• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número2"

Copied!
6
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

article

UHPLC–MS

quantification

of

coumarin

and

chlorogenic

acid

in

extracts

of

the

medicinal

plants

known

as

guaco

(

Mikania

glomerata

and

Mikania

laevigata

)

Lucilia

V.

de

Melo,

Alexandra

C.H.F.

Sawaya

DepartamentodeBiologiaVegetal,InstitutodeBiologia,UniversidadeEstadualdeCampinas,Campinas,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16December2014 Accepted6February2015 Availableonline27March2015

Keywords: Mikaniaglomerata Mikanialaevigata

Coumarin Chlorogenicacid UHPLC–MSanalysis

a

b

s

t

r

a

c

t

InBrazil,MikaniaglomerataSpreng.andM.laevigataSch.Bip.exBaker,Asteraceae,knownpopularly asguaco,arewidelyusedforcoldsandasthma.Althoughcoumarinisadoptedasthechemicalmarker ofbothspecies,itwasnotalwaysdetectedinM.glomerata,forwhichchlorogenicacidwasidentified andquantifiedinstead.Thepurposeofthisstudywastodevelopandvalidateamethodtoquantifyboth coumarinandchlorogenicacidandapplyittoextractsofplantsidentifiedasM.glomerata,M.laevigata,or asguaco,todeterminethepatternofcompositionofthesetwospeciesandtoobservedifferencesbetween oven-driedandlyophilizedleaves.Amethodusingultra-highresolutionliquidchromatography–mass spectrometry(UHPLC–MS)inthefullscanmodewasvalidatedforselectivity,matrixeffect,linearity, lim-itsofdetectionandquantification,precisionandaccuracy.Theconcentrationofcoumarinvariedbetween speciesandsamples,thereforethesetwospeciesshouldnotbeusedinterchangeably.Theconcentration ofchlorogenicacidwasalsodeterminedforallsamples.TheUHPLC–MSmethodpermittedthe quantifi-cationofcoumarinandchlorogenicacidin16samplesofguacoandseveralcommercialsampleswere possiblymisidentified.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

The therapeutic use of medicinal plants is part of the

his-toryofhumanity.Frequentlythepopulationof underdeveloped

countriesstilldependsstronglyonmedicinalplantsforspiritual,

culturaloreconomic reasons(Quirozetal.,2014).Furthermore,

evenindevelopedcountries,theuseoftraditionalherbal

reme-diesiswidespread.Herbalremediesareevencrossingborders,for

examplethewidespreaduseof traditionalChinese Medicinein

Europe(Hook,2014).

InBrazil,twospeciesoftheMikaniagenus,Asteraceae,popularly

knownasguaco,areusedinsyruporpreparedasteaforcoldsand

otherrespiratoryproblemsduetotheirbronchodilatoreffect(Silva

etal.,2008).MikaniaglomerataSpreng.andM.laevigataSch.Bip.ex

BakermaybefoundintheAtlanticCoastforest,rangingfromthe

stateofBahiaintheNortheastofBrazil,tothesouthernstatesof

Brazil(Gasparettoetal.,2010)andeveninParaguayandArgentina

(Limaetal.,2003).M.glomeratawasincludedinthefirstBrazilian

Pharmacopeia(Brasil,1929)whileM.laevigatawasonlyincludedin

∗ Correspondingauthor.

E-mail:achfsawa@unicamp.br(A.C.H.F.Sawaya).

thefourtheditionoftheBrazilianPharmacopeia(Brasil,2005).Both

speciesaremorphologicallysimilarandmaybeeasilymistaken;

theyareoftencommercializedandpreparedindistinctly(Anvisa,

2011).

Studiesoftheircomposition haveledtotheidentificationof

phenoliccompounds,di-andtri-terpenes,tanninsandother

com-ponents (Gasparettoet al.,2010).Although coumarinhas been

adopted asthe chemical markerof both species(Anvisa, 2008,

2011)and theirpharmacologicalproperties areoftenattributed

to this substance,several studiespresent conflicting resultson

theconcentrationofcoumarin.Forexample:Santosetal.(2006)

reportedthattheextractofM.glomeratapresentedtwiceasmuch

coumarinasthatM.laevigata,whereasBolinaetal.(2009)

con-cluded that M. laevigata presented a slightly higher coumarin

content(0.43%)thanM.glomerata(0.30%).Athirdstudyreported

thatcoumarinwasnotpresentinM.glomerata,onlyinM.

laevi-gata(Bertoluccietal.,2009)whichisconsistentwithourresults.

These contradictory resultsmay be due to misidentification of

theplantspecies(duetotheirmorphologicalsimilarity)ortothe

diverseanalyticalmethodsemployed.Theuseoffreshleaves,oven

dried leavesor lyophilizedmaterial mayalsohave affectedthe

results(Santosetal.,2006).Furtherpossibilitiesarevariationsin

secondarymetabolitesduetoseasonalorenvironmentalfactors

http://dx.doi.org/10.1016/j.bjp.2015.02.005

(2)

(Gobbo-NetoandLopes,2007).Preliminarystudiesbyourgroup

detectedthepresenceofchlorogenicacidinM.glomerataleaves,

whichwasasurprisingasonlyonestudywasfoundrelatingthe

presenceofchlorogenicacidin guacoleaves(Silva etal.,2006).

Thereforeitwasnecessarytobeginthisinvestigationbydefining

theplantsamples,thedryingmethodandtheanalyticalmethod

tobeused.Thismethodshouldbeselectiveenoughtoquantify

coumarinand chlorogenicacidcorrectly,but shouldalsodetect

other,stillunidentified,componentsintheextracts.

Severalmethodshave beenfoundinliteratureforthe

quan-tificationof coumarins;fromsimplethin layerchromatography

(Alvarenga et al., 2009) to modern electrochemical methods (Miyanoetal.,2014).Celeghinietal.(2001)quantifiedcoumarin

inextractsofM.glomerataleavesbyhighresolutionliquid

chro-matographywithUVdetection(HPLC–UV),whileMuceneekietal.

(2009)quantifiedo-coumaricacid,coumarinandsyringaldehyde

byHPLC–UV.Parketal.(2009)andChenetal.(2012)usedHPLC

coupledtomassspectrometry(HPLC–MS)intheMRMmodeto

quantifycoumarins.Whilethismethodishighlyselectiveand

sen-sitive,itonlypermitstheanalysisoftheselectedcomponents.In

fact,allthemethods citedabovewouldnothave allowedusto

observethepresenceofchlorogenicacidinM.glomeratasamples,if

theyhadbeendevelopedforcoumarin.Thesamecanbesaidofthe

HPLC–MS(MRM)methodusedtoquantifydicaffeoylquinicacids

(Cliffordetal.,2008)andchlorogenicacidmetabolites(Santosetal.,

2005).However,byusingMSdetectioninfullscanmodeitis

pos-sibletoquantifyselectedionsaswellasdetectothercomponents

oftheextract.

Inordertoevaluatetheconcentrationofcoumarinand

chloro-genicacidinleavesofM.glomerataandM.laevigata,whileallowing

thedetectionoftheothersamplecomponents,a methodusing

ultra-highresolution liquidchromatography–massspectrometry

(UHPLC–MS)wasdevelopedandvalidated.Thismethodwasused

toanalyzetheethanolic extractsof ovendried and lyophilized

leavesofbothspecies,aswellasleavescommercializedsimplyas

guaco.Themethodwasdevelopedforethanolicextractsofleaves

oftwoplantsidentifiedbyspecialistsasM.laevigataandM.

glom-erata;andthenappliedtoothersamplesoffreshanddryleaves

(commercializedasguaco).

Materialsandmethods

Plantsamples

MikaniaglomerataSpreng.andM.laevigataSch.Bip.exBaker,

Asteraceae,plants weredonatedand identified byCPQBA,

Uni-camp(Paulínia,SP)andvoucherspecimensdepositedattheState

UniversityofCampinasHerbarium(UEC)number102046forM.

laevigataandnumber102047forM.glomerata.Theseplantsare

growingintheExperimentalFieldoftheInstituteofBiology.For

thisstudy,leavesofbothspecieswerecollectedthesamemorning

anddriedbytwodifferentmethodsbeforegrindingand

extrac-tion.

Othercommercialsamplesfreshanddryleaveslabeledasguaco,

M.laevigataorM.glomeratawereboughtfromlocalmarketsor

collectedfrominstitutional (CPQBA-Unicamp)or homegardens

(Table2).Allsampleswereextractedwithindaysoftheir

acqui-sition. The dry leaves were extracted in the same way as the

identifiedplant samples;thefresh leaveswerelyophilized and

thenextracted.OneplantwhichwascollectedinthestateofSão

PauloandidentifiedasM.glomeratabyProf.GeorgeY.Tamashiro

oftheBiologyInstituteofUnicamp,presentedconcentrationsof

coumarinandchlorogenicacidsbelowquantificationlevelandwas

thereforedriedandextractedtobeusedasablankplantmatrix

(BPM)forcalibrationcurves.

Dryingandextraction

Approximatelyhalfoftheleavescollectedfromeachplantwere

driedinanovenwithaircirculationat40◦Cfor50h;theotherhalf

wasdriedbylyophilizationfor50h.Thematerialwasthenground

inamortar,passedthroughasievewith0.84mmspaces,andplaced

in67%ethanol(Ecibra,Brazil)toextract,followingtheproportionof

200gofleavestoatotalof1.0lofsolvent(Brasil,1929).After

filter-ing,a10mlaliquotwastakentoevaluatethetotalsolidsextracted

bydyingthesolventinanovenat105◦Cuntilconstantweight.

Chromatographicmethod

A chromatographic method was developed and validated

using an ultra-high performance liquid chromatographer

cou-pled toa triple quadrupolemass spectrometer.Theequipment

used was an Acquity UPLC-TQD (Micromass, Waters,

Manch-ester,England)and thecolumnwasa C18BEHAcquityWaters

(1.7␮m×2.1mm×50mm),oventemperatureof 30◦C.The

elu-tionwascarriedoutwithaflowof200␮l/min,SolventA–purified

water(Milli-Q)with0.1%formicacidandSolventB–HPLCgrade

acetonitrile(JTBaker,PA,USA),underagradientstartingwith10%B,

rampingto25%Bin4min,thento100%Bin8min,heldat100%B

until8.5minthereturningtotheinitialconditionsandstabilizing

until10min.

MSdetection wasperformedwithelectrosprayionizationin

bothpositiveandnegativeionmodes,underthefollowing

con-ditions:capillary±3000V,cone±35V,sourcetemperature150◦C

and desolvation temperature of 300◦C. Due to their structure,

chlorogenicacidionizedwellinnegativeionmodeandcoumarin

inthepositiveionmode.

Priortoinjectiontheextractswerefurtherdilutedinpurified

water(Milli-Q)intheproportionof1partextractto2partswater,

2␮lofeachsamplewereinjected.Theconcentrationofcoumarin

andchlorogenicacidintheplantextractswasquantifiedby

com-parisontoexternalcalibrationcurvesofcoumarin(Sigma–Aldrich)

andchlorogenicacid(Sigma–Aldrich)insolutionsof70%ethanol

andinBPM.Themethodwasvalidatedaccordingtotheparameters

describedbelow.

Selectivity.Solutionsofthestandardsofcoumarinand

chloro-genic acid, plant extracts and plant extracts spiked with the

standardswereinjected,evaluatingretentiontimesand

fragmen-tationspectra(MS/MS)oftheionofm/z147inthepositiveionmode

(coumarin)andorm/z353inthenegativeionmode(chlorogenic

acid).

Matrixeffect.ThiseffectwascalculatedaccordingtoEconomou etal.(2009)usingtheformula:C%=100×(1−Sm/Ss);whereC%is

thepercentageofincreaseorsuppressionofthesignal,Smisthe

angularcoefficientofthecalibrationcurveusingBPMandSsisthe

angularcoefficientofthecalibrationcurveusingasolutionof70%

ethanol.

Linearity.Thisparameterwasevaluatedbythecorrelation

coef-ficientofthecurvesofcoumarinandchlorogenicacidinBPM.

Limitofdetection(LD)andquantification(LQ).These

parame-tersweredeterminedbytheinjectionofa seriesofdilutionsof

coumarinandchlorogenicacidinBPM,withLDdeterminedasthe

concentrationthatresultedinapeakareathreetimesgreaterthan

thenoiselevelandLQaconcentrationthatresultedinapeakarea

tentimesgreaterthanthenoiselevel.

Precision.Thisparameterwasevaluatedfor fiveinjectionsof

extractsofM.laevigataandM.glomerataleavesalongonedayfor

theconcentrationofcoumarinandchlorogenicacid.

Accuracy.Asnocertifiedmaterialwasavailable,this

parame-terwasevaluatedbytheaddition(fortification)ofcoumarinand

chlorogenicacidinthreelevelsofconcentration:low(30␮g/ml),

(3)

tothepreparationofthecalibrationcurve.Recovery(R%)was

calcu-latedaccordingtothefollowingequation:R%=(C1−C2)/C3×100;

whereC1istheconcentrationwhichwasdeterminedforthe

forti-fiedsample,C2istheconcentrationofthenon-fortifiedsampleor

matrixandC3istheconcentrationofstandardwhichwasadded

(fortification).

Resultsanddiscussion

Dryingmethod

Leafextractsofbothspecies(driedintheovenorby

lyophiliza-tion)presentedsimilaramountsofsolid residue:1.2%(m/v)for

ovendriedM.laevigataand1.3%forlyophilizedM.laevigata;1.3%

forovendriedM.glomerataand1.4%forlyophilizedM.

glomer-ata.TheUHPLC–MSprofileoftheleafextractsofeachspecieswas

different(Fig.1)butthedryingproceduredidnotaffectthe

gen-eralprofileofthespecies.Howevertheamountofcoumarinand

chlorogenicacidwaslowerfortheovendriedleavesofbothspecies

(Table1),showingthatheataffectedthecontentsofthebioactive

compoundsevaluated.Forthis reason,alltheotherfreshleaves

collectedduringthisstudy(Table2)werelyophilized,ratherthan

ovendried,beforeextraction.

ValidationofUHPLC–MSmethod

Analyticalcurvesofcoumarinandchlorogenicacidstandards

withconcentrationsbetween1ng/mland 800␮g/mlwerebuilt

in 70% ethanol/waterand in BPM tovalidate themethod.This

rangeof concentrationswasnecessarydue tothevariable

con-tentofcoumarinandchlorogenicacidinbothplantspeciesandin

theextractsthatwereanalyzed.Furthermoreallparameterswere

successfullyvalidatedforthisrangeofconcentrations.

Selectivity. This parameter was determined comparing the

retentiontime(RT)andthefragmentationofcoumarinstandard

(positiveionmodem/z147)andchlorogenicacidstandard

(nega-tiveionmodem/z353)withthesameionsinthesamples.Fig.1A

showstheselectedionchromatogram(m/z147positiveionmode)

ofthecoumarinstandardandFig.1Bshowstheselectedion

chro-matogram(m/z147)oftheM.laevigataextract,theretentiontimes

arepracticallyidenticalandbothpresentthesameMS/MS(Fig.1E).

Fig.1Fshowstheselectedionchromatogramofm/z353negative

ion mode.Although threepeaksare present,thefirst retention

time(2.45min)correspondstochlorogenicacidandtheothersare

isomers,presentasimpuritiesinthestandard.Fig.1Gshowsthe

selectedionchromatogram(m/z353)oftheM.glomerataextract,

thepeak atretention timeof 2.51showedthesameMS/MSas

chlorogenicacid(Fig.1J).Smallvariationsin theretention time

wereduetothecomplexmatrixoftheplantextracts.Thesolvent

didnotpresentpeaksofthesecompoundsandinBPM(Fig.2)the

areasofpeaksofthesecompoundswerebelowtheLD.

Matrixeffect.Thisparameterwasevaluatedcomparingcurvesof

bothstandardsinsolventwithcurvesINBPM.Theresultsshowed

thattheplantmatrixresultedinareductionofpeakareaof4.37%

forcoumarinandof19.20%forchlorogenicacidinrelationtothe

sameconcentrationsinsolvent.Thereforeallsubsequentanalytical

curvesusedinthisstudywerebuiltusingBPM.

Linearity.AnalyticalcurvesofbothstandardsinBPMwerebuilt

between1ng/mland800␮g/ml,withtriplicateinjectionsofeach

point. The ideal parameter of linearity (R2>0.99) couldnot be

attainedduetotheinterferenceofthematrixandthewiderangeof

concentrationsused.Theanalyticalcurveforcoumarin(m/z147in

thepositiveionmode)waslinear(R2=0.9718)forconcentrations

between1.5␮g/mland730.0␮g/ml,andthecurveforchlorogenic

acid(m/z353inthenegativeionmode)waslinear(R2=0.9831)

forconcentrationsbetween10.0␮g/mland550.0␮g/ml.Onlyone

sampleofdryleaves(sample8,Table2)felloutsidetherangeof

thesecurvesandtheconcentrationofcoumarinwasobtainedby

extrapolationofthecurve.

Limitofdetection(LD)andquantification(LQ).Forcoumarinthe

LDwas0.32␮g/mlandtheLQwas3.30␮g/mlinBPM.For

chloro-genicacidtheLDwas4.18␮g/mlandtheLQwas20.38␮g/mlin

theblankplantmatrix.TheLDandLQwerehigherforchlorogenic

acid,possiblybecauseoflessionizationinthenegativeionmode.

Precision.Theareaof thepeaksoffivereplicateinjectionsof

theextractsofM.glomeratapresentedvariationof5%forcoumarin

(m/z147inthepositiveionmode)and4%forchlorogenicacid(m/z

353inthenegativeionmode).FortheextractsofM.laevigatathe

variationwasof1%forcoumarinand4%forchlorogenicacid.

Accuracy.Therecuperation(R)valuesforthethreelevelsof

for-tificationofcoumarinwereintheextractofM.laevigata75.15%

(low),84.60%(medium)and67.04%(high).Forthefortificationwith

chlorogenicacidintheextractofM.glomeratatheRwas:106.42%

(low),88.56%(medium)and95.74%(high).Asonlytheresultforthe

highestconcentrationofcoumarinfellslightlyoutsidetheaccepted

recuperationparameter(70–120%)(Ribanietal.,2004).

AnalyticalresultsforplantsamplesOneadvantageofthemethod

presentedhereinisthatacquisitioninbothpositiveandnegative

modesisobtainedinthesameshortchromatographicrun.This

chromatographic methodwasfirst usedtoanalyzetheextracts

oftheovendriedandlyophilizedleavesofM.glomerataandM.

laevigata.Theextractswerepreparedusing200gofleaves/lof

sol-vent;thereforetheresultsshowninTable1in␮g/mlcorrespondto

200mgofdriedleaves.Inthismannerweobservethattheleavesof

theidentifiedM.glomerataplantcontainedpracticallynocoumarin.

Chlorogenicacidcontentwasbetween0.67%(m/m)forovendried

leavesand0.82%(m/m)forlyophilizedleaves.Incomparison,M.

laevigataovendriedleavescontained0.37%(m/m)coumarinand

lyophilizedleavescontained0.57%(m/m)coumarin.Thisresultis

inagreementwiththecoumarincontentpresentedbyBolinaetal.

(2009)forM.laevigataleaves,andalsowiththeresultspresentedby

Bertoluccietal.(2009)whostatedthatnocoumarinwasdetected inM.glomerata.Furthermore,theUHPLC–MSchromatogramsshow

thatthetwospeciesofguacopresentdistinctchromatographic

pro-filesinbothpositive(Fig.1CandD)andnegative(Fig.1HandI)ion

modes.

The peak of coumarin(RT 4.06) is clearly seenin the

chro-matogramoftheM.laevigataextract (Fig.1C)butabsentinthe

chromatogramoftheM.glomerataextract(Fig.1D).Inversely,the

peakofchlorogenicacid(RT2.51)isabsentinthechromatogram

of theM. laevigata extract (Fig. 1H) but is clearly seen in the

chromatogramoftheM.glomerataextract(Fig.1I).Furthermore,

thechromatographicprofilesofbothspeciesareclearlydifferent.

Althoughclimaticandseasonalvariationscouldaffecttheseresults,

bothspeciesareplantedside-bysideintheExperimentalFieldin

Unicampandcollectedatthesametime,sosubjecttothesame

influences.

Inordertocheckifotherguacosampleswouldbehaveinthe

samemanner,eightsamplesoffreshleavesandeightsamplesofdry

leaveswereacquired,extractedandanalyzedusingthesame

vali-datedchromatographicmethod.TheresultsareshowninTable2.

Freshleaves,samples9–12,identifiedasM.glomerataand

col-lected at CPQBA-Unicamp, presented the same pattern as our

originalM.glomerataleaves,withvaryingamountsofchlorogenic

acidandnodetectablelevelsofcoumarin.Sample13,identifiedas

M.laevigataandcollectedatCPQBA-Unicamp,presented

approx-imately the same amount of coumarin as our original sample

(Table1)andchlorogenicacidbelowtheLQ.Thisconfirmedthe

expectedpattern ofcompoundsexpectedforthesespecies.The

freshleavesofbothspecieswerecollectedseveralmonthsafterthe

(4)

Time

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0 100

T4REPcurva cum 25ug ml 8a 1: Scan ES+

147 6.39e8

4.03

9.61

Time

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0 100

MLF0 2b 1: Scan ES+

147 1.45e9

4.10

2.93

MLF0 2b 1: Scan ES+

BPI 1.34e8

x2 4.06

0.74

0.65 2.20 2.512.93 3.613.85

8.00 6.48

5.91 4.43

7.51 7.40

8.10

9.65 8.64

9.94

MGL 2b TACL 1 1: Scan ES+

BPI 2.62e7

2.51

0.83 0.72

0.11 1.922.08

9.65 3.80

3.44

3.28 3.92 4.48 5.92

5.12 5.33 6.536.957.587.938.138.53 8.67 9.60

m/z 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

%

0

100 91

77

147 103

Time

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0

T4curva AC 10ug ml 8b 2: Scan ES-

353 7.36e6

2.45

3.36

3.93 9.12 9.62

Time

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

1

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

2

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

%

0 100

MGL 2b TACL 1 2: Scan ES-

353 8.70e7

2.51

2.26

3.34 2.73 3.51

MLF0 2b 2: Scan ES-

BPI 1.37e7

2.92 0.80

0.66 0.90 1.79 2.44

4.28 3.86

3.60 3.24

7.97 5.90

4.42

4.985.17 6.16 6.796.91 7.39 7.52

9.60 9.40 8.67

8.84

MGL 2b TACL 1 2: Scan ES-

BPI 1.87e7

4.47 3.45

2.51 0.82 2.26

1.81

3.34 2.96

3.83

4.19 4.59 5.38 5.90 6.596.827.01 7.99 8.688.86 9.60

m/z

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

%

0

100 179191 135

161 353

A

J

I

H

G

F

E

D

C

B

Fig.1.PositiveionmodeESI-MSUHPLCof:(A)coumarinstandardm/z147RT4.03min,(B)extractedionm/z147M.laevigataextract,(C)chromatogramofM.laevigata extract,(D)chromatogramofM.glomerataextract,(E)MS/MSofcoumarinm/z147.NegativeionmodeESI-MSUHPLCof:(F)chlorogenicacidstandardm/z353RT2.45min, (G)extractedionm/z353M.glomerataextract,(H)chromatogramofM.laevigataextract,(I)chromatogramofM.glomerataextract,(J)MS/MSofchlorogenicacidm/z353.

coumarinthanchlorogenicacidforM.laevigataandtheopposite,

morechlorogenicacidthancoumarin,forM.glomerata.

Driedleafsamples2,3,5,6,7and8,presentedapattern

simi-lartoM.laevigataleaves,withvaryingconcentrationsofcoumarin

andlessornochlorogenicacid.Thewaythesecommercial

sam-plesweredriedisunknown,butpossiblyaffectedthecontentsof

coumarin/chlorogenicacid.Thesesampleswerelabeledsimplyas

guaco(sample2)orM.glomerataandmayhavebeenmisidentified.

Driedleafsample4,labeledasguacoandacquiredintheAmazon,

presentedanapproximatelyequalconcentrationofcoumarinand

chlorogenicacid,whichisdifferentfromthepatternspreviously

encounteredandcouldevenbelongtoadifferentspeciesof

Mika-nia.Sample1,alsolabeledasguaco,presentedseveralmoldyleaves

andstemsinthepackageandnodetectablelevelsofcoumarinor

chlorogenicacid.Thereforeitisimpossibletoascertainifthis

(5)

Table1

Concentrationofcoumarinandchlorogenicacidinhydro-ethanolicextractsofovendriedandlyophilizedleavesofM.glomerataandM.laevigataplantedintheexperimental field(IB,UNICAMP),triplicateextractions.

Leavesof Coumarincontentinextract (␮g/ml)

CV(%) Chlorogenicacidcontentinextract (␮g/ml)

CV(%)

OvendriedM.glomerata * 1348 9.94

LyophilizedM.glomerata * 1634 5.79

OvendriedM.laevigata 775 3.26 *

LyophilizedM.laevigata 1131 0.61 *

*BelowLD.

Table2

Concentrationofcoumarinandchlorogenicacidinhydro-ethanolicextractsofdryandfreshleaveslabeledasM.glomerata,M.laevigataorguaco.

Samplelabeledas Form Boughtorcollectedin Coumarin (␮g/ml)

Chlorogenicacid(␮g/ml)

1.Guaco Dryleaves PortoAlegre–RS a a

2.Guaco/Mikania Dryleaves PortoAlegre–RS 155 b

3.M.glomerata Dryleaves Florianópolis–SC 170 64

4.Guaco Dryleaves Manaus–AM 128 156

5.M.glomerata Dryleaves Brasília–DF 375 b

6.M.glomerata Dryleaves Paulínia–SP 254 a

7.M.glomerata Dryleaves Paulínia–SP 316 a

8.M.glomerata Dryleaves Paulínia–SP 2794 a

9.M.glomerata(1)Id Freshleaves CPQBA,UNICAMPPaulínia–SP a 529

10.M.glomerata(2)Id Freshleaves CPQBA,UNICAMPPaulínia–SP a 211

11.M.glomerata(3)Id Freshleaves CPQBA,UNICAMPPaulínia–SP a 786

12.M.glomerata(4)Id Freshleaves CPQBA,UNICAMPPaulínia–SP a 260

13.M.laevigata(1)Id Freshleaves CPQBA,UNICAMPPaulínia–SP 1024 b

14.Guaco Freshleaves Guarapuava–PR 172 b

15.Guaco Freshleaves JoãoPessoa–PB 365 b

16.Guaco Freshleaves SãoPaulo–SP 354 a

a:BelowLD,b:BelowLQ,Id–botanicalidentificationbyCPQBA-UNICAMP.

badconservation.Itisworryingthatthissamplewasbeingsold

atamarketandcouldhavebeenconsumedbychildrenoradults

wishingtoalleviatethesymptomsofacold!

Freshleafsamples14–16,knownsimplyasguacobytheirusers,

presentedvaryingconcentrationsofcoumarinbutchlorogenicacid

contentsbelowLDorLQ,whichissimilartotheresultsofM.

laevi-gatavoucherplantandfreshplantfromCPQBA.

Theonlysampleswhichpresentedconcentrationsofcoumarin

and chlorogenic acid compatible with theidentified sample of

M.glomeratawerethosefreshleavesidentifiedand collectedat

CPQBA-Unicamp.Mostothersamples,regardlessoftheirlabels,had

concentrationsofcoumarinandchlorogenicacidwhichwere

sim-ilartothosefoundinleavesoftheM.laevigatavoucherplant.The

onlytwoguacosampleswhichdidnotfollowthispatternwere

pos-siblydegraded(sample1)orbelongedtoanotherspeciesofMikania

(sample4).

The variation in theconcentration of coumarin and

chloro-genic acid found in identified specimens of M. glomerata and

M.laevigatademonstratesthatthesetwospeciesdonotcontain

similaramounts ofcoumarinand thereforeshould notbeused

interchangeably. Furthermore commercialsamples also contain

variablecontentsofcoumarinandchlorogenicacidandmaybe

misidentifiedordegraded.Furtherstudiesregardingthe

morpho-logicaldescriptionofplantsknownasguacothroughoutBrazilare

underwaytoascertainwhichspeciesisbeingusedregionallyand

ifenvironmentalfactorsaffecttheconcentrationofcoumarinand

chlorogenicacidintheseplants.

By using UHPLC–MS in the full scan mode, not only were

coumarinandchlorogenicacididentifiedandquantified,butalso

othercompounds,whichmake upthecomplexchemicalprofile

oftheseplantextracts,weredetected.AlthoughotherHPLC–MS

methodsintheMRMmodemaybemoresensitive,theydonot

pro-videuswithapanoramicviewofsamplecomposition,whichleads

tonewdiscoveries,suchastheimportanceofchlorogenicacidin

M.glomeratasamples.Thischromatographicmethodallowedus

todistinguishbetweensamplesofleavesfromtwo

morpholog-ically similarspeciesandcan beused forthequalitycontrolof

thedryleavesand extractsofthesespecies.Thisinformationis

paramountforthecorrect useofthesemedicinalplantsby the

population.

(6)

Conflictofinterest

Theauthorshavenonetodeclare.

Authors’contributions

ACHFSplannedtheresearch,LVMperformedtheexperiments

validatedthemethod.Bothauthorshelpedwithwritingthispaper.

Acknowledgements

This study was partially financed by CNPq grant number

473597/2013-6. We would like to thank P. Mazzafera for the

useof theUHPLC–MSequipment(BIOEN-FAPESP grant number

2008/58035-6)andDr.GlynM.Figueira(CPQBA)fortheM.

glom-erataandM.laevigataplantsamples.

References

Alvarenga,F.C.R.,Garcia,E.F.,Bastos,M.A.F.,Grandi,T.S.M.,MariaGorette,R.,Duarte, M.G.R.,2009.Evaluationofthequalityofcommercialsamplesofleavesand tincturesofguaco.Rev.Bras.Farmacogn.19,442–448.

Anvisa,2008.Instruc¸ãoNormativaN◦5de11dedezembrode2008.Listade

Medica-mentosFitoterápicosdeRegistroSimplificado,Brasilia,DF.

Anvisa, 2011. Formulário de Fitoterápicos da Farmacopéia Brasileira, 1st ed, http://www.anvisa.gov.br/hotsite/farmacopeiabrasileira/conteudo/Formulario de FitoterapicosdaFarmacopeiaBrasileira.pdf(accessed30.06.14).

Bertolucci,S.K.,Pereira,A.B.,Pinto,J.E.,Ribeiro,J.A.A.,deOliveira,A.B.,Braga,F.C., 2009.DevelopmentandValidationofanRP-HPLCmethodforquantificationof cinnamicacidderivativesandkaurane-typediterpenesinMikanialaevigataand

Mikaniaglomerata.PlantaMed.75,280–285.

Bolina,R.C.,Garcia,E.E.,Duarte,M.G.R.,2009.Estudocomparativodacomposic¸ão químicadasespéciesvegetaisMikaniaglomerataSprengeleMikanialaevigata SchultzBip.Rev.Bras.Farmacogn.19,294–299.

Brasil,1929.FarmacopéiadosEstadosUnidosdoBrasil,firsted.CompanhiaEditora Nacional,SãoPaulo.

Brasil,2005.FarmacopéiaBrasileira,Fourthed.,PartII,6thfasc.Atheneu,SãoPaulo.

Celeghini,R.M.S.,Vilegas,J.H.Y.,Lanc¸as,F.M.,2001.ExtractionandquantitativeHPLC analysisofcoumarininhydroalcoholicextractsofMikaniaglomerataSpreng: (guaco)leaves.J.Braz.Chem.Soc.12,706–709.

Chen,H.,Zhang,W.,Yuan,J.,Li,Y.,Yang,S.,Yang,S.,2012.Simultaneous quantifica-tionofpolymethoxylatedflavonesandcoumarinsinFructusaurantiiandFructus

aurantiiimmaturususingHPLC–ESI–MS/MS.J.Pharm.Biomed.Anal.59,90–95.

Clifford,M.N.,Kirkpatrick,J.,Kuhnert,N.,Roozendaal,H.,Salgado,P.R.,2008.LC–MSn analysisofthecisisomersofchlorogenicacids.FoodChem.106,379–385.

Economou,A.,Botitsi,H.,Antoniou,S.,Tsipi,D.,2009.Determinationofmulti-class pesticidesinwines bysolid-phaseextractionand liquid chromatography-tandemmassspectrometry.J.Chromatogr.A1216,5856–5967.

Gasparetto,J.C.,Campos,F.R.,Budel,J.M.,Pontarolo,R.,2010.Mikaniaglomerata

SprengeM.laevigataSch.Bip.exBaker,Asteraceae:estudosagronômicos, genéticos,morfoanatômicos,químicos,farmacológicos,toxicológicoseusonos programasdefitoterapiadoBrasil.Rev.Bras.Farmacogn.20,627–640.

Gobbo-Neto,L.,Lopes,N.P.,2007.Medicinalplants:factorsofinfluenceonthe con-tentofsecondarymetabolites.Quim.Nova30,374–381.

Hook,I.L.I.,2014.DangguitoAngelicasinensisroot:arepotentialbenefitstoEuropean womenlostintranslation?Areview.J.Ethopharmacol.152,1–13.

Lima,N.P.,Biasi,L.A.,Zanette,F.,Nakashima,T.,2003.Produc¸ãodemudaspor estaquiadeduasespéciesdeguaco.Hortic.Bras.21,106–109.

Miyano,D.M.,Lima,T.,Simões,F.R.,La-Scalea,M.A.,Hueder,L.A.,Oliveira,P.M., Codognoto,L.,2014.ElectrochemicalStudyofsimplecoumarinandits determi-nationinaqueousinfusionofMikaniaglomerata.J.Braz.Chem.Soc.25,602–609.

Muceneeki,R.S.,Amorim,C.M.,Cesca,T.G.,Biavatti,M.W.,Bresolin,T.M.B.,2009.A simpleandvalidatedLCmethodforthesimultaneousdeterminationofthree compoundsinMikanialaevigataextracts.Chromatogr.S69,S219–S223.

Quiroz,D.,Towns,A.,Legba,S.I.,Swier,J.,Brière,D.,Soswf,M.,vanAndel,T.,2014.

QuantifyingthedomesticmarketinherbalmedicineinBenin,WestAfrica.J. Ethopharmacol.151,1100–1108.

Park,A.Y.,Park,S.Y.,Lee,J.,Jung,M.,Kim,J.,Kang,S.S.,Youma,J.,Hana,S.B.,2009.

SimultaneousdeterminationoffivecoumarinsinAngelicaedahuricaeRadixby HPLC/UVandLC-ESI-MS/MS.Biomed.Chromatogr.23,1034–1043.

Ribani,M.,Bottoli,G.,Collins,C.H.,Jardim,I.C.S.F.,Melo,L.F.C.,2004.Validac¸ãoem métodoscromatográficoseeletroforéticos.Quím.Nova27,771–778.

Santos,S.C.,Krueger,C.L.,Steil,A.A.,Kreuger,M.R.,Biavatti,M.W.,Wisniewski,A., 2006.Characterisationofguacomedicinalextracts,MikanialaevigataandM. glomerataandtheirEffectsonAllergicPneumonitis.PlantaMed.72,679–684.

Santos,M.D.,Martins,P.R.,dosSantos,P.A.,Bortocan,R.,Iamamoto,Y.,Lopes,N., 2005.Oxidativemetabolismof5-o-caffeoylquinicacid(chlorogenicacid),a bioactivenaturalproduct,bymetalloporphyrinandratlivermitochondria.Eur. J.Pharm.Sci.26,62–70.

Silva,A.I.,Santana,C.S.,Pivato,S.C.L.,deMaria,C.A.B.,Moreira,R.F.A.,2006. Chloro-genicacidprofileofcommercialBrazilianherbalinfusions.Sci.Aliment.26, 187–194.

Imagem

Fig. 1. Positive ion mode ESI-MS UHPLC of: (A) coumarin standard m/z 147 RT 4.03 min, (B) extracted ion m/z 147 M
Fig. 2. Selected ion chromatograms of (A) ion m/z 147 in the positive ion mode and (B) m/z 353 in the negative ion mode of BPM, showing that the contents of coumarin and chlorogenic acid are below the LQ in the blank plant matrix.

Referências

Documentos relacionados

As doenças mais frequentes com localização na cabeça dos coelhos são a doença dentária adquirida, os abcessos dentários mandibulares ou maxilares, a otite interna e o empiema da

Após a análise e estudo dos consumos existentes nas escolas do caso de estudo, verifica- se que não há uma relação estatisticamente entre o uso de eletricidade, gás e água durante o

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Foi utilizado o método indireto do Radar de Penetração no Solo (GRP) e no caso do método direto foram realizadas análises microbiológicas e físico-químicas das amostras de água,

TABELA 18: Resultados da vazão de pico da Bacia Hidrográfica Experimental do Córrego Água Vermelha (BHEAV), obtidas no hidrograma da bacia (Observado) e pelo método SCS

Através da agregação, limpeza e formação de diferentes tipos de dados e posteriormente da utilização de uma ferramenta visual analítica foi também possível averiguar o tráfego

The total phenolic content of lyophilized berries extracts and grinded leaves extracts in water and methanol was determined using the Singleton and Rossi (1965) method 102

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos