• Nenhum resultado encontrado

REPOSITORIO INSTITUCIONAL DA UFOP: The effects of fluoride and aluminum ions on ferrous-iron oxidation and copper sulfide bioleaching with Sulfobacillus thermosulfidooxidans.

N/A
N/A
Protected

Academic year: 2018

Share "REPOSITORIO INSTITUCIONAL DA UFOP: The effects of fluoride and aluminum ions on ferrous-iron oxidation and copper sulfide bioleaching with Sulfobacillus thermosulfidooxidans."

Copied!
8
0
0

Texto

(1)

BiochemicalEngineeringJournal62 (2012) 48–55

ContentslistsavailableatSciVerseScienceDirect

Biochemical

Engineering

Journal

j o u r n al hom ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / b e j

The

effects

of

fluoride

and

aluminum

ions

on

ferrous-iron

oxidation

and

copper

sulfide

bioleaching

with

Sulfobacillus

thermosulfidooxidans

Tácia

C.

Veloso,

Lázaro

C.

Sicupira,

Isabel

C.B.

Rodrigues,

Larissa

A.M.

Silva,

Versiane

A.

Leão

UniversidadeFederaldeOuroPreto,DepartmentofMetallurgicalandMaterialsEngineering,Bio&HydrometallurgyLaboratory,CampusMorrodoCruzeiro,s.n.,Bauxita,OuroPreto, MG,35400-000,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11November2011 Accepted7January2012

Available online 14 January 2012

Keywords:

Batchprocessing Thermophiles Growthkinetics Fluoridetoxicity Aluminumcomplexes Wastetreatment

a

b

s

t

r

a

c

t

MicroorganismsthatgrowathightemperaturescanimproveFe(II)bio-oxidationandtherebyits

tech-nologicalapplications,suchasbioleachingandH2Sremoval.Conversely,elementspresentinindustrial

growthmedia,suchasfluoride,caninhibitbacterialgrowthandironbio-oxidation.Inthiswork,the

influ-enceoffluorideonthekineticsofferrous-ironbio-oxidationwithSulfobacillusthermosulfidooxidanswas

investigated.Theeffectsoffluorideconcentrations(0–0.5mmolL−1)onbothironoxidationandbacterial

growthrateswereassessed.Inaddition,theeffectoftheadditionofaluminum,whichwasintendedto

complexfreefluorideandreducetheconcentrationofHFthroughtheformationofaluminum–fluoride

complexes,wasalsoinvestigated.Theresultsshowthat0.5mmolL−1NaFcompletelyinhibitedbacterial

growthwithin60h.Nevertheless,fluoridetoxicitytoS.thermosulfidooxidanswasminimizedbycontrol

ofthealuminum–fluorideratiointhesystembecause,ata2:1aluminum–fluoridemolarratio,bacterial

growthwassimilartothatobservedintheabsenceoffluorideions.Despiteaslowerbacterialgrowth

rate,fluorideconcentrationslessthantheinhibitoryconcentrationincreasedtheFe(II)oxidationrate.

Successfulcopperbioleaching(80–100%)fromfluoride-containingsulfideores(1%totalfluoride)was

demonstratedinthepresenceofaluminum.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ferrous-ironbio-oxidationhasmanytechnologicalapplications, includingbioleaching[1], whereferriciron accountsfor sulfide oxidation.MostFe(II)bio-oxidationstudieshavebeenperformed withmesophilicmicroorganismssuchasAcidithiobacillus

ferroox-idans [2] and Leptospirillum ferriphilum [3], although moderate

thermophiles and extreme thermophiles can positively impact bioleachingbecauseoffaster sulfideoxidationathigh tempera-tures.Theelectronpathwayfromferrous-irontooxygenhasbeen proposedtoincluderusticyanin in A.ferrooxidans [4] andRuBP carboxylasesinSulfobacillus[5].

ThegrowthmediumcanstronglyinfluencetheFe(II)oxidation ratebecauseindustrial solutionsmaycontainaplethora of dis-solvedelements.Duringheapbioleaching,forexample,thegangue mineralscanenrichtheleachsolutionwithelementsthatare harm-fultothebacteria,thusimpairingferrous-ironoxidationkinetics [6]. Ojumu et al. [7] have shown the effect of increased ionic strengthonmesophilicbacterialgrowth.Inadditiontoreducing

CorrespondingauthorTel.:+553135591102;fax:+553135591561/1596.

E-mail addresses: versiane@demet.em.ufop.br, versiane.ufop@gmail.com,

va.leao@uol.com.br(V.A.Leão).

dissolvedoxygenconcentrations,ahigherionicstrengthreduces free waterconcentration,and thebacteria therefore losewater becauseofosmoticeffects[8].AnionsaffectFe(II)andsulfur oxi-dationdifferently,butnitrateandchloridearethemostimportant inhibitorsofmesophilicbacterialgrowth[9].Suchspeciesreduce thetransmembranepotentialandenableH+ crossingofthecell membrane,therebyloweringtheinternalcellpHandimpairing growth[10].Anotherinhibitionmechanismhasbeenproposedfor speciessuchasHF,whichareelectricallyneutralatthepHvalue wherebioleachingoccurs.Afailureofaheapbioleaching opera-tionduetothepresenceoffluorideionsontheorehasrecently beenreported[11],andthisphenomenonwasexplainedbythe fluoridechemistry.AtthelowpHlevelsofbioleachingoperations, fluorideionsareconvertedintoHF,which,unlikeF−,canpenetrate thecellmembraneanddissociateintoH+andF.Theinternalcell pH,whichisneutral,isthenloweredbyH+,whereasfluoride com-bineswithsomeenzymes.Theoverallresultistheinhibitionof bacterialgrowth[8],and,therefore,theinhibitionofferrous-iron oxidation,irrespectiveofthebacterialstrain(mesophiles, moder-atethermophilesorextremethermophiles)[12,13].

Inbioleachingoperations,inorganicweakacidssuchasHFmay bepresentintheleachingliquordependingontheoremineralogy. Becausetheprocessingoforesandconcentratesthatcontainhigh contentsofimpuritiesarebecomingcommonplace,theindustryis

1369-703X/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved.

(2)

facingthechallengeofdealingwithsuchspecies,whichare some-timespresentinhighconcentrations[14].Meanwhile,bioleaching by moderate thermophiles has been studied because sulfide oxidationisfasterandbecausethesemicroorganismsarefoundin heapleachingoperations,wheretheheaptemperatureishigh.

Theeffectsoffluorideionsonthegrowthrateofbacteria rele-vanttobioleachinghavenotbeenextensivelyaddressed.Fluoride effectsareknowntobeovercomebythepresenceofaluminum. However,theeffectsoffluorideandaluminumonbothbacterial growthand Fe(II)oxidation bySulfobacillusthermosulfidooxidans havenotyetbeenquantified.Inaddition,noconsensushasbeen reachedregardingthemainaluminum–fluoridecomplexesformed duringbioleachingoffluoride-containingores.WhereasDopson etal.[12]andSundkvistetal.[13]havesuggestedAlF2+asthemain complex,BrierleyandKuhn[11]haveproposedAlF2+asthe pre-dominantspecies.Therefore,thispaperwasundertakentoassess theimpactoffluorideionsonferrous-ironoxidationbymoderate thermophiles.

2. Materialsandmethods

2.1. Ferrous-ironbio-oxidationexperiments

S. thermosulfidooxidans (strain DSMZ 9293) was grown in a

mediumcomposedof0.4gL−1(NH

4)2SO4,0.8gL−1MgSO4·7H2O, 0.4gL−1K

2HPO4,2.5gL−1ferrous-iron(FeSO4·7H2O)and0.1gL−1 yeastextract, at pH1.5. Thecells were maintainedthroughout the experiments in an orbital shaker (New Brunswick Scien-tific),at 50◦C and 200min−1 and wereused astheinocula for the bio-oxidationexperiments when the potential reachedthe 580–600mV(Ag/AgCl)range.

Thebio-oxidationexperiments(duplicate)wereperformedin abaffledbioreactor(NewBrunswick Scientific,BioFlo110)with 2Lofsuspensionthatcontained10%(volume)oftheinoculum.To producethesuspension,200mLoftheinoculum(notpreviously adaptedtoeitherfluorideoraluminum)wastransferredfromthe shakertothebioreactor,andgrowthmedium(supplementedwith yeastextract)wasaddedtoproduceafinalsolutionvolumeof2L thatcontainedbetween5×106and5×107cellsmL−1.ThepHwas manuallyadjustedto1.5and keptat thisvaluethroughoutthe experiment.ApHmeter(Hanna2221)andglass-membrane elec-trodecalibratedagainstpH4.0and7.0buffersolutionswasused forthepHmeasurements.ThepHwascontrolledduringthe experi-mentsbytheadditionofeitherconcentratedsulfuricacidorsodium hydroxide solution.Thetemperatureand thestirringratewere maintainedat50◦Cand300min−1 (dualRushtonimpeller,5cm diameter),respectively.Thisstirringratewasdefinedasthevalue thatproducedthehighestferrous-ironoxidationrate[15].Aeration wasprovidedbyoil-freecompressorsatarateof1Lmin−1,and 5mLsampleswereregularlywithdrawnandanalyzedfor ferrous-ironconcentrationandcellcounts.NoadditionalCO2wasaddedso thattheyeastextractwasthemaincarbonsource.

In the bioreactor experiments, both bacterial growth and ferrous-ironoxidationwereassessedinexperimentswhere fluo-rideions(NaF)wereadded.Fluorideconcentrationswerevaried from0to0.50molL−1(0–10mgL−1),inthepresenceandabsence ofaluminum(Al(OH)3)sothatthefollowingAl:Fmolarratioswere achieved:0.0:0.13;0.0:0.25;1.0:0.50;2.0:0.5and3.0:0.5,3.0:0.0.

2.2. Bioleachingexperiments

Coppersulfidebioleachingexperimentswereperformedwith twosecondaryores.Thefirstsamplecontained0.99%copper (high-grade ore), and the second contained0.73% copper (low-grade ore).Mineralogicalanalysisperformedbyopticalmicroscopyand

SEM–EDS indicated that thehigh-copper ore sample contained biotite(42.3%),magnetite(21.5%)andsilicates,especially amphi-bole(18.9%) and garnet (6.9%).In addition, thelow-copper ore containedapproximatelythesameamountofbiotite(34.9%)and amphibole(25.2%),lessmagnetite(9.5%)andmoregarnet(16.7%). Thecopper-containingmineralscomprisedbornite(36%)aswell aschalcocite(64%)inthehigh-copperore,whereasthelow-copper orecontained39%bornite,55%chalcociteand6%chalcopyrite.Both oresalsocontained0.58–0.73%chlorideand0.53–0.75%fluoride aseitherfluorite(CaF2)orfluoride-containingsilicates.Theiron andaluminumcompositionswere27.8%Feand5.0%Alinthe low-copperoreand33.7%Feand3.9%Alinthehigh-coppersample.

Thebioleachingpotentialofbothoreswasassessedin250mL Erlenmeyerflasks.Avolumeof50mLofthegrowthmedium (sup-plementedwithyeastextract)wasadjustedtotherequiredpHand transferredtotheflasks.TheamountofrequiredFe(II)wasadded asanacidsolutionthatcontained50gL−1Fe(II)(asFeSO4·7H2O). Afterwards,5goftheore(correspondingto5%(w/v)pulpdensity) wereadded,andtheflaskswereinoculatedwitha10mLaliquot ofthebacteriathatcontained1×107cellsmL−1.Finally,sufficient distilledwaterwasaddedtodilutethefinalslurrytoavolumeof 100mL.ThepHwassubsequentlyadjustedtotherequiredvalue (1.65),andtheflaskweightwasrecorded.Unlessotherwisestated 350mgL−1 and200mgL−1 Al(asaluminumsulfate)wereadded tothebioleachingtestswiththehigh-andlow-gradeores, respec-tively.Atemperature-controlledorbitalshaker(NewBrunswick) provided mixing(at200min−1).Eachflaskwassampledbythe removalofa2mLaliquotoftheleachsolution,whichwasthen used for elemental analysis. The redox potential (Digimed) (vs. Ag/AgCl reference)wasrecorded.Evaporationlosseswere com-pensatedbytheadditionofthegrowthmediumtotherecorded weight.Sterilecontrolswerealsoruninthepresenceof0.015% (v/v)methylparaben–0.01%(v/v)propylparabensolutionsasa bac-tericide.

2.3. Analysis

Cell countswere performedusinga Neubauer chamberin a light-contrast microscope (Leica). Aluminum and fluoride were analyzedbyICP–OESandionchromatography,respectively. Fer-rous ion wastitrated againsta standard potassiumdichromate solutioninthepresenceofa1H2SO4:1H3PO4solutionusingan automatictitrator(Schott-TritolineAlpha).Allchemicalsusedin thisstudywereanalytical-gradereagents(AR)unlessotherwise stated,andallsolutionswerepreparedwithdistilledwater.

StatisticalanalysiswasperformedusingtheOriginTMversion8.0 softwareprogramtodeterminethespecificgrowthrate,theFe(II) oxidationrateandtheyieldvaluesfora95%confidenceinterval. Thedatapointsusedtocalculatesuchparameterswerethosethat producedlinearregressionwithcorrelationcoefficients(r2)greater than0.95.

3. Resultsanddiscussion

3.1. Ferrous-ironbio-oxidation

(3)

[17].Inthelag-phase,growthisessentiallyzerobecausecellsare adaptingtothenewenvironment,andnewenzymesandstructural componentsarebeingproduced.Afterthelag-phase,the bacte-rialpopulationstartstoincrease (growthphase); eventually,as nutrientsbecomedepletedorinhibitoryproductsaccumulate,the stationaryphaseisattained[17].Fluorideionshavebeenshown toimpair thegrowthof different bacterialstrains[18], includ-ingmesophilicbioleachingmicroorganisms[19].Thisresultwas alsoverifiedinthepresentworkforthegrowthofthemoderate thermophileS.thermosulfidooxidansinferrous-iron.Nobacterial growthwasobservedwithin60hduringFe(II)bio-oxidation exper-imentsperformedwith0.50mmolL−1 (10mgL−1)totalfluoride. ThisdetrimentaleffectwasobservedbecauseHFisaweakacid (pKa=3.2,at25◦Candinfinitedilution)thatexistsprimarilyasHF (98%ofthefluoride-containingspecies)atthepHutilizedinthis study(1.5). HFisa highlypermeantsolute,witha permeability throughlipidbilayermembranesthatissevenordersofmagnitude greaterthanthat ofF− [20].In acidophiles,althoughthe exter-nalsolutionisacidic,thecytoplasmicpHisneutral becausethe cytoplasmicmembrane,despiteallowingthepassageofionsand moleculestosupportmetabolism,hindersprotonsfromentering thecell.Theentryofprotonsisreducedbyaninverted transmem-branepotential(),whichcontributestotheneutralcytoplasmic pH[21].Small, uncharged molecules suchas HFcan cross the cellmembrane.Afterenteringthecell,HFdissociatesintoH+and F−,whichdecreasestheinternalpHandaffectsmicrobialgrowth accordingly[8].Growthisalsoimpairedbecausefluorideitselfcan inhibittheactivityofmanyenzymes[18].

Thedetrimentaleffectposedbyfluorideonbacterialgrowth canbeovercomebytheadditionofaluminumtothesystem[19], asdepicted in Fig. 1.Fig. 1 shows no lag-phasein the experi-mentperformedwithouteitherelement(blank).However,growth wassomewhataffectedinthepresenceof0.5mmolL−1 fluoride and2mmolL−1aluminum(Al/F=4)andalag-phasewasobserved. Whenthealuminumconcentrationwasincreasedto3mmolL−1 atthesamefluorideconcentration(Al/F=6),thislag-phase disap-peared,whichpointstothedetoxificationeffectofaluminumon fluoridetoxicity[11,12].

Attheendofthelag-phase,thebacteriaareadaptedtotheir environment,andcelldoublingstarts(theexponentialphase).If growthisnotlimited,doublingwillcontinueataconstantgrowth rate,whichcharacterizestheexponentialgrowthphase,inwhich celldoublingwillcontinueattheso-calledspecificgrowthrate(). Thisgrowthphaseappliestoclosedsystemswheregrowthisthe

0 3 6 9 12 15

15.0 15.5 16.0 16.5 17.0 17.5 18.0

blank R2 = 0.99

Al/F = 6 R2 = 0.99

Al/F = 4 R2 = 0.98

Ln (bacterial population)

Time (days)

Fig.1.BacterialcountsasafunctionoftimeforthegrowthofS.thermosulfooxidans

onFe(II)atdifferentAl/Fmolarratios.[Fe2+]

0=2.5gL−1,50◦C,10%inoculum,pH1.5,

300min−1,[F]

total=0.5mmolL−1.Blankexperiment:[Al]t=[F]t=0.

0.0:0.0 0.0:0.130.0:0.25 1.0:0.5 2.0:0.5 3.0:0.5 3.0:0.0 0.05

0.10 0.15 0.20 0.25 0.30 0.35

Specific grow

th rate (h

-1 )

Al:F molar ratio

Fig.2.Effectoffluorideandaluminumadditiononthespecificgrowthrate() duringFe(II)oxidationbyS.thermosulfidooxidans.Experimentalconditions2.5gL−1

Fe2+;0.1gL−1yeastextract;Norrisgrowthmedium,pH1.5;300min−1and50C.

onlyprocessthataffectscellconcentration(X)[17].AplotoflnX versustimegivesastraightlinewithslope()(Fig.1).

Thespecific growthrate ()wasdetermined frombacterial countsperformedinthebioreactor(Fig.2).Thespecificgrowth rate(0.283±0.035h−1)calculatedfortheexperimentperformed intheabsenceofbothfluorideandaluminum(blank)isconsistent withpreviousstudiesonFe(II)oxidation byS. thermosulfidooxi-dans(0.220±0.025h−1)[15].Themaximumspecificgrowthrate (max)wasdeterminedforthisbacteriumgrowninthepresence of2–20gL−1Fe(II)andthevalueof0.242h−1wasobserved[15].

As shown in Fig. 2, the presence of fluoride ions reduced the specific growth rate. At a total fluoride concentration of 0.125mmolL−1, was reduced to 0.128±0.037h−1, i.e., less than half thevalue observed in theabsence of the anion. The specificgrowthrate wasfurtherdecreased to0.085±0.028h−1 forhigherfluorideconcentrations(0.25mmolL−1),whichreflects the inhibitory effect of HF onbacterial growth [8]. When alu-minumwasalsoaddedtothebioreactor,itsdetoxificationeffect became evident.As already stated,no growthwasobserved in thepresenceof0.5mmolL−1(10mgL−1)totalfluoride.However, when 1.0mmolL−1 Al wasaddedtothis fluorideconcentration (Al/F=2),growthwasdetected,andaspecificgrowth-ratevalue of 0.091±0.034h−1 wasmeasured. Fluoride inhibition wasnot completelyovercomeatthisaluminumconcentrationbecausethe specificgrowthratewasstatisticallysimilartothoseachievedin theabsence of aluminum and at lower fluoride concentrations (0.125mmolL−1–0.25mmolL−1).Avaluesimilartothatproduced intheabsenceoffluoridewasachievedwhentheAl:Fmolarratio wasincreasedto4 (2.0mmolL−1 Al0.50mmolL−1 F)(Fig.2). AfurtherincreaseintheAl/Fmolarratioto6(3.0mmolL−1 Al 0.50mmolL−1F)resultedinasmallergrowthratethanwhenonly 3.0mmolL−1aluminumwaspresent.Thisparameterisagain sta-tisticallysimilartothatproducedwhennoneoftheelementswere present.TheanomalousgrowthrateobservedatAl/F=6maybe duetothepredominanceofunchargedaluminumfluoridespecies (AlF3),butthisresultrequiresfurtherinvestigation.

Thepositiveeffectofaluminumonbacterialgrowthinthe pres-enceoffluoridecanbeexplainedbyaluminum–fluoridecomplex formationEq.(1–4),whichproducesspeciesthatcannotcrossthe bacterialcellmembranes.

Al3++F

⇆AlF2+ logˇ1= 7.01 (25◦C,I 0) (1)

Al3++2F

(4)

AlF2+

AlF2+

AlF2+

AlF2+

AlF2+

AlF2+

AlSO4+

AlSO4+

AlSO4+

Al(SO4)2- Al(SO

4)2- Al(SO4)2

-0.000 0.200 0.400 0.600 0.800 1.000

2 4 6

Mol

a

r fr

acƟon

Al/F molar raƟo

Fig.3.Estimatedaluminumspeciation(molarfraction)inthepresenceofboth sulfateand fluoride ions. Conditions:25◦C, pH 1.50,infinite dilution (I0). Totalconcentrations:0.5×10−3molL−1(fluoride);76.5×10−3molL−1 (sulfate);

44.8×10−3molL−1(ferrous-iron).Al3+,AlF

3andAlF4togetherrepresentslessthan

0.5%ofthealuminumspeciesandthereforedonotappearinthediagram.

Al3++3F

⇆AlF3(aq) logˇ3=16.7 (25◦C,I 0) (3)

Al3++4F

⇆AlF4− logˇ4= 19.4 (25◦C

,I→ 0) (4)

Thecompositionofthebio-oxidationsolution(aluminum,iron, fluoride and sulfate) wasused in a thermodynamicstudy per-formedtoestimatethedistributionofsolublealuminum–fluoride speciesinthesystem.Fig.3presentsthedistributionofaluminum complexesforthethreedifferentAl/Fmolarratiosstudiedinthe presentwork(atpH1.50andwith2.5gL−1Fe(II))at25Cand infi-nitedilution,withdataobtainedfromboththeNISTdatabase[22] andtheresultsofGimenoSerranoetal.[23].Valuesofstability constantsforthetemperatureandionicstrengthofthemoderate thermophileleachingcouldnotbefound.Therefore,actualvalues aresomewhatdifferent,butitisbelieved,however,thatthemain findingscanbeappliedtotheexperimentalconditionsstudiedhere. ThisanalysiscoversthebeginningoftheexperimentswhenFe(II) wasthemainironspecies,i.e.,ferricironconcentrationsweretoo lowtoaffectaluminum–fluoridespeciationortoformjarosite.For alltheAl/Fmolarratiosstudied,thecalculationsindicateAlF2+as thepredominantAl/Fcomplex,followedbyAlF2+(Fig.3);these resultsareconsistentwiththeworkofBrierleyandKuhn[11],who alsoindicatedAlF2+asthemainaluminum–fluoridecomplex dur-ingmesophilicbioleachingofsecondarycopperores.Nevertheless, AlF2+andAlF2+representmorethan97%ofthealuminum–fluoride complexes,andbothspecieslikelypredominateat50◦C.

Becausesulfatewasalsopresentinthereactor,Fig.3also sug-geststhatthecomplexesAlSO4+ andAl(SO4)−,whichrepresent between67%(Al/F=2)and85%(Al/F=6)ofthealuminumspecies, arealsoimportant.Thisresultis consistentwithprevious find-ings[13].Furthermore,theHFconcentrationwasdecreasedtoless than6×10−5molL−1,whichrepresentsonly12%ofthe fluoride-containing species (unlike the 98% observed in the absence of aluminum). Thedecreased HFconcentration positivelyaffected thebacterialgrowth.Insummary,fluoridecomplexationwith alu-minumreducestheHFconcentrationandpreventsfluoridefrom extensivelyenteringthemicrobialcell.

S.thermosulfidooxidansutilizesFe(II)asasubstrateforgrowth

[24]. Fig. 4 presents the Fe(II) profile in the experiments per-formedinthepresenceoffluorideandaluminum.Intheabsence ofaluminum(Fig.4a),increasedfluorideconcentrationsresulted inlongerdelays forthestartofFe(II)oxidation. Thistimespan

0 10 20 30 40 50 60 70 80 0.0

0.4 0.8 1.2 1.6 2.0 2.4 2.8

[F]tot = 0.50mmol/L

[F]tot = 0.25mmol/L [F]tot = 0.13mmol/L

[F]tot = 0.00mmol/L

(a)

[Fe

+2

] (g/L)

Time (h)

0 10 20 30 40 50 60 70 0.0

0.4 0.8 1.2 1.6 2.0 2.4 2.8

Al:

F = 0

(0.

5mmol.L

-1

F

tot

)

Al:

F = 2

Al:

F = 6

Al:

F = 4

(b)

[Fe

2+ ] (g.L -1 )

Time (h)

Fig.4. Effectoffluoride(a)andAl:Fmolarratio(b)onFe(II)oxidationbyS. thermo-sulfidooxidans.Experimentalconditions2.5gL−1Fe2+;0.1gL−1yeastextract;Norris

growthmedium,pH1.5;300min−1and50C.In(b),fluorideconcentrationwasset at0.50mmolL−1.

matches the lag-phase period (datanot shown), during which growthwasnotexpressiveandthereforenosubstrate consump-tionwasobserved.At0.5mmolL−1fluoride,nobacterialgrowth was observed nor was Fe(II) oxidation detected.As previously discussed,ata fluorideconcentrationof0.5mmolL−1,the addi-tionofaluminumenabledbacterialgrowth(Fig.1)andsubstrate consumption(Fig.4b);theFe(II)concentrationwasconsequently reducedwithtime.

Theyield(Y)canbedeterminedfromthechangeinbiomass con-centration(X)andsubstrateconsumption(S)[25]andtheresults areshownTable1.Higheryieldvaluesimplybettersubstrate uti-lizationbythebacteria.Inalltheexperiments,theyieldwaswithin thesameorderofmagnitude(1010cellsg−1-Fe(II)),irrespectiveof theAl:Fmolarratio.Nevertheless,theyieldwaslowerwhenonly fluoridewaspresent,whichimpliesthatenhancedmetabolic activ-ityisrequiredtosustaingrowth[16].ForSaccharomycescerevisiae, theenergy requiredtoactivatetheplasma-membraneATPases,

Table1

Effectsaluminumandfluorideadditionsontheyieldcoefficient(Y)duringFe(II) oxidationbyS.thermosulfidooxidans.Experimentalconditions2.5gL−1Fe2+;0.1gL−1

yeastextract;Norrisgrowthmedium,pH1.5;300min−1and50C.

Aluminum(mmolL−1) Fluoride(mmolL−1) Yield(1010cellsg−1Fe(II))

0.0 0.00 5.30±1.00

0.0 0.13 2.83±0.12

0.0 0.25 3.06±0.74

1.0 0.50 –

2.0 0.50 3.62±0.75

3.0 0.50 5.03±0.65

(5)

Table2

EffectsaluminumandfluorideadditionsontheFe(II)bio-oxidationrate.

Experimen-talconditions2.5gL−1Fe2+;0.1gL−1yeastextract;Norrisgrowthmedium,pH1.5;

300min−1and50C.

Aluminum(mmolL−1) Fluoride(mmolL−1) Fe2+oxidationrate(gL−1h−1)

0.0 0.00 0.179±0.019

0.0 0.13 0.323±0.047

0.0 0.25 0.426±0.042

1.0 0.50 0.118±0.009

2.0 0.50 0.128±0.006

3.0 0.50 0.146±0.014

3.0 0.00 0.140±0.009

whichpumpprotonsoutofthecell,hasbeenshowntoresultin anincreaseintherespirationratewithadecreaseincellgrowth andthuscellyield[26].Slightlyhigheryieldvalueswereobserved inthe experimentswith aluminum—aconsequence of its posi-tiveeffectonbacterialgrowth(Fig.2).Theseresultsareconsistent withthoseobservedduringferrous-ironoxidationwithA. brier-ley in two different studies. Konishi et al. [27] determined an yieldvalueof2.05×1010cellg−1inthepresenceof2.0gL−1Fe(II), whereasNematiand Harrison[28]achieved5.38×1010 cellg−1 with1.8gL−1Fe(II).

Theferrous-iron consumptionrate(d[Fe(II)]/dt)isequivalent inabsolutetermstotheFe(II)oxidationrate,andthelatterwas determinedfromtheslopeofthelinearpartoftheferrous-iron concentrationprofileshowninFig.4aandb.Thisapproachwas selectedbecausethefirst-orderkineticsmodelproposedby Franz-mann[29]didnotproducegoodfitstotheexperimentaldata.The calculatedvaluesareshowninTable2.Theferrous-ironoxidation ratewasdeterminedas0.179±0.019gL−1h−1intheabsenceof bothaluminumandfluorideions(blank);thisvalueislowerthan thatobservedbyPinaetal.[15],whodeterminedanoxidationrate of0.292±0.034gL−1h−1 inasimilarexperiment.However,this lattervalueisconsistentwiththatreportedbyWatlingetal.[30], whoinvestigatedgrowthin10gL−1Fe(II)(0.12gL−1h−1).It is alsoconsistentwiththegrowthofA.ferrooxidans(0.14gL−1h−1) inthepresenceof2.5gL−1Fe(II)[28],and,asexpected,higherthan thevalueobservedfor A.brierleyi(−0.053gL−1h−1)in 1.8gL−1 Fe(II)[28].

TwoadditionalimportantoutcomescanbediscernedinTable2. First,aluminumcanovercomethedetrimentaleffectposedby flu-orideions duringFe(II) oxidation by S.thermosulfidooxidans, as alreadystatedinthediscussionthatcoveredthebacterialgrowth rate.However,in theexperimentswhere thecation is present, Fe(II)oxidationratesareslightlylowerthanthoseobservedinthe absenceofbothelements(blank).Similarfindingshavenotbeen observedforthisstrain,andinhibitoryeffectshavebeenreported onlyforhigheraluminumconcentrationsandother microorgan-isms. Blight and Ralph [31] have observed a reduction in cell numbersandduplicationtimeduringferrous-ironbio-oxidation ataluminumconcentrationsgreaterthan2.7gL−1foran unidenti-fiedmesophilicculture,whereasOjumuetal.[7]observed,during Fe(II)oxidationbyL.ferriphilum,deleteriouseffectsonFe(II) oxi-dationandbacterialgrowthonlyathighaluminumconcentrations (10gL−1).

Among the results in Table 2, the effect of low fluoride concentrations on the Fe(II) oxidation rates are also note-worthy. Although the presence of fluoride induced a longer lag-phase during bacterial growth (Fig. 1), iron oxidation was faster in the presence of fluoride (Al:F ratios of 0.0:0.13 and 0.0:0.25) as soon as the exponential phase began. Iron oxida-tionreacheda rateof0.426±0.042gL−1h−1 inthepresence of 0.25mmolL−1 fluoride, whereas the rate in the blank experi-mentwas0.179±0.019gL−1h−1).Apossibleexplanationforthis behavioristheneedtoactivatecellmetabolismasaresistance

mechanismtothepresenceoflowconcentrationsoffluoride[16], forwhichthegrowthrateisdecreasedandthelengthofthe lag-phaseisextended.Itisthereforeproposedthatthedecreaseincell internalpH(causedbyHFdiffusion)forcesthesystemtopump protonsout(increasedATPaseactivity)tobalancethediffusionof theHFmoleculesintothecell.Overall,theenergyrequirementsare increased,whichresultinanincreasedsubstrateconsumptionrate withoutanincreaseinbiomassyield,asobservedinotherstudies [32].

Becausefluoridetoxicitycanbeovercomebythepresenceof aluminumduringFe(II)bio-oxidationbyS.thermosulfidooxidans, bioleachingexperiments wereperformedwithtwocopperores thatcontainedfluorideintheirgangueminerals[14].

3.2. Bioleachingexperiments

Two different secondary copper sulfide ores that comprise mainlychalcocite,borniteandchalcopyriteasaminorphasewere bioleachedwithS.thermosulfidooxidansat50◦C inthepresence of1gL−1 Fe(II)toensureafastincreaseinsolutionpotential.An externalferrous-ironadditionwaslaterfoundnottoberequired becauseirondissolutionfromtheoresprovidedenoughsubstrate forbacterialgrowth[14].Bothsamplescontainedmorethan90% cyanide-solublecopper[14],i.e.,copperthatiseasilyamenableto bioleaching[33].Becauseoftheobservedrapidferrous-iron oxi-dationbythebacterium(Fig.4),asharpincreaseinthesolution potentialwasexpectedduringtheseexperiments.Nevertheless, althoughtherewassignificantcopperextractioninboththebiotic andabioticsystems,ferric-andferrous-ironconcentrationswere similar to those achieved in the control experiment (data not shown),andpulppotentialvalueswereneverhigherthan450mV (Ag/AgCl),asshowninFig.5.Similarresultshavebeenreported duringbioleachingof achalcopyriteorethatcontainedfluoride [6].These resultsshouldbe comparedwith, for example,those observedduringnickelsulfidebioleachingwiththesamestrain, wherepotentialsashighas600mV(Ag/AgCl)wereobserved[24]. Therefore, someharmful substance might have beenimpairing bioleaching.Fig.5alsoshowsdifferentcopperextractionsfromthe high-gradeoreforboththebiotic(100%)andabiotic(75%) experi-ments.Thisbehaviorwasalsoobservedwiththelow-gradeore,but withslightlyloweryields(80%and60%forthebioticandabiotic experiments,respectively),whichmightbeduetothepresenceof chalcopyriteinthelow-gradeore[14].

(6)

0 2 4 6 8 10 12 14 16 0

25 50 75 100

(a)

Copper extracƟon (%)

Time (days) pH=1.65 pH=1.65 Control

0 2 4 6 8 10 12

0 25 50 75 100

(b)

Copper extracƟon (%)

Time (days) pH=1.65 pH=1.65 Control

0 2 4 6 8 10 12 14 16 350

400 450 500 550 600 650

(c)

Eh (mV)

Time (days) pH=1.65 pH=1.65 Control

0 2 4 6 8 10 12

350 400 450 500 550 600 650

(d)

Eh (mV)

Time (days) pH=1.65 pH=1.65 Control

Fig.5.Copperextraction(a)and(b)andsolutionpotential(Ag/AgCl)(c)and(d)duringtheexperimentswiththehigh-grade(a)and(c)andlow-grade(b)and(d)copper oresintheabscenceofaddedaluminumions.Experimentalconditions:5%solids;75–53␮m;pH1.65;1gL−1Fe2+;200min−1,10%Norris(v/v),0.1gL−1yeatextractand 50◦C.

Aspreviouslyshown,aluminumcanovercomethe detrimen-taleffectsoffluorideonFe(II)oxidation,althoughtheamountof aluminumdissolvedfromtheoredidnotensuresuitable condi-tionsforbacterialgrowth.Therefore,anewseriesofexperiments wereperformedinthepresenceofanexternalsourceofaluminum,

i.e., 350mgL−1 and 200mgL−1 Al were addedto the bioleach-ing tests withthe high- and low-gradeores, respectively. This externalsourceofAlensuredanAl/Fmolarratioofatleast1.5 duringbioleaching,whichwasshowntoenablebacterialgrowth onferrous-iron(Section1)andtoincreasethesolutionpotentialto

0 4 8 12 16

0 25 50 75 100

(a)

Biotic

Abiotic

Copper extraction (%)

Time (days)

0 4 8 12

0 25 50 75 100

(b)

Biotic

Abiotic

Copper extraction (%)

Time (days)

0 4 8 12 16

300 350 400 450 500 550 600

Abiotic

Biotic

(c)

Eh (mV)

Time (days)

0 4 8 12

300 350 400 450 500 550 600

(d)

Biotic

Abiotic

Eh (mV vs Ag/AgCl)

Time (days)

(7)

600mV[14].Fig.6depictsthevaluesachievedforcopper extrac-tionsandthesolutionpotentialsforbothores.Inthepresenceof aluminum,thepotentiallevelsoutinthe500–550mV(Ag/AgCl) rangewithinfivedays.Thesepotentialsareapproximately150mV higherthanthevalueobservedinthecontrolexperiments(Fig.6c andd), whichconfirms thepredictionsof Sundkvistetal. [13]. Therefore,bacterialactivitywasconfirmed.Althoughfinalcopper extractionsweresimilarintheexperimentswithout(Fig.5)and with(Fig.6)theexternaladditionofaluminum,copperextraction wasfasterinthelattercase.Forexample,forthelow-gradeore, copperextractionswere70%and50%atthefourthdayofleaching inthepresenceandabsenceofaluminum,respectively.

Theresultsshowaclearincreaseinthelag-phaseperiodwhen fluoridespecies are present duringferrous-iron oxidation by S.

thermosulfidooxidans.Becausetheproductionofferricironisthe

mainbioleachingmechanism,theonsetofmetalextractionbecame excessively longer than expected or even did not occur [11]. Notwithstanding,sub-lethalfluorideconcentrationscandoublethe ferrous-ironoxidationkinetics,whichwillresultinfastersulfide oxidation.UnliketheFe(II)oxidation,bioleachingcanbeperformed atmuchhigherfluorideconcentrationsiftheorecontainselements suchasaluminumthatcancomplexfreefluorideandreducethe HFconcentrationintheleachingliquor.Ifthepresenceof fluoride-containingmineralsisdetected,extracaremustbetakenduring bioleaching,especiallywhentheleachingsolutionisrecirculated, suchasin bio-heap-leachingoperations [19]. Althoughfluoride toxicitycanbereducedbythepresenceofaluminum,the ferrous-ironoxidationratebyS.thermosulfidooxidansisslightlydecreased inthepresenceofthecation.Therefore,thebuild-upofboth ele-mentscanleadtohighionic-strengthvalues,whichcanalsoaffect bioleaching.Under theseconditions,solutionbleedingwouldbe requiredtoreducethefluoridetoxicityaswellastheionicstrength sothatbioleachingcanbeperformedproperly.

4. Conclusions

AtthepHlevelstypicallyfoundinbioleachingoperations, fluo-rideionscanadverselyaffectthegrowthofS.thermosulfidooxidans becauseofthepredominanceofHFspeciesinsolution.The bac-terialspecificgrowthratewasdecreasedfrom0.283±0.035h−1 in experiments without fluoride to 0.085±0.028h−1 when 0.25mmolL−1totalfluoridewaspresent.Suchdetrimentaleffects canbeovercomebythepresenceofaluminum(1mmolL−1Al 0.5mmolL−1F)whichformsAlF2+complexesthatreducetheHF concentrationand thefluoridetoxicity accordingly. This reduc-tionin toxicity resultsin specificgrowth-ratevalues similarto those observed in theabsence of both aluminum and fluoride. Despite the increase in the lag-phase period, sub-lethal fluo-rideconcentrationscatalyzeferrous-ironoxidation,whichreaches 0.426±0.042gL−1h−1with0.25mmolL−1totalfluoride.The pos-itiveeffectofaluminumonthebioleachingofcoppersulfideores that contain fluoride wasdemonstrated, and at least80% cop-perextractionwasachieved.Overall,forthoseoresthatcontain fluoride-containingminerals,bioleachingcanbeperformedif alu-minumsourcesarepresentoraddedtothebioleachingsystem.In heapbioleachingapplications,thebuild-upofaluminumand fluo-ridecanleadtofailuresduetohigh-ionic-strengthconstraints,and regularsolutionbleedingsmayberequired.

Acknowledgements

The financial support from the funding agencies FINEP, FAPEMIG,CNPqand CAPES is gratefully appreciated.The “Con-selhoNacionaldePesquisas”(CNPq)scholarshiptoV.A.Leãoisalso acknowledged.

References

[1] J.Petersen,D.G.Dixon,Principles,mechanismsanddynamicsofchalcocite heapbioleaching,in:E.R.Donati,W.Sand(Eds.),MicrobialProcessingofMetal Sulfides,Springer,Dordrecht,TheNetherlands,2007,pp.193–218.

[2] A.Mazuelos,F.Carranza,R.Romero,N.Iglesias,E.Villalobo,OperationalpHin packed-bedreactorsforferrousionbio-oxidation,Hydrometallurgy104(2010) 186–192.

[3]T.V.Ojumu,G.S.Hansford,J.Petersen,Thekineticsofferrous-ironoxidation byLeptospirillumferriphilumincontinuousculture:theeffectoftemperature, Biochem.Eng.J.46(2009)161–168.

[4] P.Ramírez,N.Guiliani,L.Valenzuela,S.Beard,C.A.Jerez,Differential pro-teinexpressionduringgrowthofAcidithiobacillusferrooxidansonferrousiron, sulfur compounds,ormetal sulfides,Appl.Environ.Microbiol. 70 (2004) 4491–4498.

[5] I.A.Tsaplina,E.N.Krasilnikova,A.E.Zhuravleva,M.A.Egorova,L.M.Zakharchuk, N.E. Suzina, V.I. Duda, T.I. Bogdanova, I.N. Stadnichuk, T.F. Kondrat’eva, Phenotypic propertiesofSulfobacillusthermotolerans:comparativeaspects, Mikrobiologiia77(2008)738–748.

[6]M.Dopson,L.Lövgren,D.Boström,Silicatemineraldissolutioninthepresence ofacidophilicmicroorganisms:implicationsforheapbioleaching, Hydromet-allurgy96(2009)288–293,doi:10.1016/j.hydromet.2008.11.004.

[7]T.V.Ojumu,J.Petersen,G.S.Hansford,Theeffectofdissolvedcationson micro-bialferrous-ironoxidationbyLeptospirillumferriphilumincontinuousculture, Hydrometallurgy94(2008)69–76,doi:10.1016/j.hydromet.2008.05.047. [8] I.Suzuki,D.Lee,B.Mackay,L.Harahuc,J.K.Oh,Effectofvariousions,pH,and

osmoticpressureonoxidationofelementalsulfurbyThiobacillusthiooxidans, Appl.Environ.Microbiol.65(1999)5163–5168.

[9]L.Harahuc,H.M.Lizama,I.Suzuki,Selectiveinhibitionoftheoxidationof fer-rousironorsulfurinThiobacillusferroxidans,Appl.Environ.Microbiol.66(2000) 1031–1037.

[10]I.R.Booth,RegulationofcytoplasmicpHinbacteria,Microbiol.Rev.49(1985) 359–378.

[11] J.A.Brierley,M.C.Kuhn,Fluoridetoxicityinachalcocitebioleachheapprocess, Hydrometallurgy104(2010)410–413,doi:10.1016/j.hydromet.2010.01.013. [12]M. Dopson, A.-K. Halinen, N. Rahunen, D. Boström, J.-E. Sundkvist, M.

Riekkola-Vanhanen, A.H. Kaksonen, J.A. Puhakka, Silicate mineral disso-lution during heap bioleaching, Biotechnol. Bioeng. 99 (2008) 811–820, doi:10.1002/bit.21628.

[13]J.E.Sundkvist,Å.Sandström,L.Gunneriusson,E.B.Lindström,Fluorine toxic-ityinbioleachingsystems,in:S.T.L.Harrison,D.E.Rawlings,J.Petersen(Eds.), InternationalBiohydrometallurgySymposium,CapeTown,SouthAfrica, Else-vier,2005,pp.19–28.

[14]L. Sicupira, T. Veloso, F. Reis, V. Leão, Assessing metal recovery from low-grade copper ores containing fluoride, Hydrometallurgy109 (2011) 202–210.

[15] P.S.Pina,V.A.Oliveira,F.L.S.Cruz,V.A.Leão,Kineticsofferrousiron oxida-tionbySulfobacillusthermosulfidooxidans,Biochem.Eng.J.51(2010)194–197, doi:10.1016/j.bej.2010.06.009.

[16] M.E.Esgalhado,A.T.Caldeira,J.C.Roseiro,A.N.Emery,Sublethalacidstress anduncouplingeffectsoncellgrowthandproductformationinXanthomonas campestriscultures,Biochem.Eng.J12(2002)181.

[17]P.M.Doran,BioprocessEngineeringPrinciples,AcademicPress,SanDiego,CA, USA,1995.

[18]R.E.Marquis,S.A.Clock,M.Mota-Meira,Fluorideandorganicweakacidsas modulatorsofmicrobialphysiology,FEMSMicrobiol.Rev.26(2003)493–510, doi:10.1111/j.1574-6976.2003.tb00627.x.

[19]J.A.Brierley,M.C.Kuhn,Fromlaboratorytoapplicationheapbioleachornot, in:E.Donati,M.R.Vieira,E.L.Tavani,A.Giaveno,T.L.Lavalle,P.Chiacchiarini (Eds.),IBS09–InternationalBiohydrometallurgySymposium,Bariloche,Trans TechPublications,2009,pp.311–317.

[20] J. Gutknecht, A. Walter, Hydrofluoric and nitric acid transport through lipid bilayer membranes, BBA-Biomembranes 644 (1981) 153–156, doi:10.1016/0005-2736(81)90071-7.

[21]J.L.Slonczewski,M.Fujisawa,M.Dopson,T.A.Krulwich,CytoplasmicpH mea-surementandhomeostasisinbacteriaandarchaea,Adv.Microb.Physiol.55 (2009).

[22]A.E.Martel,R.M.Smith,NISTCriticallySelectedStabilityConstantsof Met-alsComplexes,TheNationalInstituteofStandardsandTechnology–NIST, Gaithersburg,2003.

[23]M.J.GimenoSerrano,L.F.AuquéSanz,D.K.Nordstrom,REEspeciationin low-temperatureacidicwatersandthecompetitiveeffectsofaluminum,Chem. Geol.165(2000)167–180,doi:10.1016/s0009-2541(99)00166-7.

[24]F.L.S.Cruz,V.A.Oliveira,D.Guimarães,A.D.Souza,V.A.Leão,High tempera-turebioleachingofnickelsulfides:thermodynamicandkineticimplications, Hydrometallurgy105(2010)103–109,doi:10.1016/j.hydromet.2010.08.006. [25]S.Molchanov,Y.Gendel,I.Ioslvich,O.Lahav,Improvedexperimentaland

com-putationalmethodologyfordeterminingthekineticequationandtheextant kineticconstantsofFe(II)oxidationbyacidithiobacillusferrooxidans,Appl. Environ.Microbiol.73(2007)1742–1752,doi:10.1128/aem.01521-06. [26]M.E.Esgalhado,J.C.Roseiro, M.T.AmaralCollac¸o,Kineticsofacidtoxicity

inculturesofXanthomonascampestris,FoodMicrobiol.13(1996)441–446, doi:10.1006/fmic.1996.0050.

(8)

[28]M.Nemati,S.T.L.Harrison,Acomparativestudyonthermophilicandmesophilic biooxidationofferrousiron,Miner.Eng.13(2000)19–24,doi: 10.1016/S0892-6875(99)00146-6.

[29]P.D.Franzmann,C.M.Haddad,R.B.Hawkes,W.J.Robertson,J.J.Plumb,Effectsof temperatureontheratesofironandsulfuroxidationbyselectedbioleaching bacteriaandarchaea:applicationoftheratkowskyequation,Miner.Eng.18 (2005)1304–1314,doi:10.1016/j.mineng.2005.04.006.

[30] H.R. Watling, F.A. Perrot, D.W. Shiers, Comparison of selected char-acteristics of sulfobacillus species and review of their occurrence in acidic and bioleachingenvironments, Hydrometallurgy 93(2008) 57–65, doi:10.1016/j.hydromet.2008.03.001.

[31]K.R.Blight,D.E.Ralph,Aluminiumsulphateandpotassiumnitrateeffectson batchcultureofironoxidisingbacteria,Hydrometallurgy92(2008)130. [32]J.C.Roseiro,M.E.Esgalhado,A.N.Emery,M.T.Amaral-Collac¸o,Technological

andkineticaspectsofsublethalacidtoxicityinmicrobialgumproduction, J. Chem.Technol.Biotechnol. 65(1996)258–264,doi: 10.1002/(sici)1097-4660(199603)65:3<258::aid-jctb417>3.0.co;2-2.

[33]H.R.Watling,Thebioleachingofsulphidemineralswithemphasisoncopper sulphides– areview,Hydrometallurgy84(2006)81–108.

Imagem

Fig. 1. Bacterial counts as a function of time for the growth of S. thermosulfooxidans on Fe(II) at different Al/F molar ratios
Fig. 4. Effect of fluoride (a) and Al:F molar ratio (b) on Fe(II) oxidation by S. thermo- thermo-sulfidooxidans
Fig. 5. Copper extraction (a) and (b) and solution potential (Ag/AgCl) (c) and (d) during the experiments with the high-grade (a) and (c) and low-grade (b) and (d) copper ores in the abscence of added aluminum ions

Referências

Documentos relacionados

The main purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-amino- levulinic acid dehydratase in the brain, liver and

The objective of this study was to evaluate the effects of aluminum (Al) on the zinc (Zn), manganese (Mn), iron (Fe) and copper (Cu) concentrations in four potato clones (Macaca

Incorporation of amino acid analogues can lead to synthesis of aberrant proteins that misfold or unfold and activate mechanisms of protein quality control.. For example: molecular

28 Table IV: Interface and users’ problems reported in the computer screen videos.. 29 Table V: Correlation between facial expressions and interface and

The magnesium (Mg) capability to attenuate the toxicity of aluminum (Al) for the trehalose content, anaerobic growth, viability and budding rate of Saccharomyces cerevisiae,

An electrocoagulation reactor with aluminum and iron electrodes was used to treat water from the treatment plant of the Research Center for Wastewater Treatment and Hazardous

Distribution of lines into quartiles, according to the root length without aluminum in the solution and susceptibility index of root growth to aluminum toxicity, at points

Esta informação é muito importante no caso dos nós Interface com o Utilizador e Servidor de Software para se saber como o sistema operativo identifica cada