo já que o coefi ciente a é negati vo.

Para verifi car se a parábola intercepta ou não o eixo das abscissas é necessário determinar suas raízes reais.

𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑥′= 2 𝑒 𝑥” = 3 𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑥′ = 2 𝑒 𝑥” = 3 𝑦 = – 𝑥2 + 5𝑥 – 6. 𝑥 = −5 ± 25-24−2 𝑥 = −5 ± 1−2 𝑥 = −5 ± 1−2 𝑥′= 2 𝑒 𝑥” = 3

(30)

Ma

temá

tic

a

30

(E) (D)

(C) Logo, a parábola intercepta o eixo das abscissas em . Considerando que o coefi ciente c (ponto em que a parábola intercepta o eixo das ordenadas) é igual a -6, tem-se,

𝑥’ 𝑒 𝑥”

Considere a função polinomial de 2º grau, defi nida em , a seguir.

6.

𝒚 = ( 𝒙 – 2)2

Sobre o gráfi co correspondente a essa função é correto afi rmar que

(A) possui a concavidade voltada para cima, intercepta o eixo das abscissas em dois pontos disti ntos (x’ = 2 e x = -2) e intercepta o eixo das ordenadas no ponto 4.

(B) possui a concavidade voltada para baixo, intercepta o eixo das abscissas em dois pontos disti ntos (x’ = 2 e x = -2) e intercepta o eixo das ordenadas no ponto 4.

(C) possui a concavidade voltada para baixo, intercepta o eixo das abscissas em um único ponto (x = 2) e intercepta o eixo das ordenadas no ponto 4.

(D) possui a concavidade voltada para cima, intercepta o eixo das abscissas em um único ponto (x = 2) e intercepta o eixo das ordenadas no ponto 4.

(E) possui a concavidade voltada para cima, intercepta o eixo das abscissas em um único ponto (x = 4) e intercepta o eixo das ordenadas no ponto 2.

Gabarito: D

Solução

Nota-se que a parábola terá a concavidade voltada para cima já que o coefi ciente a é positi vo (a = 1). Para verifi car se a parábola intercepta ou não o eixo das abscissas é necessário determinar suas raízes reais.

(31)

Ma

temá

tic

a

𝑦 = ( 𝑥 – 2)2= 𝑥2 – 4𝑥 + 4. ∆ = 𝑏2–4 ∙ 𝑎 ∙ 𝑐 = (−4)2−4 ∙ 1 ∙ 4 ∆= 16 − 16 = 0

Considerando que o discriminante é positi vo tem-se duas raízes reais iguais.

𝑥 = −𝑏 ± ∆2 ∙ 𝑎 𝑥 = −(−4) ± 02 ∙ 1

𝑥′ = 4 ± 02

(duas raízes reais iguais)

Logo, a parábola interceptará o eixo das abscissas em um único ponto (x = 2).

Considerando que o coefi ciente c (ponto em que a parábola intercepta o eixo das ordenadas) é igual a 4, a parábola interceptará o eixo das ordenadas em 4.

Portanto, (D) possui a concavidade voltada para cima, intercepta o eixo das abscissas em um único ponto (x = 2) e intercepta o eixo das ordenadas no ponto 4.

𝑥” = 𝑥 = 2

Considere a função polinomial de 2º grau , defi nida em .

7.

𝒚 = 𝒙2–10𝒙+ 16

O professor de matemáti ca solicitou a cada estudante de sua turma que defi nissem um intervalo real dessa função que fosse crescente.

Ao perguntar a Bruna qual o intervalo escolhera, ela respondeu acertadamente. Assinale a alternati va que apresenta o intervalo dito por Bruna.

(A) [-2; 0] (B) [0; 2] (C) [2; 4] (D) [4; 6] (E) [6; 8] Gabarito: E Solução

Observe parte do gráfi co correspondente a essa função. Logo, a alternati va correta é a letra E.

Considere a função polinomial de , defi nida em . Assinale a alternati va que apresenta um intervalo crescente dessa função.2º grau 𝒚 = – 𝒙 ℝ

2 + 7𝒙 + 30

8.

(A) ]-∞; 3,5] (B) [-3;3,5] (C)]-∞; 10] (D)]-∞; 3,5[ (E) [-3; 10] Gabarito: A Solução

Observe parte do gráfi co correspondente a essa função. Logo, a alternati va correta é a letra A.

(32)

Ma

temá

tic

a

32

Dos gráfi cos apresentados, o intervalo [-5; -3] é decrescente

(A) em nenhuma das funções. (B) em apenas uma das funções. (C) em duas das funções. (D) em três das funções. (E) nas quatro funções.

Gabarito: B

Solução

I: Não. O intervalo não é decrescente porque para x > -4 o gráfi co passa a ser crescente.

II: Não. O intervalo não é decrescente porque em [-5; -3] o intervalo é crescente.

III: Sim. O intervalo é decrescente.

IV: Não. O intervalo não é decrescente porque em [-5; -3] o intervalo é crescente.

Observe parte de um gráfi co correspondente a uma função polinomial de 2º grau defi nida em IR.

10.

Determine um intervalo compreendido entre -3 e 8 que seja decrescente. Solução

Qualquer intervalo que esteja compreendido entre [2,5, + ∞].

Observe alguns gráfi cos correspondentes a funções polinomiais de 2º grau defi nidas em .

9.

(33)

Ma

temá

tic

a

MATEMÁTICA

APRESENTANDO A UNIDADE 4

O QUE SABER SOBRE ESTA UNIDADE?

Professor (a), esta unidade propõe ati vidades relacionadas com cinco expectati vas de aprendizagem, do Currículo Referência da Rede Estadual de Educação de Goiás de Matemáti ca, da 1ª Série do Ensino Médio.

As ati vidades foram elaboradas, tendo por base um subdescritor que diagnosti ca a habilidade dos estudantes em identi fi car o gráfi co que representa uma equação polinomial do segundo grau, a parti r da leitura de um texto. A função quadráti ca é o foco nesta unidade com ati vidades que envolve resolução de problema e análise de gráfi cos.

Assim, pretende-se que os estudantes construam habilidades de modo que possam resolver situações-problemas, que envolva equação polinomial do segundo grau, e identi fi car o gráfi co que a representa.

QUAIS EXPECTATIVAS DE APRENDIZAGEM/DESCRITORES ESTÃO EM FOCO?

Esta unidade tem por base as seguintes expectati vas de aprendizagem:

î E 39 ─ Identi fi car o gráfi co que representa uma situação descrita em um texto;

î E 32 ─ Uti lizar a função polinomial do 2º grau para resolver problemas;

î E 35 ─ Resolver problema envolvendo equação do 2º grau;

î E 40 ─ Resolver problema envolvendo informações apresentadas em tabelas e/ou gráfi cos.

î E 41 ─ Associar informações apresentadas em listas e/ou tabelas simples aos gráficos que as representam e vice-versa.

As habilidades a serem desenvolvidas, propostas pelas expectati vas, são: identi fi car gráfi cos da função polinomial do segundo grau expresso por meio de um texto; resolver situações-problema que envolvam a função quadráti ca; analisar gráfi co e tabela.

Assim, as ati vidades foram elaboradas, de forma que proporcionem aos estudantes a aprendizagem dos conceitos aplicados, possibilitando a consolidação dessas habilidades.

QUAIS AS ATIVIDADES PROPOSTAS?

Nas ati vidades 1 e 2, os estudantes resolverão problemas de identi fi car o gráfi co apresentado no enunciado. As ati vidades 3, 4 e 5 apresentam a uti lização da função quadráti ca na resolução de situação problema que podem ser resolvidas por outras fórmulas. Nas ati vidades 6,7 e 8, os estudantes resolverão situações-problema que envolvam equações polinomiais do 2° grau. Nas ati vidades 9 e 10, irão relacionar gráfi cos às tabelas e uti lizar dos dados apresentados na resolução de problemas.

Os estudantes poderão resolver, individualmente, as ati vidades; mas, é fundamental que eles socializem com os demais colegas. É imprescindível a correção das ati vidades propostas, de modo que engaje e envolva toda a turma e esclareça as dúvidas que, por ventura, os alunos manifestarem.

Ressaltamos a importância de você, professor (a), discuti r outras situações que possam colaborar/ampliar/ sistemati zar o conhecimento dos estudantes. Portanto, é fundamental provocar os alunos e percebendo suas difi culdades procurar saná-las. Lembrando que o caderno do estudante contempla as expectati vas de aprendizagem e alguns descritores. Desta forma, caso identi fi que alguma lacuna no ensino e/ou aprendizagem do aluno, pesquise outras situações que demonstrem essas habilidades presentes na unidade.

Professor (a), uti lize cada ati vidade, de modo que alcance a proposta desta unidade e, ao mesmo tempo, como instrumento de avaliação para sua práti ca pedagógica.

(34)

Ma

temá

tic

a

34

MATEMÁTICA

UNIDADE 4

CONTEÚDO(S)

î Função polinomial do 2° grau.

EIXO(S) TEMÁTICO(S)

î Números e Operações.

EXPECTATIVA DE APRENDIZAGEM

î E 39 ─ Identificar o gráfico que representa uma situação descrita em um texto.

î E 32 ─ Utilizar a função polinomial do 2º grau para resolver problemas.

î E 35 ─ Resolver problema envolvendo equação do 2º grau.

î E 40 ─ Resolver problema envolvendo informações apresentadas em tabelas e/ou gráficos.

î E 41 ─ Associar informações apresentadas em listas e/ou tabelas simples aos gráficos que as representam e vice-versa.

DESCRITOR(ES) – SAEB / SUBDESCRITOR(ES)

(35)

Ma

temá

tic

a

UNIDADE 4

ATIVIDADES

Certo medicamento varia sua concentração no sangue de acordo com a função C (x) = -2,5x² + 40x - 40, em que x é o tempo decorrido, em horas, após a ingestão do medicamento. Sabe-se que aos 120 minutos, o medicamento atinge o seu ponto máximo de concentração.

Nessas condições, assinale a alternativa que apresenta o gráfico dessa situação.

1.

(A)

(B)

(36)

Ma

temá

tic

a

36

Uma empresa produz um determinado produto com o custo defi nido pela seguinte função C(x)= -0,2x² – 11x - 120. Sabe-se que para obter lucro, a empresa precisa produzir, no mínimo 15 peças, porém se a produção for maior que 40 peças, a empresa começa a ter prejuízo.

Nessas condições, assinale a alternati va que apresenta o gráfi co que representa essa situação.

2.

(A) (E) (B) (C) (D) Gabarito: A Solução

Professor (a), para fazer a análise do gráfi co é necessário determinar a coordenada do ponto máximo da função (xv ,yv ), pois, assim o gráfi co será facilmente identi fi cado.

(37)

Ma

temá

tic

a

Gabarito: C Solução (E)

3.

Considere a fi gura seguir:

x + 4

x + 2

Sabe-se que o perímetro dessa fi gura é igual a 28 cm e a medida de sua área é igual a 48 cm2.

Nessas condições, responda as questões a seguir:

a) uti lizando a equação polinomial do 2º grau, determine x. b) qual outra forma pode-se determinar o valor de x?

As ati vidades 3, 4 e 5 estão elaboradas para que sejam resolvidas uti lizando a função polinomial do 2° grau, porém há outras formas de se obter o resultado. Portanto, oriente os estudantes nesta parti cularidade dessas questões, mas, caso o estudante uti lize outras fórmulas, não há problema. Isto demonstra domínio da habilidade de compreensão do enunciado e de outros conteúdos.

(38)

Ma

temá

tic

a

38

Solução

a) uti lizando a equação polinomial do 2º grau, determine x.

𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 6 2-4 · 1 · (-40) 2 ∙ 1 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10 𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 62 ∙ 12-4 · 1 · (-40) 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10 𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 6 2-4 · 1 · (-40) 2 ∙ 1 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10 𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 6 2-4 · 1 · (-40) 2 ∙ 1 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10 𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 6 2-4 · 1 · (-40) 2 ∙ 1 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10 𝑥 + 4 × 𝑥 + 2 = 48 → 𝑥2+ 6𝑥 + 8 = 48 → 𝑥2+ 6𝑥 − 40 = 0 𝑥 = −6 ± 6 2-4 · 1 · (-40) 2 ∙ 1 𝑥 = −6 ± 1962 ∙ 1 𝑥 = −6 ± 142 𝑥′=−6 + 14 2 = 8 2 =4 𝑥′=−6 − 14 2 = −20 2 = −10

Logo, o valor de x é um número positi vo igual a 4. b) qual outra forma pode-se determinar o valor de x? Por meio da medida do perímetro.

28 = 2 (x + 4) + 2 ( x + 2) 28 = 2x + 8 + 2x + 4 28 = 4x + 12 4x = 28 - 12 4x = 16 x = =4164

Um terreno retangular possui a medida de seu comprimento 3 vezes a medida de sua largura.

Sabe-se que a medida da área desse terreno é de 3 675 m2 e que a medida de seu perímetro é 280 metros.

Nessas condições, uti lizando a equação polinomial do 2º grau, determine as medidas desse terreno.

4.

Solução As medidas são: x ∙ 3x = 3675 3x² - 3675 = 0 x²= x = x’ = 35 x’’ = -35

Logo, o valor de x é o número positi vo 35.

3 675 3

A medida da área do trapézio a seguir é igual a 2 025 cm2.

5.

2x

3x

4x

2025 =(𝐵 + 𝑏) × ℎ2 2025 =(4𝑥 + 2𝑥) × 3𝑥2 Solução

(39)

Ma

temá

tic

a

2025 =(𝐵 + 𝑏) × ℎ2 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025=12x2+6x2 2 4 050=12𝑥2 + 6𝑥2 18𝑥2 = 4 050 𝑥2 =4 05018 𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′= −15 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025 =12𝑥 2 +6𝑥2 2 4 050 = 12𝑥2+ 6𝑥2 18𝑥2 = 4 050 𝑥2 =4 05018 𝑥 = 225 = ±15 𝑥′ = 15 𝑒 𝑥′′= −15 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025 =12𝑥 2 +6𝑥2 2 4 050 = 12𝑥2+ 6𝑥2 18𝑥2 = 4 050 𝑥2=4 05018 𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′= −15 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025 =12𝑥 2 +6𝑥2 2 4 050 = 12𝑥2+ 6𝑥2 18𝑥2 = 4 050 𝑥2=4 05018 𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′= −15 2025 =(4𝑥 + 2𝑥) × 3𝑥2 2025 =12𝑥 2 +6𝑥2 2 4 050 = 12𝑥2+ 6𝑥2 18𝑥2 = 4 050 𝑥2=4 05018 𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′ = −15 𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′ = −15

Logo, o valor de x é o número positi vo 15.

Em uma empresa de transporte, o custo com x automóveis iguais é dado pela expressão C(x) = x² + x - 52. Sabe-se que no mês de maio, o custo foi de 38 mil reais.

Nessas condições, o total de veículos uti lizados nesse mês é um número

6.

(A) igual a 6. (B) entre 7 e 8. (C) menor que 6 (D) igual a 9. (E) maior que 9.

Gabarito: D

Solução

O custo com o transporte foi: x² + x - 52 = 38 x² + x - 90 = 0 𝑥 =−1 ± 1 − 4 ∙ 1 ∙ (−90)2 ∙ 1 𝑥 =−1 ± 3612 𝑥 =−1±219 𝑥′=1+19 2 = 182 = 9 𝑥′′=119 2 =−202 = −10 𝑥 =−1 ± 1 − 4 ∙ 1 ∙ (−90)2 ∙ 1 𝑥 =−1 ± 3612 𝑥 =−1±219 𝑥′=1+19 2 =182 = 9 𝑥′′=119 2 =−202 = −10 𝑥 =−1 ± 1 − 4 ∙ 1 ∙ (−90)2 ∙ 1 𝑥 =−1 ± 3612 𝑥 =−1±219 𝑥′=1+19 2 =182 = 9 𝑥′′=119 2 =−202 = −10 𝑥 =−1 ± 1 − 4 ∙ 1 ∙ (−90)2 ∙ 1 𝑥 =−1 ± 3612 𝑥 =−1±219 𝑥′=1+19 2 =182 = 9 𝑥′′=119 2 =−202 = −10 𝑥 =−1 ± 1 − 4 ∙ 1 ∙ (−90)2 ∙ 1 𝑥 =−1 ± 3612 𝑥 =−1±219 𝑥′=1+19 2 =182 = 9 𝑥′′=119 2 =−202 = −10

Logo, foram usados 9 veículos, pois o valor de x deve ser um número positi vo. Marcos tomou um medicamento para com uma infecção causada por bactérias. A equação B(m) = 3m² – 60m + 300 representa o número de bactérias, após m dias de Marcos ter tomado o medicamento. Determine o tempo gasto para que o medicamento elimine as bactérias.

Solução Organizando a equação: 3m² – 60m + 300 =0 𝑚 =−(−60) ± (-60) 2- 4 ∙ 3 ∙ 300 2 ∙ 3 𝑚 =60 ± 3600 -36006 𝑚′ = 𝑚′′ =606 =10 𝑚 =−(−60) ± (-60) 2- 4 ∙ 3 ∙ 300 2 ∙ 3 𝑚 =60 ± 3600 -36006 𝑚′ = 𝑚′′ = 606 =10 𝑚 =−(−60) ± (-60)2 ∙ 32- 4 ∙ 3 ∙ 300 𝑚 =60 ± 3600 -36006 𝑚′ = 𝑚′′ =606 =10

7.

𝑥 = 225 = ±15 𝑥′= 15 𝑒 𝑥′′= −15

Logo, foram necessários 10 dias para que o medicamento eliminasse todas as bactérias. A professora de matemáti ca apresentou o seguinte problema:

8.

𝒙2+5𝒙2 −32 =0

(40)

Ma

temá

tic

a

40

(A) Paulo. (B) Renato. (C) Jessica. (D) João. (E) Marta. Gabarito: D Solução 𝑥=- 52 ± 5 2 2 - 4·1· - 32 2·1 𝑥=- 52 ± 5 2 2 - 4·1· - 32 2·1 𝑥=- 52 ± 5 2 2 - 4·1· - 32 2·1 𝑥=- 52 ± 49 4 2 𝑥=- 52 ± 7 2 2 𝑥′=- 52 + 7 2 2 = 2 2 2= 1 2 𝑥′′= 52 -7 2 2 = - 122 2 = -6 2=-3

O gráfi co a seguir, apresenta a distribuição média da chuva em um determinado município.

9.

De acordo com a distribuição mensal da precipitação, pode-se afi rmar que

(A) de janeiro a dezembro a média oscila entre 50 mm e 200 mm. (B) de julho para agosto, houve um aumento percentual de 1,7%. (C) nos meses de maio a setembro as médias fi caram abaixo de 50 mm.

(D) a diferença percentual entre janeiro e julho é de, aproximadamente, 1 777,42%. (E) a diferença percentual entre a média de janeiro para dezembro é 5%.

Gabarito: D

Solução

Média de janeiro = 275,5 Média de julho = 15,5

Percentual da diferença entre janeiro e julho:

Logo, a diferença percentual entre janeiro e julho é de, aproximadamente, 1 777,42% Assinale a alternati va que indica quem apresentou a resposta correta.

(41)

Ma

temá

tic

a

Observe a tabela a seguir:

10.

Assinale a alternati va que apresenta o gráfi co com o percentual do IMC referente às mulheres.

(A) (B)

Eutrofi a

Eutrofi a

(C)

(42)

Ma

temá

tic

a

42

(E) Gabarito: C Solução

Referências

Documentos relacionados

Para preparar a pimenta branca, as espigas são colhidas quando os frutos apresentam a coloração amarelada ou vermelha. As espigas são colocadas em sacos de plástico trançado sem

independentemente do cargo ou função que exerçam sujeitam- se às normas deste código. 5 - Para o exercício da Medicina Veterinária com dignidade e consciência, o Médico

Ao desenvolver o projeto arquitetônico utilizando um software de desenvolvimento de projetos que utilize tecnologia BIM (Building Information Modeling ou Modelagem de Informação

Este trabalho buscou, através de pesquisa de campo, estudar o efeito de diferentes alternativas de adubações de cobertura, quanto ao tipo de adubo e época de

No entanto, maiores lucros com publicidade e um crescimento no uso da plataforma em smartphones e tablets não serão suficientes para o mercado se a maior rede social do mundo

O valor da reputação dos pseudônimos é igual a 0,8 devido aos fal- sos positivos do mecanismo auxiliar, que acabam por fazer com que a reputação mesmo dos usuários que enviam

O enfermeiro, como integrante da equipe multidisciplinar em saúde, possui respaldo ético legal e técnico cientifico para atuar junto ao paciente portador de feridas, da avaliação

Com base no trabalho desenvolvido, o Laboratório Antidoping do Jockey Club Brasileiro (LAD/JCB) passou a ter acesso a um método validado para detecção da substância cafeína, à