• Nenhum resultado encontrado

Rev. Bras. Hematol. Hemoter. vol.36 número6

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Hematol. Hemoter. vol.36 número6"

Copied!
7
0
0

Texto

(1)

Brazilian

Journal

of

Hematology

and

Hemotherapy

w w w . r b h h . o r g

Review

article

Klotho:

its

various

functions

and

association

with

sickle

cell

disease

subphenotypes

Ana

Paula

Almeida

de

Souza

Pacheco

a

,

Marilda

Goncalves

a,b,∗

aFundac¸ãoOswaldoCruz(FIOCRUZ),Salvador,BA,Brazil bUniversidadeFederaldaBahia(UFBA),Salvador,BA,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19March2014 Accepted21July2014

Availableonline5October2014

Keywords:

VitaminD Oxidativestress Sicklecelldisease Endothelium Genepolymorphism

a

b

s

t

r

a

c

t

TheKlothoprotein,whosegenehaspredominantrenalexpression,actsinthecontrolof serumphosphorusand1,25-dihydroxyvitaminD3andregulatesthefunctionofion chan-nels.Italsoparticipatesinthemechanismofprotectionagainstoxidativestressandactson thevascularendotheliumbyinducingtheproductionofnitricoxide.Mutationsthatreflect defectsintheKlothogeneexpressionmaybeimplicatedintheonsetofosteonecrosis, pri-apism,andlegulcersinpatientswithsicklecelldisease,asaresultofoxidativestressand endothelialimpairment,importantfactorsinthedevelopmentandseverityofthisdisease. PreviousreportsregardingtheassociationofKlothosinglenucleotidepolymorphismswith sicklecelldiseasesubphenotypeshavefoundthatthesepolymorphismsareimportantto identifygeneticmarkersofriskintheseindividualsandallowearlyandmoreeffective therapeuticintervention.

©2014Associac¸ãoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.Allrightsreserved.

Introduction

Klotho is a gene that consistsof five exons and is located onchromosome13q12inhumans.Itsexpressionoccurs pre-dominantlyinthekidneydistalconvolutedtubulesandthe choroidplexusofthebrain.Endocrineorgans(pituitarygland, parathyroidgland,pancreas,ovary,testisandplacenta),the heartandpancreatic␤cellsalsoexpressKlotho.1–7

Klotho generates twotranscripts, a transmembrane pro-teinandasecretedprotein,resultingfromalternativesplicing tothethirdexon.Additionally, thetransmembrane protein

Correspondingauthorat:CentrodePesquisasGonc¸aloMoniz,Fundac¸ãoOswaldoCruz(FIOCRUZ),RuaWaldemarFalcão,121,Candeal,

40296-710Salvador,BA,Brazil.

E-mailaddress:mari@bahia.fiocruz.br(M.Goncalves).

canbecleavedby␣-and␤-secretasestogenerateasecreted protein, which is, two-times longer than the alternatively splicedtranscript.4,6,8–11So,theeffectsoftheKlothoprotein

extendbeyondthetissuesthatexpressthegenebecauseofits humoralfactorfunction.Klothoreachesthesystemic circula-tionbysecretedfractions,andisreleasedintotheextracellular spaceandsubsequentlyintocirculation;itisfoundinblood, urineandcerebrospinalfluid(Figure1).11–13

Multiple aging phenotypes result from defects in gene expression of Klotho,11 such as growth retardation,

hyper-phosphatemia, moderate hypercalcemia, vascular and soft tissuecalcification,andhighlevelsof1,25-dihydroxyvitamin

http://dx.doi.org/10.1016/j.bjhh.2014.07.022

(2)

Circulation system

Transmembrane klotho

Transmembrane klotho

Alternative RNA splicing

Citoplasm Nucleus

37.3kb

CpG island kl locus

4 5

3 2 1

Soluble klotho

FGF23

Klotho / Na+, k+ – ATPase

complex FGFR

Soluble klotho

Cleavage

Figure1–TransmembraneandsecretedKlothoproteinprocessing.ThetransmembraneKlothoproteinactsasaco-receptor

forfibroblastgrowthfactor23signaling.ThistransmembraneproteinformscomplexeswithNa+/K+-ATPasechannelsand

isrecruitedtothecellsurface.Onceonthesurface,theKlothoproteiniscleavedbysecretasesformingasolubleformof

Klotho.Thisformentersthecirculatorysystemsimilartotheformproducedbyalternativesplicing,andactsonother

organsasahumoralfactor.

D3(1.25(OH)2D3)andfibroblastgrowthfactor23(FGF23).These

defectsinanimalsresultinashortenedlifeexpectancywhen comparedtowild-typephenotypes.Additionally,thekl−/−

ani-malexhibitshypokinesia, gaitchanges,andatrophyofthe genitals,skinand thymus.3,14 Klothosinglenucleotide

poly-morphisms(SNPs)havebeenassociatedwithsubphenotypes ofsicklecelldisease(SCA),15–19amonogenicautosomal

reces-sivedisorder,characterizedbya␤-globingene(HBB)mutation whichresultsintheformationoftheSvarianthemoglobin (HbS).

GiventhepossibleroleofKlothoasoneofthegenes respon-sible for the phenotypic variability between patients with sicklecell disease(SCD), theaimofthispaperistoreview thevariousfeaturesoftheKlothoprotein,aswellasdiscuss currentliteratureabouttheassociationbetweenKlotho poly-morphismsandSCDsubphenotypes.

Klotho

participates

in

the

regulation

of

the

bone-kidney

endocrine

axis

The phenotypic similarity between kl−/− mice and mice

with reduced Fgf23 expression (Fgf23−/− mice) suggests a

functional relationship between Klotho and FGF23. The Klotho transmembrane protein is a required co-factor/co-receptorforFGF23 signaling(Figure1),and theinactivation of the Klotho-FGF23 axis in kl−/−/Fgf23−/− mice results in

increased expression of co-transporter sodium-phosphate type-2a (NaPi-2a).14 FGF23, in turn, is a bone-derived

(3)

FGF23

VDR RXR

Fgf23

Cyp27b1

FGFR

Na

NaPi-2a Na

Transmembrane klotho

Vitamin D

Basal Apical

Figure2–PhosphateandvitaminDhomeostasis

regulation.VitaminDuponbindingtoitsvitaminD

receptor(VDR)inosteocytesinducesVDR-retinoidX

receptor(RXR)heterodimerbinding,whichactivatesFgf23

expression.Phosphatealsoinducesasimilarreaction.

FGF23thenbindstotheFGFR-Klothocomplexinrenal

tubularcells,blockingphosphatereabsorptionbyNaPi-2a

transportersandvitaminDsynthesisbysuppressingthe

Cyp27b1expressionandupregulatingCyp24expression.

ThismechanismcontrolsthephosphateandvitaminD

levelsinthebody;theFgf23expressionincreaseswhenthe

levelsofthesetwofactorsareelevated.After

re-establishingnormallevels,Fgf23expressionis

downregulatedandmaintainsphosphatereabsorptionand

vitaminDsynthesis.

Klotho acton the bone-kidney endocrine axisto maintain phosphatehomeostasis(Figure2).4,14,20,21

Thisbone-kidneyendocrineaxisalsoregulatesvitaminD levels. Highserum phosphate levels increaseFgf23 expres-sion inthe bone. FGF23 represses Cyp27b1 expressionand increasesCyp24expression,reducing1␣-hydroxylaselevels. Theend resultisthe reductionof1.25(OH)2D3 serum

syn-thesis(Figure2).Thesemechanismsareessentialforvitamin D homeostasis, preventing hypervitaminosis D.It has also beenfoundthattheadministrationof1.25(OH)2D3inducesthe

expressionofKlothointhekidney,whichreinforcesthe inte-gratedmechanismbetweenFGF23andKlothointhisaxis.4,22

Disturbancesofthesenegativefeedbackloopscanalsolead toahypercalcemicstatebecausevitaminDalsopromotesgut calciumabsorption.4,23,24

From observations ofFgf23−/− mice, there is additional

phosphaturic activity from secreted Klotho proteinthat is FGF23independent.TheKlothoglycosidaseactivityactsonan unknownsubstratethatispresentinthebrushborderof kid-neyproximaltubularcells.Thismodificationisaccompanied byproteolyticcleavage(thisstepoccurs,butitisnotrequired toinactivatethetransporter)andNaPi-2aco-transporter inter-nalization(Figure3).2

Klothocan also inhibitphosphate transport invascular smoothmusclecellsthroughNaPiclass3transporters, Pit-1andPit-2,preventingvascularcalcificationevents,because excessivephosphateinfluxinthesecellspromotesacascade ofeventsresponsibleforthecalciumandphosphate mineral-izationintheirinterior.25

Acute regulation Chronic regulation

Unidentified substrate

NaPi-2a 4

Figure3–SolubleKlothoproteinactsonphosphate

transportintheproximaltubules.Inacuteregulatory

conditions,Klothomodifiesanunknownsubstrate,glycan

(1),reducingthephosphatetransportercoupledtosodium

(2).Additionally,thecarrierundergoesproteolyticcleavage

(3)andsubsequentendocytosis(4).Uponsustained

elevatedsolubleKlotholevelsorchronicregulation

conditions,thereisongoingreductionofthesetransporters

atthecellsurface.

AdaptedfromHuetal.2

Effect

of

the

Klotho

protein

on

ion

channel

regulation

ThesecretedKlothoproteinregulatesotherionchannels,such asthetransientreceptorpotentialcationchannel,member5 ofsubfamilyV(TRPV5),whichisprimarilyresponsibleforCa2+

entry during kidney transepithelial reabsorption. Secreted KlothoproteininhibitsTRPV5internalizationthroughits siali-daseactivityonthisionchannel,increasingTRPV5cellsurface levelsandwiththistheCa2+inflowandkidneyreabsorption

(Figure4).4,26,27

Theretainingmechanismofthecellsurfaceionchannel occursduringtheregulationofpotassiumchannelsinthe kid-neyoutermedulla(ROMK1),resultinginanincreaseinROMK1 intheplasmamembraneofrenaltubularcells,withincreased potassiumsecretioninurine.28

Klotho

as

an

insulin/growth

factor

insulin-like

1

signaling

mechanism

regulator

(4)

Extracellular matrix

α2.3 or 2.6 linkage

N-acetyl-lactosamine (LacNAc)

N-acetyl-lactosamine

Manose

TRPV5

Endocytosis

Endosome Golgi

Citoplasm

Sialic acid

Galactose

Endocytosis

Renal tubular cells Urine lumen

Galectin-1 dimer Soluble Klotho

Figure4–GeneralmodelforTRPV5regulationbyKlotho.SolubleKlothoremovesthesialicacidresidueattachedby␣2.6

bondingintheN-acetyl-lactosamine(LacNAc)repeatsoftheTRPV5N-glycans.TheLacNAc,whenexposed,canbindtoits

ligand,thegalectin-1dimer,intheextracellularmatrix.Thismechanismreducescarrierinternalization.

regulatedbyenablinginsulin/IGF-1signaling,whichpromotes the serine-threonine kinase Akt phosphorylation. The Akt hastheabilitytophosphorylateFOXO,resultinginits exclu-sionfrom thenucleusandinactivation.Klothoproteinacts byinhibitinginsulin/IGF-1signaling,decreasingFOXO phos-phorylationandincreasingSOD2expressionandminimizing oxidativestress.11,29

Effect

of

Klotho

protein

on

the

vascular

endothelium

BothsecretedKlothoproteinshaveanti-apoptoticand anti-aging activity on vascular endothelial cells. These cells arecontinuouslyexposed toKlotho.Thevascular endothe-lium, due to the release of nitric oxide (NO) in response tospecific agonists suchas acetylcholine, plays an impor-tantrole invasculartone maintenance.Ithasbeenshown that mutations in the Klotho gene significantly attenuate endothelium-dependentvasodilationoftheaortaand arteri-olesinresponsetoacetylcholine.30,31Thereisevidencethat

Klothointhesecretedandmembraneboundformscan up-regulateNOproduction,althoughthemechanisms arestill unknown.4,11 It is believed that defects in the Klotho gene

down-regulateendotheliumNOsynthase(eNOS).Theeffects ofKlothoonthevascularendotheliumareprotectiveagainst endothelialdysfunction.

Kl−/− mice subjected to the induction of lower limb

ischemiaexhibitedpersistentbloodflowlossanddecreased capillarycapacity,incontrasttothehighperfusionobserved in heterozygous Klotho animals (kl+/−) and wild-type

ani-mals.Kl−/−animalspresentwithdeficientangiogenesisand

reduced levels of urinary NO and tissue cyclic guanosine monophosphate (cGMP), with high rates of progression to spontaneousamputation.32 Moreover,the Klothoproteinis

capableofincreasingangiotensin-convertingenzyme-I activ-ityinendothelialcellsbytheactivationofthecyclicadenosine monophosphate (cAMP)-protein kinase A (PKA) pathway,33

suggestinginvolvementoftherenin-angiotensinsystemand NOinvasculartonemaintenance.

TheKlothoproteinhasananti-apoptoticeffectonhuman umbilical vein endothelial cells, with decreased caspase-3 andcaspase-9activity,thereforeactingasahumoralfactor. Itretardscellularagingbymechanismsinvolvingp53/p21.34

(5)

SNP Subphenotypes References

rs211234 Osteonecrosis Baldwinetal.15

rs211235 Osteonecrosis Baldwinetal.15

rs211239 Osteonecrosis Baldwinetal.15

rs211239 Priapism Nolanetal.17

rs2149860 Osteonecrosis Baldwinetal.15

rs2149860 Legulcers Nolanetal.18

rs2249358 Priapism Nolanetal.17

rs480780 Osteonecrosis Baldwinetal.15

rs499091 Osteonecrosis Baldwinetal.15

rs516306 Osteonecrosis Baldwinetal.15

rs516306 Legulcers Nolanetal.18

rs565587 Osteonecrosis Baldwinetal.15

rs576404 Osteonecrosis Baldwinetal.15

rs685417 Osteonecrosis Baldwinetal.15

rs685417 Legulcers Nolanetal.18

TheKlothoproteinhasbeenassessedasatherapeutictool inparticularinrespecttopreventingactivityofage-related phenotypes.30,35,36Themainaimofthisreviewistodescribe

thepossibleroleoftheKlothoproteinasabiomarkerinsickle celldisease.

Klotho

protein

in

sickle

cell

disease

SomestudieshaveevaluatedtheassociationofKlothoSNPs with subphenotypes of individuals with SCA, one type of SCD.15–19 Itisadisorderofmonogenicautosomalrecessive

inheritance,characterized by a mutationin the HBB gene, wherevalinereplacesglutamicacidinthe␤-globin polypep-tidechain.Thismutationresultsinthevarianthemoglobin namedS(HbS),which,underdeoxygenatedconditions,tends to polymerizeinside the red blood cell conferringa sickle shape.

These individuals exhibit a chronic inflammatory and hemolyticstate,withsignificantproductionofROS,increased molecule adhesion of endothelial cells and blood cells, and reduced NO production resulting in vaso-occlusive phenomena; all of theseare importantevents that trigger thevariedsubphenotypesofthedisease.37Thelarge

pheno-typicvariabilityobservedinSCD(includingpaincrises,stroke, priapism, osteonecrosis, leg ulcers, bacteremia, pulmonary hypertension,acutechestsyndrome,andgallstones) demon-stratesgeneinteractionsinsubphenotypedevelopment.38

IndividualswithSCAandosteonecrosisofthehipor shoul-der,withorwithout␣-thalassemia,showedthat10KlothoSNPs were significantly associated with these subphenotypes.15

Additionally,twoSNPshavebeenassociatedwithpriapism17

andthreewithlegulcers18(Table1).Theseassociationsmay

beunderestimated,giventhatcontrolgroupindividualscould developsuchsubphenotypesinthefuture.

However, other studies have not succeeded in replicat-ingtheseresults.Ulugetal.19testedKlothoSNPsin39SCD

patientswhohadfemoralandhumeralheadavascular necro-sis,evidencedbysymptomsandimagingstudies.Thecontrols were 205 individuals with SCD without symptoms of this subphenotype.Therewasnoreproductionoftheassociation

• Hemolysis

• Increases oxidative stress

• Decreases NO production

• Chronic inflammation

• Homeostatic imbalance

• Vasoocclusive phenomena

• Increases oxidative stress

• Decreases NO production

Osteonecrosis priapism leg ulcer

Figure5–SummaryoftheroleofKlotho SNPstoestablish

SCDsubphenotypes.

foundbyBaldwinetal.15whichmaybeexplainedbythe

inad-equate samplesizeand bythe absence ofany radiological investigationofcontrolsasit isnotpossibletoensurethat the control individuals were notasymptomatic patientsin earlystagesofavascularnecrosis.Elliotteetal.16testedthe

associationofKlothoSNPsandpriapisminSCDpatients,but were unsuccessfulinfinding theassociation betweenSNPs and subphenotypesreportedbyNolanetal.17probablydue

todifferencesinthedefinitionofpriapism,thepatients’ages andadjustmentsmadeinthetests.

Osteonecrosis,associatedwithvaso-occlusiveeventsand increased blood viscosity, is a common clinical manifesta-tionofSCD.Bonemicrocirculationisafavorableenvironment for sickledredblood cells, leukocytes,and platelet deposi-tion, leading to infarctionand necrosis ofbone tissue.38,39

So,despitethemethodologicaldifferencesthatdidnotallow reproducibilityoftheresultsofBaldwinetal.15itmaybethat

endothelial dysfunction is exacerbated in individuals with SCDandKlothoSNPsduetothelossoftheprotectiveeffect againstoxidativestressaswellasreductionsintheproduction ofNOthataffectvasculartone.

Priapism is a prolonged penile erection irrespective of sexual interest, and has a direct relation with intravas-cular hemolysis.38 Normal erection is dependent on the

activation ofguanylate cyclase byNO for the synthesisof cGMP,whichgeneratestherapidrelaxationofpenilesmooth muscle. Erection regulationis drivenbyphosphodiesterase type 5, which controls the production of cGMP.40,41

How-ever,theexpressionofphosphodiesterasetype5isreduced when there is NO depletion. Both hemolysis and genetic alterations inKlothoexpressioncontribute tothereduction in NO synthesis, which affects the erection control mech-anisms by phosphodiesterase type 5, thereby prolonging erection.

Similartopriapism,legulcersarerelatedtotheseverityof hemolysis,andbothNOdepletionandoxidativestressappear toplayaroleinthedevelopmentofulcers.18,38However,the

pathophysiologyofthisclinicaleventstillneedstobe eluci-datedinordertoclarifywhetherthesemechanismscauseleg ulcerswhenKlothoSNPsarepresent.

(6)

Conclusion

The Klotho gene has a wide range of functions in several structuresofthebody,increasingphosphaturicactivityand reducing1.25(OH)2D3 synthesis, regulatingionchannel

lev-els on the cell surface with anti-aging and anti-apoptotic effects,reducing oxidative stressand inducingthe produc-tionofNO.SNPsinthisgenehavereportedlybeenassociated withsubphenotypesofSCD,howeverthisdatawasnot repro-ducedprobablyduetomethodologicaldifferences.Giventhe endothelialinvolvement of the Klotho protein and knowl-edgeaboutSCDpathophysiology(markedlycenteredaround hemolysisandvaso-occlusivephenomena),itisessentialto conduct furtherstudieswith thepower needed totestthe associations betweenthe Klotho gene and SCD,in order to identifygeneticmarkersofriskintheseindividualsandallow earlierandmoreeffectivetherapeuticinterventions.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This work was supported by grants from the Brazilian NationalCouncilofResearch(CNPq)(311888/2013-5)(M.S.G.); theFoundationofResearchandExtensionofBahia(FAPESB) (3626/2013)(M.S.G.); PPSUS/FAPESB (020/2013EFP00007295), (M.S.G.),andCNPq(402022/2010-6)(coordinatedbyF.F.C.).The sponsorsofthisstudyarepublicornonprofitorganizations thatsupportscienceingeneral,andtheyhadnorolein gath-ering,analyzing,orinterpretingthedata.

r

e

f

e

r

e

n

c

e

s

1. Ben-DovIZ,GalitzerH,Lavi-MoshayoffV,GoetzR,Kuro-oM, MohammadiM,etal.Theparathyroidisatargetorganfor FGF23inrats.JClinInvest.2007;117(12):4003–8.

2. HuMC,ShiM,ZhangJ,PastorJ,NakataniT,LanskeB,etal. Klotho:anovelphosphaturicsubstanceactingasan autocrineenzymeintherenalproximaltubule.FASEBJ. 2010;24(9):3438–50.

3. Kuro-oM,MatsumuraY,AizawaH,KawaguchiH,SugaT, UtsugiT,etal.Mutationofthemouseklothogeneleadstoa syndromeresemblingageing.Nature.1997;390(6655):45–51.

4. Kuro-oM.Klotho.PflugersArch.2010;459(2):333–43.

5. LiSA,WatanabeM,YamadaH,NagaiA,KinutaM,TakeiK. ImmunohistochemicallocalizationofKlothoproteininbrain, kidney,andreproductiveorgansofmice.CellStructFunct. 2004;29(4):91–9.

6. MatsumuraY,AizawaH,Shiraki-IidaT,NagaiR,Kuro-oM, NabeshimaY.Identificationofthehumanklothogeneandits twotranscriptsencodingmembraneandsecretedklotho protein.BiochemBiophysResCommun.1998;242(3):626–30.

7. TakeshitaK,FujimoriT,KurotakiY,HonjoH,TsujikawaH, YasuiK,etal.Sinoatrialnodedysfunctionandearly unexpecteddeathofmicewithadefectofklothogene expression.Circulation.2004;109(14):1776–82.

8.BlochL,SineshchekovaO,ReichenbachD,ReissK,SaftigP, Kuro-oM,etal.Klothoisasubstrateforalpha-,beta-and gamma-secretase.FEBSLett.2009;583(19):3221–4.

9.ChenCD,PodvinS,GillespieE,LeemanSE,AbrahamCR. Insulinstimulatesthecleavageandreleaseofthe

extracellulardomainofKlothobyADAM10andADAM17.Proc NatlAcadSciUSA.2007;104(50):19796–801.

10.Shiraki-IidaT,AizawaH,MatsumuraY,SekineS,IidaA, AnazawaH,etal.Structureofthemouseklothogeneandits twotranscriptsencodingmembraneandsecretedprotein. FEBSLett.1998;424(1–2):6–10.

11.WangY,SunZ.Currentunderstandingofklotho.AgeingRes Rev.2009;8(1):43–51.

12.ImuraA,IwanoA,TohyamaO,TsujiY,NozakiK,Hashimoto N,etal.SecretedKlothoproteininseraandCSF:implication forpost-translationalcleavageinreleaseofKlothoprotein fromcellmembrane.FEBSLett.2004;565(1–3):143–7.

13.LiuH,FergussonMM,CastilhoRM,LiuJ,CaoL,ChenJ,etal. AugmentedWntsignalinginamammalianmodelof acceleratedaging.Science.2007;317(5839):803–6.

14.NakataniT,SarrajB,OhnishiM,DensmoreMJ,TaguchiT, GoetzR,etal.Invivogeneticevidenceforklotho-dependent, fibroblastgrowthfactor23(Fgf23)-mediatedregulationof systemicphosphatehomeostasis.FASEBJ.2009;23(2):433–41.

15.BaldwinC,NolanVG,WyszynskiDF,MaQL,SebastianiP, EmburySH,etal.Associationofklotho,bonemorphogenic protein6,andannexinA2polymorphismswithsicklecell osteonecrosis.Blood.2005;106(1):372–5.

16.ElliottL,Ashley-KochAE,DeCastroL,JonassaintJ,PriceJ, AtagaKI,etal.Geneticpolymorphismsassociatedwith priapisminsicklecelldisease.BrJHaematol.

2007;137(3):262–7.

17.NolanVG,BaldwinC,MaQ,WyszynskiDF,AmiraultY,Farrell JJ,etal.Associationofsinglenucleotidepolymorphismsin klothowithpriapisminsicklecellanaemia.BrJHaematol. 2005;128(2):266–72.

18.NolanVG,AdewoyeA,BaldwinC,WangL,MaQ,Wyszynski DF,etal.Sicklecelllegulcers:associationswithhaemolysis andSNPsinKlothoTEKandgenesoftheTGF-beta/BMP pathway.BrJHaematol.2006;133(5):570–8.

19.UlugP,VasavdaN,AwogbadeM,CunninghamJ,MenzelS, TheinSL.Associationofsickleavascularnecrosiswithbone morphogenicprotein6.AnnHematol.2009;88(8):803–5.

20.KurosuH,OgawaY,MiyoshiM,YamamotoM,NandiA, RosenblattKP,etal.Regulationoffibroblastgrowthfactor-23 signalingbyklotho.JBiolChem.2006;281(10):6120–3.

21.UrakawaI,YamazakiY,ShimadaT,IijimaK,HasegawaH, OkawaK,etal.KlothoconvertscanonicalFGFreceptorintoa specificreceptorforFGF23.Nature.2006;444(7120):770–4.

22.TsujikawaH,KurotakiY,FujimoriT,FukudaK,NabeshimaY. Klotho,agenerelatedtoasyndromeresemblinghuman prematureaging,functionsinanegativeregulatorycircuitof vitaminDendocrinesystem.MolEndocrinol.

2003;17(12):2393–403.

23.HuangCL,MoeOW.Klotho:anovelregulatorofcalciumand phosphorushomeostasis.PflugersArch.2011;462(2):185–93.

24.YoshidaT,FujimoriT,NabeshimaY.Mediationofunusually highconcentrationsof1,25-dihydroxyvitaminDin

homozygousklothomutantmicebyincreasedexpressionof renal1alpha-hydroxylasegene.Endocrinology.

2002;143(2):683–9.

25.LauWL,FestingMH,GiachelliCM.Phosphateandvascular calcification:emergingroleofthesodium-dependent phosphateco-transporterPiT-1.ThrombHaemost. 2010;104(3):464–70.

(7)

activatestheTRPV5channel.Science.2005;310(5747):490–3.

28.ChaSK,HuMC,KurosuH,Kuro-oM,MoeO,HuangCL. Regulationofrenaloutermedullarypotassiumchanneland renalK(+)excretionbyKlotho.MolPharmacol.

2009;76(1):38–46.

29.YamamotoM,ClarkJD,PastorJV,GurnaniP,NandiA,Kurosu H,etal.Regulationofoxidativestressbytheanti-aging hormoneklotho.JBiolChem.2005;280(45):38029–34.

30.NagaiR,SaitoY,OhyamaY,AizawaH,SugaT,NakamuraT, etal.Endothelialdysfunctionintheklothomouseand downregulationofklothogeneexpressioninvariousanimal modelsofvascularandmetabolicdiseases.CellMolLifeSci. 2000;57(5):738–46.

31.SaitoY,YamagishiT,NakamuraT,OhyamaY,AizawaH,Suga T,etal.Klothoproteinprotectsagainstendothelial

dysfunction.BiochemBiophysResCommun. 1998;248(2):324–9.

32.ShimadaT,TakeshitaY,MuroharaT,SasakiK,EgamiK, ShintaniS,etal.Angiogenesisandvasculogenesisare impairedintheprecocious-agingklothomouse.Circulation. 2004;110(9):1148–55.

33.YangJ,MatsukawaN,RakugiH,ImaiM,KidaI,NagaiM,etal. UpregulationofcAMPisanewfunctionalsignalpathwayof Klothoinendothelialcells.BiochemBiophysResCommun. 2003;301(2):424–9.

Klothoonvascularendothelialcells.BiochemBiophysRes Commun.2006;339(3):827–32.

35.MasudaH,ChikudaH,SugaT,KawaguchiH,Kuro-oM. Regulationofmultipleageing-likephenotypesbyinducible klothogeneexpressioninklothomutantmice.MechAgeing Dev.2005;126(12):1274–83.

36.SaitoY,NakamuraT,OhyamaY,SuzukiT,IidaA,Shiraki-Iida T,etal.Invivoklothogenedeliveryprotectsagainst endothelialdysfunctioninmultipleriskfactorsyndrome. BiochemBiophysResCommun.2000;276(2):767–72.

37.MorrisCR,KatoGJ,PoljakovicM,WangX,BlackwelderWC, SachdevV,etal.Dysregulatedargininemetabolism, hemolysis-associatedpulmonaryhypertension,and mortalityinsicklecelldisease.JAMA.2005;294(1):81–90.

38.SteinbergMH.Geneticetiologiesforphenotypicdiversityin sicklecellanemia.ScientificWorldJournal.2009;9:46–67.

39.BennettOM,NamnyakSS.Boneandjointmanifestationsof sicklecellanaemia.JBoneJointSurgBr.1990;72(3):494–9.

40.ChampionHC,BivalacquaTJ,TakimotoE,KassDA,Burnett AL.Phosphodiesterase-5Adysregulationinpenileerectile tissueisamechanismofpriapism.ProcNatlAcadSciUSA. 2005;102(5):1661–6.

41.NolanVG,WyszynskiDF,FarrerLA,SteinbergMH.

Imagem

Figure 1 – Transmembrane and secreted Klotho protein processing. The transmembrane Klotho protein acts as a co-receptor for fibroblast growth factor 23 signaling
Figure 2 – Phosphate and vitamin D homeostasis regulation. Vitamin D upon binding to its vitamin D receptor (VDR) in osteocytes induces VDR-retinoid X receptor (RXR) heterodimer binding, which activates Fgf23 expression
Figure 4 – General model for TRPV5 regulation by Klotho. Soluble Klotho removes the sialic acid residue attached by ␣ 2.6 bonding in the N-acetyl-lactosamine (LacNAc) repeats of the TRPV5 N-glycans
Figure 5 summarizes the role of Klotho SNPs to establish the SCD subphenotypes.

Referências

Documentos relacionados

Similarly, no significant differences in the distributions of reticulocyte counts were found in the present study (Reference value: 1%; see Table S1,

ingly, an additional consequence of IB disruption in patients with hematological malignancies is a higher risk of acute graft-versus-host disease (aGVHD) in patients submitted

entitled “Nutritional status of patients submitted to transplantation of allogeneic hematopoietic stem cells: a retrospective study”, nutrition status is adversely affected

Nevertheless, the alterations contained in the new regulations (ANVISA Resolution RDC 57/2010 and MoH Ordinance 2712/2013) were minimal with regard to screening donors for malaria

Evaluation of red cell and reticulocyte parameters as indicative of iron deficiency in patients with anemia of chronic disease. Rev Bras

Splicing factor SF3B1 mutations and ring sideroblasts in myelodysplastic syndromes: a Brazilian cohort screening study. Rev Bras

Wilson disease: novel mutations in the ATP7B gene and clinical correlation in Brazilian patients.. High prevalence of the H1069Q mutation in East german patients with Wilson

Em diálogo com essa análise, o trabalho também conta com um estudo acerca da subjetividade e autoria em redações que obtiveram nota 1000 no Exame Nacional do Ensino