• Nenhum resultado encontrado

Identification of beef using restriction fragment length polymorphism–

N/A
N/A
Protected

Academic year: 2017

Share "Identification of beef using restriction fragment length polymorphism– "

Copied!
4
0
0

Texto

(1)

(PCR)

!

"

!

"

#

$

$

%

&'()

*

+, - . /'

*

$ 0 1

/

#

$%

2&3'(&

4 56

0 .7 0 6

8 '

,0'

(

! /

0' 9

$

: . '

RFLP

; ,

,

( ( +<7 =' $7 <' > (: ? 7

PCR

5'(

@ A

. B 8

. ;

"

# ' (; . ; ?; 7

, # '

? 7 $

+A 8

.8

@ C <7 ='

8

359

! 7 B 8

2 C

5'(

-@ ; 8,6 .; 7

0

Tru91, RsaI, Hinf I, Hae III, Alu I, Taq I, Mob I

<7 ='

8

=3

DA ', @ 3E:

: =;F $

;

5'( ,7 <7 ='

8

9 0'

8,6

Hinf I

&- @ 3E 0

+A 8 .8

8

-198

117

44

; , ! 7 B 8

; : 8,G

Hae III

+A 8 .8

. ' 8

3E:

285

74

8,6

: ! 7 B 8

Alu I

.8 ; .;# . ' 8; = : 3EH

+A 8

190

169

(

+

5'(

4 56 @ 8,I

0

<7 ='

0

=F $

! 7 B 8

@ '7

JCF

@ 8,6 ><,

5'( ,7 4 56 @ ,

9 , 0

0 6

8 ' <

',

K

Identification of beef using restriction fragment length polymorphism–

polymerase chain reaction

R. A. Al-Sanjary

Department of Veterinary Public Health, College of Veterinary Medicine, University of Mosul, Mosul, Iraq

Abstract

To differentiate the beef from other types of meat consumed by human, DNA markers based on polymerase chain reaction

restriction fragment length polymorphism technique is performed by using universal primers designed on mitochondrial

cytochrome b gene to obtain amplified band 359 bp, then digested with some of restriction enzymes like

Tru

91,

Rsa

I,

Hinf

I,

Hae

III,

Alu

I

, Taq

I,

Mob

I. The result revealed that, the

Hinf

I enzyme produce three bands 198, 117, 44 bp and the

Hae

III

enzyme revealed two band 285, 74 bp, the

Alu

I enzyme also produced two band but the molecular weight are 190, 169 bp.

The other enzymes did not reveal any digestion of the amplified bands and this result is a characteristic unique to beef

compared with other types of meat when using same enzymes.

Available online at

http://www.vetmedmosul.org/ijvs

& &

.G

;

5 L CM

A 7

$ :

'

+ .

N

' +' @

' .

3

6 . O :

P $

1

+F @

' JCF . Q

? 7 A 5 @

9=

RM " (:

@ ,

3' ',

' '

Q 7 " (6 JCF

=

; E,: $ .

(2)

P 5

(6

;

: ,

:

' "

2

3

Q ;7

.S

,:

F . #' % (6 + . -

=F

T

RM

:

$ '()

+' Q # $# /

. JCF , - P5 :

,H

$

U

33

'

;

-

9 , ' +

5

0 6

RM' &-

, +<

,H

.

P;5 6

$ ,

-#

:

' #, + 2 C#

8 ,5

RM'

,7 3

5' $ 5

> 6

(

0 6

B ',G

-4

=G

? G

2 3'(

'F

J ; 5 . J #H' 3, 4 5: " (6 +A CM D',

F

.;

U 6

Q

5

JC;F %;

.;7 $0',' +'

# '/

+;' U ; 6 . F V

0 . , U

$-

CV6

@ ,

" '

;

%

.7 3' ( $ 0', + '

5

K

A 7

Q 7 Q -# %

@ 5'(

$ :

,:

F8 '

(6 @ C Q

,6

5

A

@ 7 , @ C 4 56

.7

.#

+;F 3 = :

W ' !C ,

$ ' > (: ? 7 ,

%

Q 7

N'

;=I

;

5 W E

$

J ' J

?; G

#

&5 9

+ J

+

.A

$3(

7

P; <

,

,

0'

<

6

@ 5'(

@ /

? 7 , Q 7

> (:

8; ' + 5'(' , $ '

;,:

P ;5'

,

,0' 3, 3' ',

@ ,

Species-specific PCR

7

8

2 C#

; 6 8; ' + @ /X

, . =

.

$&5

@ A

5'(

;

?; 7

' ( .

"

#

.

+

. ' ,0'

(

, # '

0' 9

$

:

RFLP_PCR

9

K

' ( .

'

+

3

@ ,

. "

#

8 ' + 3, Q <'() .# +'

, # '

.

;,:

@ 0<

10

11

!C;

.

CF ? 7 @ A

' '

$7 <'

,0' $&5 . @

. & W7 =' $

O (

?; 7 +

.A #

,

' - .

,

( ( +<7 ='

> (:

9

CF

:

=F $&5 .

, 2 C P 5 9 ''

(

9 0 JCF

@ 8,I

;

0

;;

; ,0'

RFLP

12

13

' '

0

RFLP-PCR

(;

%

.

B ' ' ) +'

? G

F8 ,)

# @

B ' ' )

? G

N

5 @ A

' +

.A # ,

9 ''

=I

? G

-#

0 @ 8,6

;

' Q

;

+

;

;' 3 &5 .

;

8 '

,:

;

><,; 37 , . = 2 C# @ ,

;

>,

13

14

4 56

0 .7 0 6

8 ' U M

;

0 @ 8,) $ 7 $&5 .

JC;F @;

:

;(

5'(

. ; ?; 7

;

;

@ A

. B 8

8 ? 7 $

"

# ' (

7

+A 8 .8

359

! 7 B 8

3 =F

-U

@ 8,I

'

0

3', 0

@ A

><, 3 @ 5'( +'

0 ( @ (

DA ', 9

><,

@ 8,I

@ ,

? 7 .#

4 5:

K

&

&

'(

0 6

. @ , 7 @

+; Q 8;

@&

.

$

,

@ =

;

0

. , > #: +

-;

@

3, , P 5'(

'5

? G

'7

;

;0

? 7

15

2 C#

@&7 ;<'

;;7G ;'

W7 =;'

$;7 <'

; ,0'

,

( ( +<7 ='

+;

? 7 ; '7)

13

16

Y

$

5'( '

'

;

F

;

+

E, $

;

10X

X

V

0 L

;

; -&- ; ,

', ;7

0

.

. (# 6

0, @ <( <

, Q

8,:

;

.; B 8

@ A

' (; . ; ? 7

. ;

"

#

, # '

# / . Q83

Germany promega

. #

+

# F @ A

JCF 9 ''

Z

[

$ 6

CCA TCC AAC ATC TCA GCA TGA TGA AA

[

+,

-GCC CCT CAG AAT GAT ATT TGT CCT CA

'

9=

? 7

" ,6

Q #C

J&;7:

+;

!

;

;

;;

8 ;;3

Thermocycler

# ;;/ .;;

Germany Eppendorf

8 3

D

D ,

P ;5

$7 <' C3

95

\

;

Q

4

Q

Q

$&5 0

95

\

0

Q

55

\

0

Q

72

\

0

Q

. -&- $&5

Q

72

\

Q

7

Q

Q

$&5 0

13

14

;-8 3

(

D' , $

' '

$

'

+A ; 3#

;

]

&3

-K

@ C <7 ='

8

? 7 $

+A 8

.8

359

@ 8,6 U

5'( ' ! 7 B 8

0

; 8

=;3

Tru91, RsaI, Hinf I, Hae III,

Alu I,

Taq I,

Mob I

;,

Q

? 7

"(;

8,6

; 7 $&;5 @ 7 ( Y&- Q

+A

+

9

: D', ) : -#: : . '

D', W ( 8,6

=3

"(

,

5'(

9 0

8,6

K

)(

@ 3E:

(

5'( @

: +'

[

9

@ ,

Universal primer

; 8 +, -

$ 6 N 7 ,

@ , 7 9

Q

0 6

+;A 8 .8 ;

359

B 8

+;( 0 +;

$ ; 9;

8 $# ! 7

Ladder DNA 100 bp

+ #

$#/

1

(3)

8 '

@ ,

+ .7 0 6

4 56

0

'5 '

0 @ 8,6 .

7

0

DA ', @ 3E:

N,

5'(

. $#

8;,:

Tru 91, Rsa I, Taq I, Mob I

=3

W7 ='

,

0 6

=;F !: $ ;

;

+A 8

.8

@ C <7 ='

0

359

+; ! 7 B 8

8

9 0' : =F $

.

7 ='

5';( ,7 <

4 56

0 @ 8,6

8;,6 (,

Hinf I

@ ;3E

+A 8 .8

8

-&-198

117

44

8

T

;7

T

,

; : 8,G

Hae III

+A 8 .8

. ' 8

3E:

285

74

8,6

: ! 7 B 8

Alu I

.# . ' 8 = : 3EH

+A 8 .8

190

169

7 B 8

+ # !

$#/

2

K

$#/

1

@ C 8 $#/ ? 7 0 6

, W7 =' DA ',

+A 8 .8

359

[

5'( ! 7 B 8

+( 0 +

$

9

M

Ladder 100bp

&;F ? 7

8

#6

1.2

K^

* &

0' 9

$

: . ' ,0' .G

RFLP

4 G +F

+<7 =;' $;7 <'

; ,0' > (: ? 7 ,

,

@ /X

,

( (

PCR

; 8 ?; 7 ;3 &5 . $

, +'

<7 ='

.; . ;

.

? 7

[

,

5

8; ? 7 $

, 8

JCF =F

+

.A # @ ,

8 ' 3 &5 . 9 '(, < '5 $

: @ C

@ ,

13

K

? 7 @ ,

.

<7 ='

8

+A 8

.8

'

.

.

? 7

!C

[

2 ,F .H

Y

?; 7

; '7

, $#

5

0

+ W&'5

N 7

[

.

17

K

' 0 6 8 ' (

+<

@ A

5'(

.

? 7

12SrRNA

;

. ;#

8

223

8

T

7

T

18

8

. # ,

294

8

T

7

T

. ; ?; 7

;

[ ;

5'(

,7

28SrRNA

19

;, # '

.

. -

$M'(

3 .

.

-#:

@ A

' +

11

K

[

.G

. ; ?; 7

; [ ; ;F (

JCF + 5'(

8 N,7 D', !C

, # '

.

+ "

# ' (

+A 8 .8 @ C <7 ='

359

.;

! 7 B 8

$

13

9;

0 6

5 ,'(

DA ', @0<' C3

><, @ 5'( +'

4 5: @ (

DA ',

@0

.# [

@ C <7 =;'

8 ? 7 $

+ 4 5: @ ,

? 7

+;;A 8 .8

359

! ;;7 B 8

14

20

22

;;;,7

. ; +; N; ' 9;

N(;<,

[

@ 5'(

"

# ' (

W 3 ,

K

$#/

2

# '/;

8

=F DA ',

359

! ;7 B 8

6

;

0 @ 8,6

(

0

1

Tru 91

2

Hae III

3

RsaI

4

Alu I

5

Taq I

6

Hinf I

7

Mob I

+;( 0 +

$

9

Ladder 100 bp (M)

8

#6 &F ? 7

2

K^

.G

0 @ 8,6

(

!: +

5'(

"

.:

'

/ F '5

+# "( , $#

DA ', 3E'

O ('

3 &5 .

8 '

@ ,

.

< '5

,6

? 7 W ' 2 C#

: $; :

# 3= 9 3 5 : 3 8

+ ?'

3' ',

A 7

-

9 , '

+

12

=G

? G

2; C

;

.

0

RFLP

0 >

5'('

+

'

;,6 . ;

8

@ ,

.

< '5

0

>

,V:

K

K

F V

,G

MW

400 300

200

100 1000

1500

500

(4)

9 '('

2 C#

@ ,

8 '

=

, .

13

K

+<

(

JCF

DA ', @ 3E:

8

9 0' : =F $

N,

5';( ,7 <7 ='

: # '/

;

0 @ ; 8,6

4 56

8 .8

8

-&- @ 3E

+A

198

117

44

8

T

7

T

8,6 (,

Hinf I

,

; : 8,G

Hae III

+A 8 .8

. ' 8

3E:

285

74

; : ! ;7 B 8

8,6

Alu I

+;A 8 .8 .# . ' 8 = : 3EH

190

169

8

T

7

T

F

;

A ', JC

;

.; $# DA ', 9 %<'' D

14

(

+

+ 3'

8 '

,

-,:

@ ;,

.

3, = .

0 6

@ 5'(

3

:

@ 8,G

= F

'

8

<7 =

DA ', 9 2 C#

13

C

.

5'(

'(

@ 8,G

Q /7 8 '

,:

@ ,

.

3, ;= .

0 6

'(

,7

>;<,

[ ;

;

. ; ?; 7

# ' (

"

+A 8 .8

359

! 7 B 8

. ; +

(

DA ', @< '5

,'

; 7 .

' , 9 0

Y

.

(

DA ', 9

0 @ 8,6

=3

4 5:

12

. C

5'(

[

"

# ' ( .

? 7

B ',I

; 8

.8

<7 ='

+A 8

464

! 7 B 8

8 ' '

23

7 ,

T

5'(

@ ,

.

11

8,G

T

T

JC;F +; 2 C#

N,: DA ', @ 3E: (

; 0

=;F !: $ ;

;

+A 8

.8

@ C <7 ='

359

8

T

;7

T

;,7

;

5'(

; $#

;

.

8;,:

Tru 91, Rsa I, Taq I, Mob I

9 , 0

0 6

8 ' <

' ' = : JCF

;

@ 8,6 ><,

5'( ,7 4 56 @ ,

JCF 5'('

@ C

() @ ,

U 8 ' + 9( $#/

,0'

) +'

3= 9

0

0

F8 ' .#

)G

5';(

@ 8,I

0

23

24

K

+*

:

!

"

# Q 7 #/

;

$;

Q83 6

' ? 7

?; 7 .(;

:

7

'#

! 8'

Y

CF +

5'(

0 @ 8,6

K

$&

1. Skrokki A, Hormi O. Composition of minced meat. Part A: Methods. Meat Science 1994; 38: 497-501.

2. Buntjer JB, Lenstra JA, Haagsma N. Rapid species identification in meat by using satellite DNA probes.Z lebensm Unters Forsch 1995; 201 : 577-582.

3. Lenstra JA, Bradley DG. Systematics and phylogeny of cattle.CAB Intl. Ed. by R. Fries and A. Ruvenski 1999;1: 1-14.

4. King NL. Species identification of cooked meats by enzyme staining of isoelectric focussing gels. Meat Science 1984 ;11: 59-64.

5. Brodmann P. Development and Validation of species identification, Ph.D. Thesis. University of Basel ; 2002.

6. Cano RJ, Poinar HN, Pieniazek NJ, Acra A, Poinar GO. Amplification and sequencing of DNA from a 120 - 135 million–year–old weevil. Nature 1993; 363:536-538.

7. Al-Sanjary RA, Jubrael JMS. Differentiation between different animal meats using a species-specific Polymerase Chain Reaction.12th

Scientific Congress 10-12 December,Faculty of Veterinary Medicine, Assiut University ; 2006.

8. Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, Shinmura Y. A quick and simple method for the identification of meat products by PCR assay. Meat Science 1999 ; 51(2): 143-148. 9. Verkaar ELC, Nijman I J, Boutaga K, Lenstra JA. Differentiation of

cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Science 2002 ; 60: 365-369.

10.Chikuni K, Tabata T, Kosugiyama M, Monma M, Saito M. Polymerase Chain Reaction assay for detection of Sheep and Goat meats. Meat Science 1994 ; 37: 337-345.

11.Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals : Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA.1989 ; 86: 6196-6200.

12.Wolf C, Rentsch J, Hubner P. PCR-RFLP Analysis of mitochondrial DNA : A reliable methods for species identification. J. Agric. Food Chem. 1999 ; 47: 1350-1355.

13.Meyer R, Hofelein C, Luthy J, Candrian U. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J. AOAC Int. 1995 ; 78: 1542-1551. 14.Abdulmawjood A, Bulte M. Identification of Ostrich Meat by

Restriction Fragment Length Polymorphism’s (RFLP) Analysis of cytochrome b Gene. Journal of Food Science 2002 ; 67(5): 1688-1691. 15.Maniatis T, Fritsh EF, Sambrook J. Molecular cloning: A Laboratory

Manual, Cold spring Harbor laboratory, New York. 1982.

16.Bottero MT, Civera T, Anastasio A, Turi RM, Rosati S. Identification of cow ’s milk in "buffalo" cheese by duplex polymerase chain reaction. J. Food Prot. 2002 ;65(2): 362-366.

17.Dalmasso A, Fontanella E, Piatti P, Civera T, Rosati S, Bottero MT. A multiplex PCR assay for identification of animal species in feedstuffs. Molecular and Cellular Probes. 2004 ;18: 81-87.

18.Lopez-Calleja I, Gonzalez I, Fajardo V, Rodriguez MA, Hernandez PE, Garcia T, Martin R. Rapid Detection of Cows milk in Sheep and Goats milk by a species-specific polymerase chain reaction technique. J. Dairy Sci. 2004 ;87: 2839-2845.

19.Bellis C, Ashton KJ, Freney L, Blair B, Griffiths LR. A molecular genetic approach for forensic animal species identification. Forensic science international 2003; 134: 99-108.

20.Bellagamba F, Moretti VM, Comincini S, Valfre F. Identification of species in animal Feedstuffs by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Analysis of Mitochondrial DNA. J. Agric. Food Chem. 2001 ; 49: 3775-3781.

21.Wang H, Lee S, Chong T, Wong M. Examination of meat Components in commercial Dog and Cat feed by using Polymearase Chain Reaction–Restriction Fragment Length Polymorphism’s (PCR-RFLPs) Technique. J. Vet. Med. Sci. 2004 ; 66(7) : 855-859.

22.Partis I, Croan D, Guo Z, Clark R, Coldham T, Murby J. Evaluation of DNA fingerprinting method for determining the species origin of meats. Meat Science 2000 ; 54: 369-376.

23.Matsunaga T, Chikuni K, Tanabe R, Muroya S, Nakai H, Shibata K, Yamada J, Shinmura Y. Determination of Mitochondrial Cytochrome B Gene sequence for Red Deer (Cervus elaphus) and the Differentiation of closely related Deer meats. Meat Science 1998 ; 49(4): 379-385.

Referências

Documentos relacionados

Os seguintes fatores foram levados em consideração para o cálculo do ponto econômico de substituição: vida útil dos equipamentos, desgaste dos componentes eletromecânicos, custo

Mitochondrial (mt) DNA population structure was examined by using restriction fragment length polymorphism analysis (RFLP) among 149 white mouth croakers

This study aimed to understand the genetic polymorphism by means of the RFLP-PCR (Restriction Fragment Length Polymorphic – Polymerase Chain Reaction) technique

Several techniques such as restriction fragment length polymorphism (RFLP), DNA- DNA hybridization, randomly amplified polymorphic DNA (RAPD), arbitrary fragment length

This study evaluated the analytical performance of restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) assay compared to PapilloCheck s microarray to

Key words: Biomphalaria straminea - Biomphalaria kuhniana - Biomphalaria intermedia - Biomphalaria peregrina - snails - polymerase chain reaction - restriction fragment

Key words: Candida albicans , Candida dubliniensis , PCR-restriction fragment length polymorphism, identification,

Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism