• Nenhum resultado encontrado

Comparative bio-efficacy of nuclear polyhedrosis virus (NPV) and Spinosad against American bollwormm, Helicoverpa armigera (Hubner)

N/A
N/A
Protected

Academic year: 2021

Share "Comparative bio-efficacy of nuclear polyhedrosis virus (NPV) and Spinosad against American bollwormm, Helicoverpa armigera (Hubner)"

Copied!
6
0
0

Texto

(1)

RevistaBrasileiradeEntomologia63(2019)277–282

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution w w w . r b e n t o m o l o g i a . c o m

Biological

Control

and

Crop

Protection

Comparative

bio-efficacy

of

nuclear

polyhedrosis

virus

(NPV)

and

Spinosad

against

American

bollwormm,

Helicoverpa

armigera

(Hubner)

Ahmad

Nawaz

a,∗,1

,

Habib

Ali

b,∗,1

,

Muhammad

Sufyan

a

,

Muhammad

Dildar

Gogi

a

,

Muhammad

Jalal

Arif

a

,

Mazhar

Hussain

Ranjha

a,b

,

Muhammad

Arshid

a

,

Muhammad

Waseem

a

,

Tariq

Mustafa

a,b

,

Muhammad

Qasim

c

,

Muhammad

Rizwan

a

,

Madiha

Zaynab

g

,

Khalid

Ali

Khan

d,e,f

,

Hamed

A.

Ghramh

d,e,f

aUniversityofAgriculture,DepartmentofEntomology,IntegratedPestManagementLaboratory,Faisalabad,Pakistan bUniversityofAgriculture,Faisalabad,Pakistan

cZhejiangUniversity,InstituteofInsectSciences,Zhejiang,P.R.China

dKingKhalidUniversity,ResearchCenterforAdvancedMaterialsScience(RCAMS),Abha,SaudiArabia eKingKhalidUniversity,FacultyofScience,UnitofBeeResearchandHoneyProduction,Abha,SaudiArabia fKingKhalidUniversity,FacultyofScience,BiologyDepartment,Abha,SaudiArabia

gFujianAgricultureandForestryUniversity,CollegeoflifeScience,Fuzhou,Fuzhou,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received12June2019 Accepted3September2019 Availableonline17September2019 AssociateEditor:RegianeBueno Keywords: Americanbollworm Bio-pesticide Insecticide Microbialcontrol NPV

a

b

s

t

r

a

c

t

Americanbollworm(ABW),Helicoverpaarmigera(Hubner),isconsideredasamajorpestofcotton, Gossyp-iumhirsutum,allovertheglobe.Duetoitsdestructivefeedingnatureandcontinuousconsumptionof thesamechemicals,itdevolvedresistantagainstmanyinsecticides.Therefore,acombinedapplication ofbio-andsynthetic-pesticideneedtoevaluateagainstthispest.Theentomopathogenicviruseslike nuclearpolyhedrosisvirus(NPV),amemberofbaculoviruses,canbethepotentialcandidatesforbetter controlagainstABW.ThepresentstudywasconductedtoassessthecomparativeefficacyofNPVand Spinosad240SC(withtheconcentrationof250mL·ha−l)againstABWinthecontrolledenvironment.

TheABWwastreatedwithdifferentconcentrationsofNPVandSpinosadseparatelyandinacombination ofNPVwith0.1%Spinosad.Theresultsrevealedthathighestconcentrationsshowedhighestmortality (95%)followedby95%,92%,84%,82%and78%mortalityat1×109,1×108,1×107,1×106and1×105

POBs,respectively.Spinosadwhenmixedindietgive100%mortalityat0.8%followedby50.87%,42.10%, 29.82%,26.31%and22.80%mortalityat0.4%,0.2%,0.1%,0.5%and0.025%respectively.Theresultsofthis studyrevealedthatmicrobialcontrolofABWthroughNPVisaneffectivetool.Therepeateduseof syn-theticpesticidescausedtheresurgenceofmanyinsectpests,andthisstudyresultswouldprovideuseful insighttobuildaframeworkforfutureinvestigationsforthemanagementofmanymajorinsectpests.

©2019SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

American bollworm (ABW), Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae),hasbeenobservedmostdangerouspest andyielddeclinerofthefieldcropsandvegetablesinPakistansince the1990sand early21stcentury. Ithasbecomethemost haz-ardouspestduetoitspolyphagousnature,migratorybehavior,high

∗ Correspondingauthors.

E-mails:ahmad.nawaz1793@uaf.edu.pk(A.Nawaz),habibali1417@yahoo.com (H.Ali).

1Theseauthorshavecontributedequallytothiswork.

fecundityrate,multiplegenerationsandcandeveloptheresistance againstinsecticides.Itisestimatedthatannually,2.5millionbales losseswerecausedbythisinsectpesttothecottoncrop(Karim, 2000;Muhammadetal.,2009).

Differentlevelsofresistance(moderatetohigh)toawiderange ofinsecticideshavebeenreportedworldwide,includingPakistan, among thefield populationof ABW(SayyedandWright,2006; DamalasandEleftherohorinos,2011;IshtiaqandSaleem,2011). Therefore,themanagementofthispestforanextendedperiodwith reducedriskofinsecticidesisthedireneedoftimeanda prag-maticallysuggestedoption.Amongthevariousbiologicalcontrol agentsusedasanalternativetosyntheticinsecticides(Alietal.,

https://doi.org/10.1016/j.rbe.2019.09.001

0085-5626/©2019SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

278 A.Nawazetal./RevistaBrasileiradeEntomologia63(2019)277–282 Table1

EffectofdifferentconcentrationsofSpinosadonlarvaeofAmericanbollworm, Heli-coverpaarmigeraafterdifferenttimeintervalsindietmixedmethod.

Concentrations% 24h 48h 72h 0.8 16.81A±0.39 33.81A±0.54 50.87A±0.81 0.4 15.30A±0.25 26.02B±0.49 42.10AB±0.66 0.2 10.15AB±0.43 20.31C±0.26 29.82BC±0.36 0.1 8.39AB±0.39 15.23CD±0.31 26.31C±0.31 0.05 3.51B±0.26 11.86D±0.51 22.80C±0.44 0.025 3.79B±0.33 11.61D±0.47 22.80C±0.37 CONTROL 2.07B±0.22 2.38E±0.37 3.71D±0.28

2015,2018a,b,c,d,e),thepreferenceforentomopathogenicNuclear PolyhedrosisVirus(NPV)hasbeenincreasedintherecentyears. Furthermore,newchemistry insecticideshave beenestablished fromnaturalsources,disturbthenormalphysiologicalfunctionsof thetargetedspeciesinpestmanagementprograms(Qasimetal., 2018a;Schneideretal.,2003; Thompsonetal.,2000; Dhadialla et al., 1998) by targeting insect development mechanism like moultingaswellaschloridechannelactivator.Anotheradvantage ofnewchemistryinsecticideoverthebroad-spectruminsecticides isthattheyareselectivetotargetpestspeciesandlessdangerous tonaturalenemies(Grafton-Cardwelletal.,2005).

Among microbial insecticides, the insect pathogenic viruses suchasbaculoviruseswereusedsuccessfullyforbiologicalcontrol underintegratedpestmanagement(IPM)program.Ithasbeenused formorethan20yearswithgreatsuccess(Zhang,1989)indifferent partsoftheworldformanagingdifferentinsectpestspeciesbased ontheirseveraladvantages.Thesemicrobialagentsarehighly host-specificandare knowntobeentirelysafefor humans,animals andnon-targetbeneficialorganismssuchasbees,predatoryinsects andparasitoids(MonobrullahandNagata,1999;Nakaietal.,2003; Islametal.,2018a,b).Keepinginviewthefactsasmentionedabove, thepresentstudywascarriedouttoevaluatetheeffectivenessof NPVagainstABWundercontrolledconditions.

Materialsandmethods

ThestudywasconductedinIntegratedPestManagement(IPM) Lab,DepartmentofEntomology,UniversityofAgriculture, Faisal-abad,Pakistanduring2016–2018.

Preparationofartificialdiet

To prepare the artificialdiet for lepidopterans, the product F9772(Lot#110216-01)wasusedaccordingtothemanufacturer’s recommendations. Moreover, following ingredients were used; agar(19.0g), distilledwater (875mL)(stirredtheagaruntilthe agarwasdissolvedcompletely)and144.0gdrymixingredients (Sucrose,SoyFlour,50%,WheatGerm,stabilized,SaltMix,Wesson, USDAVitaminPremix,Fiber,SorbicAcid,MethylParaben,Ascorbic Acid).Agarsolutionwasboiledandstiruntilasmooth,andeven consistencywasachieved.Pourthedietintosmallcups approxi-matelyone-thirdofacup,andlefttocoolandsolidifyreadyforthe additionoflarvae.

Rearingofinsects

The larvae of ABW were collected from the host field and rearedinthelaboratoryundercontrolledconditions(temperature 25±2◦Candrelativehumidity(RH)75%).Thecubesofthe artifi-cialdietwerepreparedandshiftedtoplasticvials.Asinglelarva wasallowedtofeedonthedietineachplasticvial.Foradults,a 10%sugarsolutionwasprovideduntiladultdies,foregglayingon muslincloth.Thelaideggswerecollectedafter24hinapetridishin

agrowthchamberforeclosion.Aftereclosion,larvaewereshifted toanartificialdietforfurtherexperiments.

IsolationofNPVfrominfectedABWfromfiled

InfectedlarvaeofABWwerecollectedfromthefield.For iso-lationofthevirus, astandard procedurewasadoptedin which homogenization, filtration and centrifugation were done. The occlusionbodieswerepurified(Tompkins,1991).ThePolyhedral occlusionbodies(POB)permillilitrewerecountedusing hemocy-tometerunderthelightmicroscope.

Bioassay

AccessingtheefficacyofNPVonABW

ThehomogenizedpopulationofABWwasreared,andselected secondandthirdinstar(20larvae)wereallowedtofeedonthe arti-ficialdietmixwithNPVformulation.Sixdifferentformulationsof NPV(1×105,1×106,1×107,1×108,1×109and1×1010POBs) were used to assess the efficacy of NPV. The experiment was repeatedthrice,andcontrolwaskeptuntreated.Mortalitydatawas takenaftertheintervalofevery24hsubjectedtodifferentdose formulationuntilallthelarvaedied.

AssessingtheefficacyofSpinosad

Spinosad240SC(Arysta Life Science,Pakistan) wasassessed againstABWattherateof80–100mL·acre−1.Sixconcentrations ofspinosad(0.8%,0.4%.0.2%,0.1%,0.05%and0.025%)weremade andtestedagainsttheABWlarvaethroughdietmixmethod.The experimentwasrepeatedthrice,alongwiththecontroltreatment. Mortalitydataforalltreatmentsweretakenattheintervalof24h, 48hand72h.

AssessingtheefficacyofcombinetoxicityofNPVandSpinosad Various concentrations of NPV were also mixed with 0.1% spinosadto checkthe combinedtoxicity of NPV and Spinosad. Twentylarvae wereallowedtofeedona diet mixedwithNPV andSpinosadincombination.Mortalitydataweretakenafter24h subjectedtoconcentrationsofNPVandSpinosad.

Statisticalanalysis

MortalitydataweresubjectedtoAbbott’sformula(Flemingand Retnakaran,1985).DatawereanalyzedusingStatisticasoftware and meanswereseparated by usingTukey’s HSDtest. The Co-Toxicitytestwascalculatedbythefollowingformula.

CTF= OC-OE/OE×100

CTFmeanscotoxicityfactor,OCmeansobservedpercentage mortalityandOEistheresultofthecombinedapplication.TheOE istheexpectedpercentageofmortalityandrepresentsthesumof percentagemortalityproducedbyeachofthetreatmentusedin combination.ThevalueCTFvariesbetween20and−20.Valueof CTFabove20revealedthattherewasasynergeticeffectbetween twomixtures.ThevalueofCTFin−20showedthattherewasan antagonisticrelationshipbetweentwomixturesandthevalueof CTFbetween20and−20showedthattherewasanadditiveeffect oncomparativeefficacy.

Results

ANOVAparametersindicatedthatallNPVconcentrationswere significantlyeffectiveagainstthesecondand thirdinstarlarvae ofABW(F=592,P=0.000).Resultsshowedthathigher concentra-tionshadgiventhehighestmortalitywhentreatedwithNPValone indietmixedmethod.Itwasalsoobservedthattheeffectiveness

(3)

A. Nawaz et al. / Revista Brasileira de Entomologia 63 (2019) 277–282 279 Table2

MortalitypercentageofAmericanbollworm,HelicoverpaarmigeraagainstdifferentconcentrationsofNPValoneandinacombinationof0.1%Spinosad.

Concentrations DAT1±S.E. DAT2±S.E. DAT3±S.E. DAT4±S.E. DAT5±S.E. DAT6±S.E. DAT7±S.E. DAT8±S.E. DAT9±S.E. DAT10±S.E. 1×1010alone 20.07A±0.25 28.39A±0.39 36.14A±0.80 45.61A±0.82 57.89A±0.88 66.67A±0.90 79.63A±1.11 92.15A±2.11 95.00A±2.11 95.00A±2.05 1×109alone 15.39B±0.35 20.05AB±0.42 32.71AB±0.77 42.10A±0.87 49.12B±0.79 50.08B±0.85 74.07A±1.95 84.31A±2.01 98.03A±2.02 100.00A±1.99 1×108alone 10.06C±0.40 16.67BC±0.25 27.54BC±0.31 33.42B±0.60 42.10C±0.65 50.81B±0.79 59.25B±0.81 66.59B±0.80 78.43B±1.25 92.15B±2.07 1×107alone 10.55C±0.30 13.45BC±0.22 24.12CD±0.49 31.57B±0.59 38.59CD±0.59 44.49B±0.91 53.70B±0.86 62.74B±0.91 68.62C±0.97 84.31C±1.75 1×106alone 6.45C±0.45 11.62BC±0.49 20.70CD±0.25 28.07BC±0.36 36.84CD±0.25 44.58B±0.83 50.01B±0.79 58.82B±0.88 62.74C±0.92 82.35C±1.90 1×105alone 6.38C±0.54 10.08CD±0.50 17.28D±0.51 24.56C±0.22 35.08D±0.51 42.53B±0.76 50.82B±0.90 56.86B±0.79 60.78C±0.88 78.43C±1.20 Control 2.09D±0.39 2.04D±0.30 3.06E±0.33 4.44D±0.29 5.31E±0.42 5.60C±0.29 7.29C±0.45 8.61C±0.25 10.02D±0.49 10.05D±0.39 1×1010+Spin. 16.81A±0.39 33.81A±0.54 50.87A±0.81 71.93A±1.11 94.73A±1.97 95.00A±2.09 95.00A±2.01 95.00A±2.11 95.00A±2.02 95.00A±2.11 1×109+Spin. 15.30A±0.25 26.02B±0.49 42.10AB±0.66 64.91AB±0.95 83.82A±1.50 90.74A±1.91 95.00A±2.11 95.00A±2.04 95.00A±1.97 95.00A±1.91 1×108+Spin. 10.15AB±0.43 20.31C±0.26 29.82BC±0.36 42.10BC±0.88 51.85B±0.89 64.81B±0.89 73.52B±1.89 84.31B±1.93 98.03A±2.11 100.00A±2.08 1×107+Spin. 8.39AB±0.39 15.23CD±0.31 26.31C±0.31 40.35BC±0.76 48.24B±0.66 53.70B±0.66 50.87C±0.91 62.74C±0.58 65.85B±0.88 74.51B±1.39 1×106+Spin. 3.51B±0.26 11.86D±0.51 22.80C±0.44 35.08C±0.57 46.49B±0.91 51.85B±0.81 45.50C±0.88 57.86C±0.81 62.74B±0.79 70.58B±1.85 1×105+Spin. 3.79B±0.33 11.61D±0.47 22.80C±0.37 35.18C±0.61 46.49B±0.88 50.16B±0.77 45.20C±0.81 56.65C±0.88 60.78B±0.91 68.62B±0.91 Control 2.07B±0.22 2.38E±0.37 3.71D±0.28 5.09D±0.37 7.70C±0.21 9.08C±0.44 9.76D±0.30 10.09D±0.33 10.05C±0.27 10.06C±0.21

(4)

280 A. Nawaz et al. / Revista Brasileira de Entomologia 63 (2019) 277–282 Table3

EffectofSpinosadonmeanlarvalmortalityofAmericanbollworm,HelicoverpaarmigeralarvaetreatedwithdifferentconcentrationofNPVinacombinationof0.1%Spinosadfromday1–3.

Concentrations Day-1 Day-2 Day-3

Actualmortality Expectedmortality CTF Effect Actualmortality Expectedmortality CTF Effect Actualmortality Expectedmortality CTF Effect

NPV6 20.07A±0.25 28.39 −9.94 Additive 25.35A±0.39 43.62 −18.27 Additive 44.63A±0.61 62.45 −17.82 Additive

NPV5 15.39B±0.35 23.78 −8.67 Additive 20.26AB±0.26 35.28 −15.02 Additive 42.98A±0.69 59.02 −16.04 Additive

NPV4 10.06C±0.40 18.45 −10.06 Additive 15.17AB±0.49 31.9 −16.73 Additive 32.16B±0.55 53.85 −21.69 Antagonistic

NPV3 10.55C±0.30 18.94 −10.51 Additive 15.17AB±0.33 28.68 −13.51 Additive 30.40B±0.49 50.43 −20.03 Antagonistic

NPV2 6.45C±0.45 14.84 −9.03 Additive 10.08BC±0.51 26.85 −16.77 Additive 17.83C±0.33 47.01 −29.18 Antagonistic

NPV1 6.38C±0.54 14.77 −11.54 Additive 10.08BC±0.41 25.31 −15.23 Additive 17.83C±0.41 43.59 −25.76 Antagonistic

(5)

A.Nawazetal./RevistaBrasileiradeEntomologia63(2019)277–282 281 of NPV increased withtime. Mean percent mortality

compari-sonshowedthatmaximummortality(95.00±2.05%)wasseenat 1×1010POBwhichwas9.95timeshigherthancontrol,followedby 95.00±1.99%at1×109POBwhichwas9.95timeshigherthan con-trol.However,mostdilutedNPVdose(1×105POB)causedenough larvalmortality,reachingupto78.43±1.20%whichwas7.80times higherthancontrol(10.05±0.39%)(Table2).

Overall,analysed dataindicated thatallspinosad concentra-tionsweresignificantlylethaltothesecondandthirdinstarlarvae ofABW(F=27.4, P=0.000). Meanpercentmortalitycomparison showedthat maximum mortality(50.87±0.81%)was observed at(0.8%)whichwas13.71timeshigherthancontrolfollowedby 42.10±0.66%at(0.4%)whichwas11.34timeshigherthan con-trol.Though,mostdiluteddose(0.025%)causedonly22.80±0.37% mortalityofABWlarvae,whichwas6.14timeshigherthancontrol (3.71±0.28%)(Table1).

ANOVAparametersindicated thatthecombined effectofall NPVconcentrationsandspinosadprovedtobesignificantagainst thesecondorthirdinstarlarvaeofABW(F=680,P=0.000).Mean percent mortality comparison showed that maximum mortal-ity (95.00±2.06%) wasobserved at NPV6+ Spinosad (1×1010 POB+0.1%)whichwas9.91timeshigherthancontrolfollowedby (95.00±1.98%)atNPV5+Spinosad(1×109POB+0.1%)whichwas 9.91timeshigherthancontrol.Eventhoughthecombinationof NPV1+Spinosad(1×105POB+0.1%)wasalsotoomuchlethalto ABWlarvae,causing80.71±1.91%mortality,whichwas7.99times higherthancontrol(10.09±0.31%)(Table2).

CombinedapplicationofdifferentconcentrationsofNPVwith0.1% Spinosad

WhendifferentconcentrationsofNPV(1×105,1×106,1×107, 1×108, 1×109 and 1×1010POBs) were mixed with 0.1% of Spinosad,themortalityoflarvaeincreased.Itwasobservedthat themortalityoflarvaewashigherinthecombinedapplicationas comparedtotheindividualapplicationofbothNPVandSpinosad. ItwasalsoobservedthathigherconcentrationsofNPVwithalow concentrationofSpinosadgiveanadditiveeffect(CTFinbetween −20and+20).WhileinthecaseoflowNPVandSpinosad concentra-tiongivesanantagonisticimpact(CTF≥−20).Accordingtoresults ofdayoneandtwo,allNPVconcentrationsshowedtheadditive effectwithSpinosad(CTFinbetween−20and+20).Afterthreedays ofapplication,twohighestconcentrationsofNPVgavean addi-tiveimpactwhiletherestoftheconcentrationsgaveantagonistic effects(CTF≥−20)(Table3).

Discussion

Whileusingthebio-agentinIPM,therearesomelimitations suchastheseagentsareslowinaction,lowpersistencein envi-ronment and need of a repeatedapplication to infectthehost population. Thecombined useof microbial agents mayhelp in resolvingtheseproblemsand increasingthepathogenicity, per-sistenceandrateofinfection(Alietal.,2015,2016).Theissueof insecticideresistancecanalsobeminimizedbyusingtheseagents astheyuseddifferenttacticstokillorcontrolhost,ascomparedto otherconventionalinsecticides(Balaetal.,2018).ABWisthepest ofgreatimportancethatattacksmanyvaluablecrops.

TheresistanceofABWagainstmanyinsecticideshasbeennoted, andit wastheissueinfocusformany years.Entomopathogens cancontrolthepesthavingresistanceagainstinsecticides(Cloyd, 2014).Therotationofcropsandpesticidescanalsobehelpfulto minimizetheproblemofresistance(ZahnandMorse,2013).When two ormorebio-agentsare usedincombination, theyincrease theeffectiveness,andhostspectrumofeachotherandreducethe

mortalitytime(Kalantarietal.,2014).Itcanbeimaginedthatthe mutualactionofmicrobesmayincreasethevirulenceasexpected alone.ThepolyhedralbodiesofNPVattachtothemidgutofhost andmultiply,therebydestroyingthegutcells.Themidgutisthe firstbindingsiteofPOBs,wheretheymultiplyandtheninfection transferfromcelltocell,causingthedeathofthehost(Liuetal., 2006;Arifetal.,2018;Qasimetal.,2018b;Shakeeletal.,2018).

Amongtheseconcentrations,aftertheexposuretotreateddiet, mortality was recorded. High concentrations of both NPV and Spinosadgivesthehighest mortality.Such asNPV gavehighest mortality(95%,95%and92.15%)at1×1010,1×109 and1×108 POBsconcentrationsandtheseresultswereparalleltothoseresults ofArrizubietaetal.(2016),whoreportedthatamixtureofNPV andinsecticidesagainstH.armigerawaseffectiveunderlaboratory condition.Theseresultsshowedthateffectivenessandtenacityof mixturecausedsignificantmortalityoflarvae.Spinosadgavethe highestmortality(95%,95%and95%)and0.8%,0.4%and0.2% con-centrationsand theseresultsweresupportedbyJatand Ameta (2013).ThestudyresultsconcludedthatFlubendiamide480SCand Spinosad45SC(at200mL·ha−1)werefoundtobeeffectiveagainst thelarvaeofABW,andtheseinsecticidescaused89.94%and74.67% mortality,respectively.

Thevirusesmultiplywithinthebodyofthehostanddestroy thehostcelltissues.Thepathogenicityandrateofresponsedepend uponthedose,temperatureandlarvalbodysize,anditvariesfrom 4to14days(Jonesetal.,1994).Thusthepathogenicityvarieswith treatmentandtime,asthedoseincreasethecontrolefficacyalso increases.

Combinationoftwoormorebio-agentcanbeanoptiontodelay theresistanceandincreasetheeffectiveness(Kalantarietal.,2014). Inthecurrentstudy,bothadditiveandantagonisticinteractions wereobserved,andtheseresultsweresupportedwiththefindings ofWangetal.(2009)whofoundthatlethalandsub-lethaldosesof spinosadincreasethemortalityanddelaythedevelopmental pro-cess.TheadditiveimpactwassupportedbytheresultsofWakil etal.(2012),whofoundthattherewasanadditiveeffectbetween NPVandAzadiractumagainstABW.Moreover,Qayyumetal.(2015)

alsoreportedtheadditiveimpactofNPVandBacillusthuringiensis againstABW.Inourstudy,theantagonisticeffectwassupported bytheoutcomesofTrangetal.(2002)astheyobservedthe antago-nisticeffectofNPVandImidacloprid.Theantagonisticeffectmight beduetothedecreaseinfeedingpotentialorpHchangeofgut (El-HelalyandEl-bendary,2013).

Conclusion

WespeculatedthatmicrobialcontrolthroughNPVandSpinosad isaneffectiveapproachagainstABW.Therepeateduseofsynthetic pesticidesagainstmajorpestscouldbethemainreasonofpest resurgence,andthisstudyresultswouldprovideusefulinsightto buildaframeworkforfutureinvestigationsandtoreducetheuse oftoxicchemicalsforthecontrolofinsectpestsofmajorcrops.

Conflictofinterest

Allauthorsdeclarenoconflictofinterests.

Acknowledgements

WeareprofoundlygratefultotheHigherEducation Commis-sion(HEC) Pakistan who provided thefinancialsupport tothis project.WearealsothankfultoProfessorYoumingHou,Plant Pro-tectionCollege,FujianAgricultureandForestryUniversity,Fuzhou, China, for critical reading and suggestions for this manuscript. WealsoacknowledgethesupportoftheKingKhalidUniversity

(6)

282 A.Nawazetal./RevistaBrasileiradeEntomologia63(2019)277–282

(RCAMS/KKU/010-19)ResearchCenterforAdvancedMaterials Sci-ence(RCAMS)atKingKhalidUniversity,KingdomofSaudiArabia.

References

Ali,H.,Qasim,M.,Saqib,H.S.A.,Arif,M.,Islam,S.U.,2015.Synergeticeffectsof variousplantextractsasbio-pesticideagainstWheatAphid(Diurophousnoxia L.)(Hemiptera:aphididae).Afric.J.Agric.Sci.Technol.3(7),310–315. Ali,H.,Hou,Y.,Tang,B.,Shi,Z.,Muhammad,A.,Sanda,N.B.,2016.Awayof

repro-ductivemanipulationandbiologyofWolbachiapipientis.J.Exp.Biol.Agric.Sci. 4(2),156–168.

Ali,H.,Muhammad,A.,Bala,N.S.,Wang,G.,Chen,Z.,Peng,Z.,Hou,Y.,2018a.Genomic evaluationsofWolbachiaandmtDNAinthepopulationofcoconuthispinebeetle, Brontispalongissima(Coleoptera:chrysomelidae).Mol.Phylogenet.Evol.127, 1000–1009.

Ali,H.,Muhammad,A.,Bala,N.S.,Hou,Y.,2018b.TheendosymbioticWolbachiaand hostCOIgeneenabletodistinguishbetweentwoinvasivepalmpests;coconut leafbeetle,Brontispalongissimaandhispidleafbeetle,Octodontanipae.J.Econ. Entomol.111(6),2894–2902.

Ali,H.,Muhammad,A.,Islam,W.,Hou,Y.,2018c.Anovelbacterialsymbiont asso-ciationinthehispidbeetle,Octodontanipae(Coleoptera:chrysomelidae),their dynamicsandphylogeny.Microb.Pathog.118,378–386.

Ali,H.,Muhammad,A.,Hou,Y.,2018d.Infectiondensitydynamicsandphylogenyof Wolbachiaassociatedwithcoconuthispinebeetle,Brontispalongissima(Gestro) (Coleoptera:chrysomelidae)bymultilocussequencetype(MLST)genotyping.J. Microbiol.Biotechn.28(5),796–808.

Ali,H.,Muhammad,A.,Hou,Y.,2018e.AbsenceofWolbachiainRedPalm wee-vil,rynchophorusferrugineusOlivier(Coleoptera:curculionidae):aPCRbased approaches.Appl.Ecol.Env.Res.16(2),1819–1833.

Arrizubieta,M.,Simón,O.,Torres-Vila,L.M.,Figueiredo,E.,Mendiola,J.,Mexia, A.,Caballero,P.,Williams,T.,2016.Insecticidalefficacyandpersistenceof aco-occludedbinarymixtureofHelicoverpaarmigeranucleopolyhedrovirus (HearNPV)variantsinprotectedandfield-growntomatocropsontheIberian Peninsula.PestManag.Sci.72(4),660–670.

Arif,M.,Islam,S.U.,Adnan,M.,Anwar,M.,Ali,H.,Wu,Z.,2018.Recentprogress ongenesilencing/suppressionbyvirus-derivedsmallinterferingRNAsinrice virusesespeciallyRicegrassystuntvirus.Microb.Pathog.125,210–218. Bala,N.S.,Muhammad,A.,Ali,H.,Hou,Y.,2018.Entomopathogenicnematode

Stein-ernemacarpocapsaesurpassesthecellularimmuneresponsesofthehispid beetle, Octodonta nipae (Coleoptera: chrysomelidae). Microb. Pathog.124, 337–345.

Cloyd, R.A., Available at: http://extension.psu.edu/plants/greenindustry/ landscaping/integrated-pest-management/fact-sheets/howtominimize-insecticide-miticide-resistance. (Accessed: May 15, 2014) 2014. How to Minimizeinsecticide/miticideResistance.

Damalas,C.A.,Eleftherohorinos,I.G.,2011.Pesticideexposure,safetyissues,andrisk assessmentindicators.Int.J.Environ.Res.PublicHealth8(5),1402–1419. Dhadialla,S.,Carlson,R.,Le,P.,1998.Newinsecticideswithecdysteroidaland

juve-nilehormoneactivity.Annu.Rev.Entomol.43,545–569.

El-Helaly,A.A.,El-bendary,H.M.,2013.ImpactofSpinosadandnucleeopolyderosis virusaloneandincombinationagainstthecottonleafwormSpodepteralittralis underlaboratory.App.Sci.Rep.2(1),17–21.

Fleming,R.A.,Retnakaran,A.,1985.EvaluatingsingletreatmentdatausingAbbot’s formulawithreferencetoinsecticide.J.Econ.Entomol.78,1179–1181. Grafton-Cardwell,E.E.,Godfrey,L.D.,Chancy,W.E.,Bentley,W.J.,2005.Variousnovel

insecticidesarelesstoxictohumans,morespecifictokeypests.Calif.Agrie.59, 19–34.

Islam,W.,Wenzhong,L.,Qasim,M.,Islam,S.I.,Ali,H.,Muhammad,A.,Muhammad,A., Zhenguo,D.,Zujian,W.,2018a.Anation-widegeneticsurveyrevealedacomplex populationstructureofBemisiatabaciinPakistan.ActaTrop.183,119–125. Islam,S.I.,Qasim,M.,Wenzhong,L.,Waqar,I.,Muhammad,A.,Ali,H.,Zujian,W.,

2018b.GeneticinteractionanddiversityofthefamiliesLibellulidaeand Gom-phidaethroughCOIgenefromChinaandPakistan.ActaTrop.182,92–99. Ishtiaq,M.,Saleem,M.A.,2011.Generatingsusceptiblestrainandresistancestatus

offieldpopulationsofspodopteraexigua(Lepidoptera:noctuidae)againstsome

conventionalandnewchemistryinsecticidesinPakistan.J.Econ.Entomol.104 (4),1343–1348.

Jat,S.K.,Ameta,O.P.,2013.Relativeefficacyofbiopesticidesandnewerinsecticides againstHelicoverpaarmigera(Hub.)intomato.BioscanRanchi(Ranchi)8(2), 579–582.

Jones,K.A.,Irving,N.S.,Grzywacz,D.,Moawad,G.M.,Hussein,A.H.,Fargahly,A.,1994. ApplicationratetrialswithanuclearpolyhedrosisvirustocontrolSpodoptera littoralis(Boisd)oncottoninEgypt.CropProt.13,337–340.

Kalantari,M.,Marzban,R.,Imani,S.,Askari,H.,2014.EffectsofBacillus thuringien-sisisolatesandsinglenuclearpolyhedrosisvirusincombinationandaloneon Helicoverpaarmigera.Arch.Phytopathol.PlantProt.47,42–50.

Karim,S.,2000.ManagementofHelicoverpaarmigera:areviewandprospectusfor Pakistan.Pak.J.Biol.Sci.,1213–1222.

Liu,X.,Zhang,Q.,Xu,B.L.,Li,J.C.,2006.EffectsofCry1ActoxinofBacillusthuringiensis andnuclearpolyhedrosisvirusofHelicoverpaarmigera(Hübner)(Lepidoptera: noctuidae)onlarvalmortalityandpupation.PestManag.Sci.62,729–737. Muhammad,A.,Anjum,S.,Arif,M.J.,Khan,M.A.,2009.Transgenic-Btand

non-transgeniccottoneffectsonsurvivalandgrowthofHelicoverpaarmigera.Int.J. Agric.Biol.11(4),473–476.

Monobrullah,M.,Nagata,M.,1999.Immunityoflepidopteraninsectsagainst bac-uloviruses.J.Entomol.Res.Soc.23,185–194.

Nakai,M.C.G.,Kang,W.,Shikata,M.,Luque,T.,Kunimi,Y.,2003.Genomesequence andorganizationofanucleopolyhedrovirusisolatedfromthesmallerteatotrix, Adoxophyeshonmai.Virology316,171–183.

Qayyum,M.A.,Wakil,W.,Arif,M.J.,Sahi,S.T.,2015.Bacillusthuringiensisandnuclear polyhedrosisvirusfortheenhancedbiocontrolofHelicoverpaarmigera.Int.J. Agric.Biol.17,1043–1048.

Qasim,M.,Yongwen,L.,Dash,C.K.,Bamisile,B.S.,Ravindran,K.,Islam,S.I.,Ali,H., Wang,F.,Wang,L.,2018a.Temperature-dependentdevelopmentofAsiancitrus psyllidonvarioushosts,andmortalitybytwostrainsofIsaria.Microb.Pathog. 119,109–118.

Qasim,M.,Husain,D.,Islam,S.I.,Ali,H.,Islam,W.,Hussain,M.,Wang,F.,Wang,L., 2018b.EffectivenessofTrichogrammachilonisIshiiagainstspinybollwormin Okraandsusceptibilitytoinsecticides.J.Entomol.Zool.Stud.6,1576–1581. Shakeel,M.,Ali,H.,Ahmad,S.,Said,F.,Khan,K.A.,Bashir,M.A.,Anjum,S.I.,Islam,W.,

Ghramh,H.A.,Ansari,M.J.,Ali,H.,2018.Insectpollinatorsdiversityand abun-danceinErucasativaMill.(Arugula)andBrassicarapaL.(Fieldmustard)crops. SaudiJ.Biol.Sci.(Inpress).

Sayyed,A.H.,Wright,D.J.,2006.Geneticsandevidenceforanesterase-associated mechanismofresistancetoindoxacarbinafieldpopulationofdiamondback moth(Lepidoptera:plutellidae).PestManag.Sci.62(11),1045–1051. Schneider,M.I.,Smagghe,G.,Gobbi,A.,Vinuela,E.,2003.Toxicityand

pharma-cokineticsofinsectgrowthregulatorsandothernovelinsecticidesonpupae ofHyposoterdidymator(Hymenoptera:ichneumonidae),aparasitoidofearly larvalinstarsoflepidopteranpests.J.Econ.Entomol.96(4),1054–1065. Thompson,G.D.,Dutton,R.,Sparks,T.C.,2000.Spinosadacasestudy:anexample

fromanaturalproductsdiscoveryprogramme.PestManag.Sci.56,696–702. Tompkins,G.J.,1991.Purificationofinvertebrateviruses.In:Adams,J.R.,Bonami,

J.R.(Eds.),AtlasofInvertebrateViruses.CRCPress,BocaRaton,FL,pp.31–39. Trang,T.,Kieu,T.,Chaudhari,S.,2002.Bioassayofnuclearpolyhydrosisvirus(NPV)

andincombinationwithinsecticideonSpodepteralitura(Fab).Omerica10, 45–53.

Wakil,W.,Ghazanfar,M.U.,Nasir,F.,Qayyum,M.A.,Tahir,M.,2012.Insecticidal effi-cacyofAzadirachtaindica,nucleopolyhedrovirusandchlorantraniliprolesingly orcombinedagainstfieldpopulationsofHelicoverpaarmigeraHübner (Lepi-doptera:noctuidae).ChileanJ.Agric.Res.72(1),53.

Wang,D.,Gong,P.,Li,M.,Qiu,X.,Wang,K.,2009.SublethaleffectsofSpinosadon survival,growthandreproductionofHelicoverpaarmigera(Lepidoptera: noctu-idae).PestManag.Sci.65(2),223–227.

Zahn,D.K.,Morse,J.G.,2013.Investigatingalternativestotraditionalinsecticides: effectivenessofentomopathogenicfungiandBacillusthuringiensisagainst cit-rusthripsandavocadothrips(Thysanoptera:thripidae).J.Econ.Entomol.106, 64–72.

Zhang,G.Y.,1989.CommercialviralinsecticideHeliothisarmigeraviralinsecticide inChina.IPMPractitioner11,13–14.

Referências

Documentos relacionados

Introdução aos Protocolos 37 Tabela 3 – Especificação Bluetooth LE Faixa 10m Numero máximo de dispositivos um pra muitos Taxa de dados 1 Mbps Freqüência

A História da matemática pode contribuir também para que o professor compreenda algumas dificuldades dos alunos, que, de certa maneira reflitam históricas

Um incentivo muito especial foi o facto de o estudo em questão se centrar na perspectiva da escola como entidade promotora no combate à exclusão social com particular

41 4 RESULTADOS E DISCUSSÃO 4.1 Seleção de espécie/linhagem de Trichogramma para o controle de Phthorimaea operculella Zeller, 1873 Houve diferenças estatísticas entre

Igualmente importante foi a adaptação da política exterior brasileira às transformações do sistema internacional em fins dos anos 50 e início dos 60, tais como a

Inanna assim, nos exige mais, as questões levantadas sussitam possíveis pesquisas para o futuro, quem sabe o que um novo documento traduzido pode nos trazer, que vestígios de seu

intenções é melhorar as condições dentro da escola. Diante do questionamento sobre as modalidades avaliativas, as docentes destacam a centralidade das crianças em relação

O foco aqui será em descrever como realizar uma análise fatorial exploratória AFE e uma análise fatorial confirmatória AFC, e nas próximas sessões será descrito cada passo